首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 406 毫秒
1.
Little effect of forest age on oribatid mites on the bark of trees   总被引:1,自引:0,他引:1  
This study investigates the effect of forest age (20-, 50-, 160-year-old, and primeval forest) on oribatid mite communities on the bark of oak trees in the National Park Pusza Białowieża in eastern Poland. We hypothesized that oribatid mite diversity on bark peaks at forests of intermediate age and that the number of parthenogenetic species of oribatid mites is highest in young stands. In contrast to these hypotheses, the diversity, density, number of juveniles, community structure and the mode of reproduction of oribatid mite species were not significantly affected by forest age. None of the oribatid mite species occurred exclusively on trees of a specific age. The results suggest that oribatid mite communities on the bark of trees are minimally affected by tree harvesting regimes. In contrast to oribatid mites in soil, communities on bark appear to be less sensitive to disturbances.  相似文献   

2.
Microarthropod abundance, oribatid mite species richness and community composition were assessed in the high canopy (ca. 35 m) of an ancient temperate rainforest and compared with microarthropod communities of the forest floor. Microarthropods were extracted from 72 core samples of suspended soils and 72 core samples from forest floors associated with six western redcedar trees in the Walbran Valley on the southwest coast of Vancouver Island, Canada. Total microarthropod abundances, mesostigmatid and astigmatid mites, Collembola and other microarthropod abundances were significantly greater in forest floors compared to canopy habitats. Oribatid and prostigmatid mite abundance were not significantly different between habitats. The relative abundances of all microarthropod groups considered in this study differed significantly between habitats. Eighty-eight species of oribatid mites were identified from the study area. Eighteen of the 53 species observed in suspended soils were unique to the canopy. Cluster analysis indicates that the arboreal oribatid mite community is distinct and not a taxonomic subset of the forest floor assemblage, however, canopy oribatid mite communities are more heterogeneous in species composition than in the forest floor.  相似文献   

3.
Differences in tree species may lead to contrasting soil environments via differences in litter chemical quality and physical environmental factors, such as soil type and soil moisture. However, separating the effects of litter quality and physical environment is difficult under field conditions. Both litter quality and soil environment affect the species composition of the soil animal community. A diversity gradient of canopy tree species (11–25 species) located on homogeneous soil substrate at Tomakomai Experimental Forest of Hokkaido University was used to analyse the relationship between tree species diversity and oribatid mite community structure. Soil samples were collected from three levels of tree species richness (high, intermediate and low) with three replicates each, in July 2000. Leaf area index (LAI) was positively correlated with tree species diversity suggesting higher litter input into the soils with increasing tree diversity. However, the tree species diversity gradient affected neither accumulation of litter on the forest floor nor abundance and species richness of oribatid mites. Canopy and understory plant species richness, LAI, total soil carbon and biomass of epigeic and endogeic earthworms did not significantly affect mite community structure as indicated by redundancy analysis (RDA). The results suggest that oribatid mite community structure is minimally affected by tree species diversity and associated changes in litter diversity.  相似文献   

4.
During a period of 7 years, between 1989 and 1995, Collembola and Oribatida were investigated in a beech forest on an acid Dystric Cambisol soil in northern Germany. Precipitation and temperature at a nearby climate station were recorded, and litter fall in the forest was measured. For 23 collembolan and 27 oribatid mite species, an analysis was performed concerning the influence of the climate parameters or litter fall on yearly assemblages or single species. Climate influence on the community structure was weak. Composition of the assemblages was relatively constant throughout the period of 7 years. A significant effect was determined for mean annual temperature and July precipitation only. More distinct effects were found in single species. In total, nine collembolan and six oribatid mite species were significantly influenced by litter fall, mean annual temperature, mean January temperature, mean July temperature, total precipitation or July precipitation. Reaction time ranged between 1 and 12 months. Four collembolan species reacted with a retarded yearly occurrence on deep spring temperature. Species diversity of Collembola was negatively correlated with total litter fall, while in oribatid mites the diversity showed a positive correlation.  相似文献   

