首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Biological properties of RB51; a stable rough strain of Brucella abortus   总被引:27,自引:0,他引:27  
A rifampin-resistant mutant of Brucella abortus, designated RB51, was derived by repeated passage of strain 2308 on Trypticase soy supplemented with 1.5% agar and varying concentrations rifampin or penicillin. The RB51 colonies absorbed crystal violet and RB51 cell suspensions autoagglutinated, indicating a rough type colonial morphology for this strain. No O-chain component was detected in lipopolysaccharide (LPS) extracted from RB51 on SDS-PAGE gels stained with silver. Western blot analysis with the monoclonal antibody BRU 38, which is specific for the perosamine homopolymer O-chain of smooth Brucella LPS, indicated that the LPS of RB51 is highly deficient in O-chain when compared with the parenteral smooth strain 2308 or rough strain 45/20. Biochemically, RB51 resembles parental strain 2308 in its ability to utilize erythritol. Intraperitoneal inoculation of RB51 into mice results in a splenic colonization which is cleared within four weeks post infection. RB51 does not revert to smooth colony morphology upon passage in vivo (mice) or in vitro. Mice infected with RB51 produce antibodies against B. abortus antigens including class 2 and 3 outer membrane proteins but not against the O-chain. Furthermore, rabbits, goats and cattle hyperimmunized with sonicates of RB51 develop antibodies to B. abortus cellular antigens but do not develop antibodies specific for the O-chain. Immunization of mice with 1 x 10(8) viable RB51 organisms confers significant protection against challenge with virulent B. abortus strain 2308.  相似文献   

2.
Thirty water buffalo were obtained from a brucellosis-free farm in order to evaluate antibody responses, bacterial clearance and safety to Brucella abortus strain RB51 vaccine in a dose response study. The animals were randomly divided into five treatment groups. Groups I-V received the recommended dose of RB51 vaccine (RD) once, RD twice 4 weeks apart, double RD once, double RD twice 4 weeks apart and saline once, respectively. Antibody responses to RB51 were monitored at 2, 4, 6, 8, 10, 12, 16 18, 22, 24 and 27 post-initial-inoculation weeks (PIW). Clearance of RB51 from the prescapular lymph node was evaluated at 2, 4, 6, 12, 18 and 24 PIW for groups 1, III and V and at 6, 8, 10, 16, 22 and 27 PIW for groups II and IV. To evaluate shedding of the RB51 strain, nasal, conjunctival, vaginal or preputial swabs were taken from all experimental animals at 1, 2, 3, 4, 6, 8 and 12 PIW. Sera taken at all PIW were negative for field strain B. abortus by both the buffered plate agglutination test (BPAT) and competitive enzyme-linked immunosorbent assay (c-ELISA). Antibody responses to RB51 were demonstrated in all vaccinates but not in the controls, up to 12 PIW, by complement fixation test (CFT) and the dot-blot assay with an 83.7% agreement for both tests. Clearance of RB51 occurred between 6 and 12 PIW in group I but less than 2 weeks after booster vaccinations in groups II and IV and between 4 and 6 PIW in group III. RB51 was not recovered at any time from swabs obtained from either RB51-vaccinates or non-vaccinates. The results of this study indicate that serologic responses to RB51 vaccination can be monitored by both CFT and dot-blot assay in water buffalo. Our data also indicates that RB51 vaccination does not interfere with brucellosis sero-surveillance and is safe (no serological and bacteriological evidence of spread to non-vaccinates, no adverse clinical signs or detectable abnormalities on haematology and serum biochemistry) for use in water buffalo.  相似文献   

3.
Brucella abortus strain RB51, a rough mutant of the B. abortus 2308 virulent strain, was recently approved in the United States as the official vaccine for brucellosis in cattle. Following recent evidence of unauthorized use of RB51 vaccine in Italy, where the use of vaccines for brucellosis is no longer allowed, the suitability of an RB51-specific polymerase chain reaction assay for identifying the RB51 strain among Brucella field isolates from cattle in Italy was investigated. The oligonucleotide primers used in this study, belonging to a six-primer cocktail for Brucella species previously described by other authors, allowed the amplification of a 364-base pair (bp) fragment specific for RB51 and its parent strain 2308, and a 498-bp product specific for B. abortus. In addition, unresolved bands ranging from 600 to 700 bp were observed from RB51 strain. Brucella abortus biovars 1, 2 and 4 have only one specific sensitive 498-bp band. The B. abortus biovars 3, 5 and 6 did not give any signal. The 498-bp product from a reference Brucella strain was sequenced and submitted to EMBL with the accession number AJ271969 while the 364-bp fragment from RB51 strain was submitted to EMBL database with accession number AJ271968. The sequence studies confirmed the specificity of the detected fragments. No amplification was obtained by testing DNA from strains antigenically related to Brucella, such as Yersinia enterocolitica O:9, Escherichia coli O:157, Salmonella urbana and Pasteurella multocida. The results of this study indicate that this technique, in combination with specific serological tests, could be a useful diagnostic method to verify the use of RB51 vaccine and can contribute to the creation of a databank of circulating strains.  相似文献   

4.
Brucellosis developed in a 14.5-month-old Gelbvieh heifer after the animal was vaccinated with the calfhood dose of strain RB51 Brucella abortus vaccine s.c. during the fourth month of its first pregnancy. The heifer experienced dystocia and was euthanatized during cesarean section because of a large uterine tear. The fetus was dead at delivery. Suppurative placentitis and fetal pneumonia were evident at necropsy. Brucella abortus strain RB51 was isolated from the placenta and the fetus' lung.  相似文献   

5.
Brucella abortus strain RB51 is an attenuated rough strain, currently being used as the official live vaccine for bovine brucellosis in the USA and several other countries. In strain RB51, the wboA gene, encoding a glycosyltransferase required for the O-side chain synthesis, is disrupted by an IS711 element. Recently, we have demonstrated that strain RB51WboA, RB51 complemented with a functional wboA gene, remains rough but expresses low quantities of O-side chain in the cytoplasm. Mice vaccinated with strain RB51WboA develop greatly enhanced resistance against challenge with B. abortus virulent strain 2308. We have also demonstrated that overexpression of Cu/Zn superoxide dismutase (SOD) in strain RB51 (RB51SOD) significantly increases its vaccine efficacy against strain 2308 challenge. In this study, we constructed a new recombinant strain, RB51SOD/WboA, that over expresses SOD with simultaneous expression of O-side chain in the cytoplasm. We tested the vaccine potential of strains RB51SOD, RB51WboA, RB51SOD/WboA against challenge with virulent Brucella melitensis 16M and B. abortus 2308 in mice. In comparison with strain RB51, strain RB51SOD induced better protection against strain 2308, but not strain 16M, challenge. Similar to strain RB51WboA, vaccination with strain RB51SOD/WboA resulted in complete protection of the mice from infection with strain 2308. When challenged with strain 16M, mice vaccinated with either strain RB51WboA or strain RB51SOD/WboA were significantly better protected than those vaccinated with strain RB51 or RB51SOD. These results suggest that strains RB51WboA and RB51SOD/WboA are good vaccine candidates for inducing enhanced protection against B. melitensis infection.  相似文献   

6.
Brucella is responsible for one of the major worldwide zoonoses. Over the last century, several vaccines have been used against brucellosis. Among these, the rough vaccine Brucella abortus RB51 was introduced with the idea that it would not interfere with the diagnosis of brucellosis. Recently, RB51 has been isolated from milk and vaginal exudates from vaccinated cows, thus raising the possibility of extensive bacterial replication in these animals. We hypothesized that shedding of RB51 might be related to a change in its intracellular cell cycle. Therefore, we have compared the intracellular trafficking in CHO cells of the virulent B. abortus 2308 and two RB51 strains, the vaccinal strain and the one isolated from cow milk. Both RB51 strains were transiently observed in phagosomes characterized by the presence of the early endosomal marker EEA1 and then were found in cathepsin D-enriched lysosomal compartments, in which they eventually underwent degradation at later post-infection times. In contrast, the virulent 2308 strain replicated within the endoplasmic reticulum. These results suggest that a change in intracellular trafficking cannot account for Brucella shedding in adult vaccinated cows.  相似文献   