5.
Litter decomposition and changes in oribatid mite community composition were studied for 2 years in litterbags collected from arboreal organic matter accumulations (canopy suspended soils) and forest floors associated with western redcedar trees on Vancouver Island, British Columbia. We tested the hypotheses that lower rates of mass loss, higher nutrient levels, and different patterns of oribatid mite richness and abundance in decomposing western redcedar litter would be observed in litterbags associated with canopy suspended soils compared to forest floors. Decomposition, measured by mass loss of cedar litter in litterbags, was not significantly different in canopy and forest floor habitats, although reduced in the canopy. Abundance and richness of oribatid mites inhabiting litterbags were significantly greater on the forest floor compared to the canopy suspended soils. Canopy suspended soils had higher levels of total nitrogen, available phosphorus and potassium than the forest floor, but moisture content was significantly lower in the suspended soils. Higher nutrient levels in the canopy system are attributed to differences in coarse woody debris input (but not foliar litter), combined with reduced nutrient uptake by roots and lower mobilisation rates of nutrients by detritivorous and fungivorous microarthropods. Moisture limitation in the canopy system possibly contributed to lower mass loss in litterbags, and lower abundance and richness of oribatid mites in litterbags placed on canopy suspended soils. Patterns of oribatid mite community composition were related to mite communities associated with the underlying substrate (forest floor or canopy suspended soil) which act as source pools for individuals colonising litterbags. Successional and seasonal trends in oribatid mite communities were confounded by moisture limitation at 24 months, particularly within the canopy habitat.  相似文献   

6.
Composition, structure and diversity of oribatid communities inhabiting saxicolous mosses and lichens were studied in the Krkonoše Mts. (Czech Republic) along an altitudinal gradient reaching from submontane to alpine belt. Samples of various saxicolous mosses and lichens from 197 stands were collected. Impact of altitude and dominant moss or lichen species on community structure were analysed. Data were evaluated using divisive cluster analysis and direct ordination analysis. Altogether 104 oribatid species were recorded. Four groups of saxicolous habitats, which differ in the composition of their oribatid communities, were distinguished:1. Mosses below the upper forest line with accessory higher plants growing on their surface. Higher plants indicate favourable moisture conditions and an appreciable degree of humus layer development. Their oribatid mite community is rich in number of frequent species and consists of ubiquitous species, ubiquitous species with higher requirements for moisture and amount of decaying organic matter, a high number of soil dwelling species and several hygrophilous species.2. Mosses below the upper forest line without accessory higher plants. They predominantly include mosses with no or only a weakly developed humus layer. Their oribatid mite community is composed mainly of ubiquitous species and a few soil dwelling species.3. Mosses in open areas above the upper forest line. Their humus layer is not developed at all or only weakly. Humidity and temperature fluctuations are here much higher compared with mosses below the upper forest line, which are protected by the specific forest microclimate. Their oribatid mite community is poor in number of frequent and dominant species and consists predominantly of Oribatula cf. pallida and two specialised species living exclusively in mosses and lichens (Mycobates tridactylus and Trichoribates monticola).4. Saxicolous lichens. Their oribatid community comprises ubiquitous species, species frequent both in mosses and lichens and several species with a strong affinity to lichens (Mycobates carli and five species of the genus Carabodes).  相似文献   

7.
The role of tree diversity and identity as determinants of soil animal community structure is little understood. In a mature deciduous forest dominated by beech we identified clusters of one, two and three tree species of beech, ash and lime allowing to investigate the role of tree species diversity and identity on the density and community structure of oribatid mites. To relate oribatid mite community structure to environmental factors we measured leaf litter input, fine root biomass, mass of organic layers, topsoil pH and C and N content. We expected oribatid mite density to increase with increasing tree diversity, but we expected the effects of tree species identity to override effects of tree diversity. Further, we hypothesized the density of oribatid mites to be reduced by the presence of beech but increased by the presence of lime and ash. As expected tree diversity little affected oribatid mite communities, whereas tree species identity strongly altered density and community structure of oribatid mites. However, in contrast to our expectations the density of oribatid mites was highest in presence of beech indicating that many oribatid mite species benefit from the presence of recalcitrant litter forming thick organic layers. Especially Oppioidea benefited from the presence of beech presumably due to an increased availability of food resources such as fungi and nematodes. Lower density of oribatid mites in monospecific clusters of lime and ash suggests that oribatid mites did not benefit from high quality litter of these species. Notably, large and strongly sclerotized oribatid mite species, such as Steganacarus magnus and Chamobates voigtsi, benefited from the presence of ash and lime. Presumably, these large species better resist harsh microclimatic conditions in shallow organic layers.  相似文献   