7.
Neospora caninum, an obligate intracellular protozoan parasite, is the causative agent of bovine neosporosis, an important disease affecting the reproductive performance of cattle worldwide. Currently there is no effective vaccine available to prevent N. caninum infection in cattle. In this study, we examined the feasibility of developing a live, recombinant N. caninum vaccine using Brucella abortus vaccine strain RB51 as the expression and delivery vector. We generated two recombinant RB51 strains each expressing SRS2 (RB51/SRS2) or GRA7 (RB51/GRA7) antigens of N. caninum. BALB/c mice immunized by single intraperitoneal inoculation of the recombinant RB51 strains developed IgG antibodies specific to the respective N. caninum antigen. In vitro stimulation of splenocytes from the vaccinated mice with specific antigen resulted in the production of interferon-gamma, but not IL-5 or IL-10, suggesting the development of a Th1 type immune response. Upon challenge with N. caninum tachyzoites, mice vaccinated with strain RB51/SRS2, but not RB51/GRA7, showed significant resistance to cerebral infection when compared to the RB51 vaccinated mice, as determined by the tissue parasite load using a real-time quantitative TaqMan assay. Interestingly, mice vaccinated with either strain RB51 or RB51/GRA7 also contained significantly lower parasite burden in their brains compared to those inoculated with saline. Mice vaccinated with strain RB51/SRS2 or RB51/GRA7 were protected to the same extent as the strain RB51 vaccinated mice against challenge with B. abortus virulent strain 2308. These results suggest that a recombinant RB51 strain expressing an appropriate protective antigen(s), such as SRS2 of N. caninum, can confer protection against both neosporosis and brucellosis.  相似文献   

8.
This study was designed to determine if a single 0.5 microg administration of recombinant murine interleukin-12 (IL-12) would influence immune responses of mice vaccinated with live or killed Brucella abortus strain RB51 (SRB51). Mice were vaccinated intraperitoneally with 5 x 10(8) cfu of live or gamma-irradiated SRB51 bacteria alone, or in combination with 0.5 microg of IL-12. Control mice received saline or 0.5 microg of IL-12. Serologic responses and spleen weights after vaccination were greater in mice vaccinated with live SRB51 when compared to mice receiving killed SRB51 or control treatments. Administration of a single dose of IL-12 as a vaccine adjuvant did not influence immune responses, clearance of live SRB51, or resistance against B. abortus strain 2308 (S2308) challenge. The results of this study suggest that a single administration of 0.5 microg of IL-12 at the time of vaccination does not have significant adjuvant effects on vaccine-induced immune responses against live or killed Brucella.  相似文献   

9.
OBJECTIVE: To evaluate clearance, antibody responses, potential shedding, and histologic lesions in reproductive tissues of adult bison bulls after vaccination with Brucella abortus strain RB51. ANIMALS: 61 two- and 3-year-old bison bulls. PROCEDURE: 12 bison bulls were vaccinated s.c. with B abortus strain RB51, 3 were inoculated s.c. with 0.15 M NaCl, and antibody responses were evaluated. Various specimens were obtained to evaluate bacterial shedding. Four vaccinates and 1 control were necropsied 10, 20, and 30 weeks after vaccination. In a separate experiment, bison bulls were vaccinated s.c. with 0.15 M NaCl, or by hand or ballistically with strain RB51. Antibody responses were monitored 6 weeks after vaccination and during necropsy 13 weeks after vaccination. Tissue specimens obtained during necropsy from both studies were evaluated bacteriologically and histologically. RESULTS: Strain RB51 was recovered at various times from semen of 3 of 12 vaccinated bison bulls in experiment 1. During necropsy, strain RB51 was recovered 10 and 20, but not 30, weeks after vaccination. In experiment 2, strain RB51 was recovered from lymphoid tissues of hand- and ballistic-vaccinated bison bulls during necropsy. In both experiments, microscopic lesions in testes, epididymis, and seminal vesicles were minimal and did not differ between strain RB51-vaccinated and saline-inoculated bison bulls. CONCLUSIONS AND CLINICAL RELEVANCE: Strain RB51 does not induce relevant inflammatory lesions in reproductive tissues of adult bison bulls. Shedding of strain RB51 in semen may be transient in some bison bulls; however, the importance of this observation is unknown.  相似文献   