8.
A study was made of oribatid mite communities and their responses to metal contamination derived from the Kosogorsky metallurgical plant located in the Tula District, Russia. Mite communities were sampled in three different seasons in four sites at different distances from the smelter. Concentrations of zinc, copper, cadmium, lead and iron were measured in ten mite species. The data show that the mite community as a whole is quite tolerant to the metal contamination caused by the Kosogorsky plant. At the polluted sites some species typical for nutrient-rich soils appeared, but community structure and species diversity were not seriously affected by metal contamination. In general, oribatid mites accumulated metals to very high internal concentrations. Average Cu, Cd, Pb and Fe concentrations did not differ significantly between species, but Zn did, and its level was associated with the mode of feeding of the species. Microphytophagous species, feeding exclusively on fungi, accumulated zinc in higher concentrations than other mites. This study illustrates the potential for bioindication by the little studied but species-rich group of soil oribatids.  相似文献   

9.
Forest wildfires can dramatically affect soil communities and reduce abundance and diversity of soil fauna. The recovery of soil animals after a fire depends both on immigration from the unburnt forest and on local survival in less-burnt spots, but the relative importance of these mechanisms is poorly known. Therefore, these factors were studied with regard to soil macrofauna and soil mites seven years after a wildfire occurring in a pine forest area with shallow soil in 2001 in central Sweden. Three replicate transects, each consisting of four plots were studied. The plots were located in (i) the unburnt forest close to the fire edge; (ii) slightly burnt patches directly attached to the unburnt forest; (iii) slightly burnt patches surrounded by bare rock but connected to the unburnt forest edge by a corridor with mostly unburnt litter and vegetation; and (iv) island patches not connected with a corridor to the unburnt forest edge. The hypothesis was that that soil animals would particularly disperse from the unburnt forest to moderately burnt plots inside a burnt area via the network of less-burnt corridors. Poor dispersers would be especially few in the island patches lacking connection to the “mainland”, whereas good dispersers would be independent of gaps in connectivity. As expected, the highest abundance of both macrofauna and oribatid mites was found in the unburnt forest. Resident soil macro- and mesofauna representatives had half the abundance in the edge and corridor plots as compared to the control, but their abundance was not lower in the island plots than in the corridor plots indicating on-site survival and recovery. Mobile mesostigmatid mites did not show any significant reduction of abundance in any of the plots. The abundance of soil-dwelling oribatid mites did not differ between islands and unburnt forest, but mobile aboveground oribatids had significantly lower abundance on the islands than in the unburnt forest. The opposite was observed for aboveground and belowground oribatid mite species richness. In conclusion, belowground animals showed mainly local survival and seemed to be independent of corridors presence, whereas most aboveground and mobile macro- and mesofauna seemed to be more responsive to isolation induced by forest fires. Soil and litter corridors connecting unburnt patches inside the burnt forests with the unburnt edges were important mainly for less mobile groups of soil macrofauna. This supports the idea that there is a relatively slow process of soil ecosystem recovery and that external colonization of the burnt areas dominates over the local survival and recovery from refuges.  相似文献   

10.
Terrestrial invertebrates constitute most of described animal biodiversity and soil is a major reservoir of this diversity. In the classical attempt to understand the processes supporting biodiversity, ecologists are currently seeking to unravel the differential roles of environmental filtering and competition for resources in niche partitioning processes: these processes are in principle distinct although they may act simultaneously, interact at multiple spatial and temporal scales, and are often confounded in studies of soil communities. We used a novel combination of methods based on stable isotopes and trait analysis to resolve these processes in diverse oribatid mite assemblages at spatial scales at which competition for resources could in principle be a major driver. We also used a null model approach based on a general neutral model of beta diversity. A large and significant fraction of community variation was explainable in terms of linear and periodic spatial structures in the distribution of organic C, N and soil structure: species were clearly arranged along an environmental, spatially structured gradient. However, competition related trait differences did not map onto the distances separating species along the environmental gradient and neutral models provided a satisfying approximation of beta diversity patterns. The results represent the first robust evidence that in very diverse soil arthropod assemblages resource-based niche partitioning plays a minor role while environmental filtering remains a fundamental driver of species distribution.  相似文献   