10.
Pregnant BALB/c mice received various doses of either Brucella abortus strain 19, a smooth vaccine strain, or B abortus strain RB51, a stable rough organism, intraperitoneally on day 9 of gestation to compare the relative pathogenicity of the two attenuated strains. Nine days after inoculation, spleens and placentas were collected for bacteriological and histopathological examination. A dose of 10(7.5) and strain 19 organisms produced a severe necrosuppurative placentitis occasionally accompanied by fetal death. This dose resulted in a 10-fold higher level of splenic infection than did a dose of 10(9.5) strain RB51 organisms, which produced only mild to minimal placentitis not associated with fetal death. Strain 19 infected mice showed seroconversion in the standard tube agglutination test in contrast to the seronegative titre of strain RB51 infected mice. The results of this study corroborate previous investigations on the relative pathogenicity and the serological response of the non-pregnant mouse to strain RB51.  相似文献   

11.
In the studies reported here, protection induced by calfhood vaccination of bison with 1.2-6.1 x 10(10)CFU of Brucella abortus strain RB51 (SRB51) against a virulent strain of B. abortus was evaluated. Non-vaccinated and SRB51-vaccinated bison were intraconjunctivally challenged during midgestation with 3 x 10(7)CFU of virulent B. abortus strain 2308 (S2308). Maternal and fetal tissues were obtained within 24hour after abortion or parturition. Incidence of abortion was greater (P<0.05) in non-vaccinated as compared to SRB51-vaccinated bison (62% and 15%, respectively), with abortions occurring between 5 and 8 weeks after experimental challenge. Calves from bison vaccinated with SRB51 had a reduced (P<0.05) prevalence of fetal infection with S2308 as compared to calves from non-vaccinated bison (19% and 62%, respectively). Although the ability to recover the 2308 challenge strain from maternal tissues did not differ (P>0.05) between nonvaccinates and vaccinates (100% and 78%, respectively), calfhood vaccination with SRB51 reduced (P<0.05) recovery of S2308 from uterine or mammary gland tissues. In bison which did not abort, S2308 was routinely recovered in low numbers from maternal lymphatic tissues; particularly the parotid, bronchial, supramammary, and mandibular lymph nodes. The RB51 vaccine strain was not recovered at any time from maternal or fetal samples obtained at necropsy. Histological lesions associated with Brucella-induced abortions were suppurative placentitis, fetal broncho-interstitial pneumonia, and fetal histiocytic splenitis. The results of our studies suggest that calfhood vaccination of bison with SRB51 is efficacious in protecting against intramammary, intrauterine, and fetal infection following exposure to a virulent strain of B. abortus during pregnancy. As brucellosis is transmitted horizontally through fluids associated with the birth or abortion of an infected fetus, or vertically to the calf through the ingestion of milk containing B. abortus, our data suggest that calfhood vaccination with SRB51 will be beneficial in preventing transmission of brucellosis in bison.  相似文献   

12.
BALB/c mice were immunized with live rough Brucella abortus RB51 or smooth Brucella melitensis Rev. 1 vaccines and challenged with a B. melitensis field strain. Protection was assessed by a variety of serological tests and recovery of vaccinal and challenge strains by culture. Mice vaccinated with RB51 gave negative results in the conventional serological tests prior to challenge, namely; standard tube agglutination test (SAT), Rose Bengal plate test (RBPT), buffered acidified plate antigen test (BAPAT), and mercaptoethanol test (MET). Sero-conversion took place to a whole-cell bacterial buffered RB51 antigen after vaccination and persisted for 7 weeks post-vaccination. Mice challenged with B. melitensis were assessed for bacterial load and immune response for 12 weeks after challenge. Protection units were showed that Rev. 1 vaccine was superior to RB51 vaccine in protection of mice against B. melitensis. However, RB51 vaccine has the advantage that it would not elicit antibodies to standard serological tests based on the LPS O antigen. RB51 vaccine could therefore be used for control of B. melitensis infection and avoid confusion in the use of standard sero-diagnostic tests.  相似文献   

13.
Brucella abortus vaccine strain RB51 is an attenuated, stable rough mutant that is being used in many countries to control bovine brucellosis. Our earlier study demonstrated that the protective efficacy of strain RB51 can be significantly enhanced by overexpressing Cu–Zn superoxide dismutase (SOD), a homologous protective antigen. We have also previously demonstrated that strain RB51 can be engineered to express heterologous proteins and mice vaccinated with such recombinant RB51 strains develop a strong Th1 type of immune response to the foreign proteins. The present study is aimed at combining these two characteristics to generate new recombinant RB51 vaccines with enhanced abilities to protect against brucellosis and simultaneously able to protect against infections by Mycobacterium spp. We constructed two recombinant RB51 strains, RB51SOD/85A which overexpresses SOD with simultaneous expression of the 85A, a protective protein of Mycobacterium spp., and RB51ESAT which expresses ESAT-6, another protective protein of M. bovis, as a fusion protein with the signal sequence and few additional amino terminal amino acids of SOD. Mice vaccinated with these recombinant strains developed specific immune responses to the mycobacterial proteins and significantly enhanced protection against Brucella challenge compared to the mice vaccinated with strain RB51 alone.  相似文献   

14.
OBJECTIVE: To develop a novel oral vaccine delivery system for swine, using the rough vaccine strain of Brucella abortus. ANIMALS: 56 crossbred pigs from a brucellosis-free facility. PROCEDURE: In 3 separate experiments, pigs were orally vaccinated with doses of 1 x 10(9) to > 1 x 10(11) CFU of strain RB51 vaccine. The vaccine was placed directly on the normal corn ration, placed inside a whole pecan, or mixed with cracked pecans and corn. RESULTS: Oral vaccination of pigs with vaccine strain RB51 resulted in a humoral immune response to strain RB51 and short-term colonization of the regional lymph nodes. CONCLUSIONS AND CLINICAL RELEVANCE: A viscous liquid such as Karo corn syrup in association with pecans that scarify the oral mucosa are necessary when placing the live vaccine directly onto corn or other food rations. Doses of > 1 x 10(11) CFU of RB51 organisms/pig in this mixture ensures 100% colonization of regional lymph nodes via the oral route. This method may allow an efficient and economical means to vaccinate feral swine for brucellosis.  相似文献   

15.
Thirty-two water buffalo (Bubalus bubalis) calves aged 6?C10?months were used to evaluate serological responses to Brucella abortus strain RB51 (RB51) vaccination in a dose?Cresponse study and to compare the use of two selective media for the isolation of RB51. The animals were randomly divided into three treatment groups. Groups I?CIII received the recommended vaccine dose (RD) twice 4?weeks apart, RD twice 18?weeks apart and saline once, respectively. Lymph nodes were excised from the three groups and subjected to bacteriological examination to determine the frequency of detection of RB51. Pre- and post-vaccination blood samples were collected and tested for B. abortus antibodies using the buffered plate agglutination test (BPAT), complement fixation test (CFT), and dot-blot assay. Sera taken at all post-inoculation weeks (PIW) were negative for field strain B. abortus using the BPAT. Antibody responses to RB51 were demonstrated in all vaccinates but not in controls by CFT and dot-blot assay from 1 PIW up to 16?weeks following booster vaccination. The agreement for both assays was 80.7% and there was a linear interdependence with a Pearson??s correlation coefficient value of 0.578. The frequency of isolation of RB51 from the two selective media used was not significantly different (P?>?0.05).  相似文献   

16.
A new brucellosis vaccine, Brucella abortus strain RB51 (SRB51), is currently recommended for use as a calfhood vaccine in the US at dosages between 1 x 10(10)and 3.4 x 10(10)colony-forming units (CFU). The purpose of the study reported here was to compare responses to minimal and maximal recommended SRB51 dosages. Eighteen heifer calves were vaccinated subcutaneously with 1.6 x 10(10)CFU of SRB51, 3.2 x 10(10)CFU of SRB51, or saline (n = 6 per treatment). The vaccine strain was recovered from the superficial cervical lymph node 14 weeks after vaccination in two of six animals that received 1.6 x 10(10)CFU SRB51, but not from any cattle vaccinated with 3.2 x 10(10)CFU SRB51. The higher SRB51 dosage stimulated greater antibody titres. Protection against abortion or infection following B. abortus strain 2308 (S2308) challenge was similar for both SRB51 dosages and greater than resistance of non-vaccinates. The vaccine strain was recovered from one heifer and her fetus at necropsy 1 week prior to estimated parturition. Data from this study suggests that SRB51 induces similar protective immunity across the recommended dosage range. The SRB51 vaccine may persist in some cattle into adulthood but the incidence and significance of this persistence remains unknown.  相似文献   

17.
Brucella abortus strain RB51 (SRB51) is the standard vaccine used to protect cattle against brucellosis and is currently being used to vaccinate bison in the United States (US). Currently available media for culture of Brucella have not been evaluated for their ability to support growth of SRB51. In this study, five selective media for isolating brucellae, four commercially available media for gram-negative bacteria, and tryptose agar with 5% bovine serum (TSA) were compared to two SRB51 selective media developed in this study (rifampin brucellae medium (RBM), and malachite green brucellae medium (MGB)), for their ability to support growth and enhance recovery of SRB51. Four of the five media currently used for isolation of brucellae and two of the four media used for other Gram-negative bacteria did not support growth of SRB51. Modified Kuzdas and Morse (MKM), Brilliant Green, Skirrow's, RBM, and MGB supported growth of SRB51 in a manner similar to TSA. Recovery of SRB51 from tissues of SRB51-vaccinated bison was attempted on TSA, MKM, RBM, and MGB. From a total of 436 samples, SRB51 was isolated from 9.6, 4.3, 5.5, and 9.0% on TSA, MKM, RBM, or MGB media, respectively. Strain RB51 was recovered on only one medium (nine on TSA; three on RBM; and 9 on MGB) from 21 samples. Overgrowth of contaminating bacteria prevented potential detection of SRB51 from 9. 4, 5.5, 0.07, and 5.9% of samples on TSA, MKM, RBM, or MGB, respectively. These data suggest that the use of RBM and MGB, in combination with TSA, enhances the ability to recover SRB51 from tissue samples.  相似文献   

18.
OBJECTIVE: To determine the immunogenicity and efficacy of Brucella abortus strain RB51 (SRB51) as a vaccine in domestic pigs. ANIMALS: Sixty-eight 6-week-old crossbred domestic pigs and twenty-four 4-month-old gilts. PROCEDURES: In experiment 1, pigs were vaccinated IM (n = 51) with 2 x 10(10) CFUs of SRB51 or sham inoculated (17). Periodic blood samples were obtained to perform blood cultures, serologic evaluations, and cell-mediated immunity assays. Necropsies were performed at selected times between weeks 1 and 23 after vaccination to determine vaccine clearance. In experiment 2, gilts were similarly vaccinated (n = 18) or sham inoculated (8) and similar samples were obtained after vaccination. Gilts were bred and challenged conjunctivally with 5.0 x 10(7) CFUs of virulent Brucella suis strain 3B. Necropsies were performed on gilts and on fetuses or neonates after abortion or parturition, respectively. Bacterial cultures and serologic evaluations were performed on samples obtained at necropsy to determine vaccine efficacy. RESULTS: Humoral and cell-mediated immune responses did not differ between vaccinates and controls. After vaccination, SRB51 was not isolated from blood cultures of either group and was isolated from lymphoid tissues of 3 pigs at 2 weeks (n = 2) and 4 weeks (1) after vaccination. No differences were found in isolation of B suis or in seroconversion between vaccinated and control gilts and between their neonates or aborted fetuses. CONCLUSIONS AND CLINICAL RElEVANCE: Parenteral vaccination with SRB51 does not induce humoral or cell-mediated immune responses. Vaccination with SRB51 did not protect gilts or their neonates and fetuses from virulent challenge with B suis.  相似文献   

19.
Thirty water buffalo, obtained from a brucellosis-free farm, were used to evaluate cell-mediated immune responses and bacterial clearance in response to vaccination with Brucella abortus strain RB51 (RB51) in a dose-response study. The animals were randomly divided into five treatment groups. Groups I--V received the recommended dose (RD) of RB51 vaccine once, RD twice 4 weeks apart, double RD once, double RD twice 4 weeks apart and saline once, respectively. Cell-mediated immune response to RB51 was assessed by the histological examination of haematoxylin and eosin (H&E) stained sections of lymph nodes draining the sites of inoculation and by comparison of stimulation indices (SI) derived from gamma interferon (IFN-gamma) assay. A mixture of cytoplasmic proteins from B. melitensis B115 (brucellergene) was used as a specific antigenic stimulus to peripheral blood mononuclear cells (PBMC) and lymph node mononuclear cells (LNMC) up to 22 post-initial-inoculation week (PIW). Supernatants harvested at 18-24h after the in vitro antigenic stimulus were assayed for their IFN-gamma content by using a commercial sandwich enzyme-linked immunosorbent assay (ELISA) kit. Clearance of RB51 was assessed by the sequential immunohistochemical examination of sections of draining lymph nodes post-inoculation. There was no observable expansion of the deep cortex of lymph nodes on H&E sections indicating poor T-cell stimulation. All group V (control) water buffalo PBMC ELISA values were negative (SI<2.2) at all PIW sampling intervals. Overall PBMC IFN-gamma assay detected vaccinates from treatment groups' I--IV 67% (4/6), 83% (5/6), 33% (2/6) and 67% (4/6), respectively. LNMC IFN-gamma assay was unimpressive and there was a negative correlation (--.08) between the results of PBMC and LNMC of IFN-gamma assay. Clearance of RB51 occurred between 4 and 6 PIW in treatment groups I and III and between 6 and 12 PIW in groups II and IV. RB51 was not detected in any of the control animals at sampling intervals post-inoculation.  相似文献   

20.
Thirteen cows, which had been vaccinated as calves with strain 19, were revaccinated twice or three times as adults with 1×109 cfu of B. abortus strain RB51. Their serological responses following adult vaccination remained negative to conventional brucellosis surveillance tests. Vaccination with strain RB51 during the eighth month of pregnancy did not induce abortion, although strain RB51 was recovered from milk for up to 69 days after vaccination. In a parallel study, thirteen 8- to 10-month-old heifers were vaccinated as calves with 109 cfu of strain RB51. The heifers remained seronegative to conventional brucellosis surveillance tests but antibody responses to RB51 could be demonstrated using an indirect ELISA. This study showed that multiple vaccination with strain RB51 did not induce seroconversion to brucellosis surveillance tests. In addition, this study suggests that 109 cfu of strain RB51 is safe for use in pregnant cattle.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号