11.
The patterns of oribatid communities were investigated in relation to elevations (700, 1700, 2700 and 3100 m a.s.l.) and geological substrates (i.e. non-ultrabasic and ultrabasic rocks) on the slopes of Mt. Kinabalu, Sabah, Malaysia. The density and morphospecies richness of oribatid mites were greater in the non-ultrabasic plot than in the ultrabasic plot at each of the same elevations. The density and richness of Oribatid mites decreased with elevation on both substrates, but the effects of elevation on the density on non-ultrabasic were less significant than on the ultrabasic substrate. Oribatid mite density correlated positively with the concentration of soil organic phosphorus and negatively with that of exchangeable Ca in soil. The richness of morphospecies of oribatid mites positively correlated with phosphorus concentration in litter, above-ground biomass, tree diversity and litterfall amount, and negatively correlated with elevation and Ca in soil. Morphospecies from families Galumnidae, Otocepheidae, Haplozetidae and Scheloribatidae were dominant in each plot. Canonical correspondence analysis (CCA) showed the importance of elevation for the community structure of oribatid mite. In conclusion, total density or morphospecies richness of oribatid communities was influenced by both geology and elevation, and morphospecies composition was strongly influenced by elevation.  相似文献   

12.
Farm forestry, in particular the planting of exotic bluegums Eucalyptus globulus, is a strategy increasingly used in southwestern Australia to mitigate the damaging effects of land clearing and to improve agricultural productivity. At the same time, such agroforestry systems have the potential to at least partially impede the biodiversity decline associated with habitat destruction and agriculture. The soil/litter habitat, an important repository of biodiversity in terrestrial systems, is one of the habitats most affected by clearing and conventional agricultural practices. Within this habitat, free-living mites are one of the most diverse and abundant animal groups contributing significantly to key ecosystem functions. This study compares the soil and litter mite assemblages of 7-year-old E. globulus plantations with those of adjacent native forest and pasture sites. The assemblages associated with E. globulus were substantially more diverse than those of the pasture soils but well below that of the native forest. Particularly low densities of oribatid mites were observed in the plantation sites. We suggest that the young plantation age, the exotic nature of the plantation species, and the homogeneous, mono-specific litter all contributed to limit the potential for these plantations to enhance mite biodiversity.  相似文献   

13.
We investigated oribatid mite community diversity and structure in the managed conversion of coniferous stands into semi-natural montane forests that are composed of a small-scale mosaic formed by different age classes of silver fir, Norway spruce and European beech in the southern Black Forest area, South-Western Germany, using the space-for-time substitution method. The core hypothesis was that changing tree composition and management practice will affect functional structure and diversity of oribatid mite community through changing substrate quality and litter diversity. Three forest districts were selected within the research region. Four stand types representing the major stages of forest conversion were selected within each forest district: (i) even-aged spruce monocultures, (ii) species enrichment stage, (iii) forest stand structuring stage, at which fur and beech and other deciduous trees penetrate the upper storey of the forest and (iv) a diverse continuous cover forest respectively. Oribatid mite abundance, species richness and composition, biomass, ecomorphs and feeding groups relative abundance were determined. An overall increase in species richness moving from the spruce monoculture to a continuous cover forest was detected. However, the herbivorous and litter-dwelling mites were most sensitive to forest conversion demonstrating significant differences in abundance between conversion stages. Almost all changes in the oribatid community were associated with the properties of the changing litter layer. Abundance of soil-dwelling mites remained very stable what is in contradiction with the response of the other soil fauna groups found at the same sites. Overall oribatid community seemed to be more dependent on total microbial biomass than fungi. However, observed effects were overshadowed by considerable district-induced differences.  相似文献   

14.
As part of the restoration of biodiversity on former agricultural land there has been focused on methods to enhance the rate of transition from agricultural land towards natural grasslands or forest ecosystems. Management practices such as sowing seed mixtures and inoculating soil of later successional stages have been used. The aim of this study was to determine the effects of a managed plant community on the diversity of soil fungi in a newly abandoned agricultural land. A field site was set up consisting of 20 plots where the plant diversity was managed by either sowing 15 plant species, or natural colonization was allowed to occur. The plant mixture contained five species each of grasses, legumes and forbs that all were expected to occur at the site. A subset of the plots (five from each treatment) was inoculated with soil cores from a late successional stage. The plant community composition was subject to a principal component analysis based on the coverage of each species. Five years after abandonment, soil samples were taken from the plots, DNA was extracted and the ITS region of the rDNA gene was amplified using fluorescently labelled fungal specific primers (ITS 1F/ITS 4). The PCR products were digested using HinfI and TaqI and sequenced. Results from both restriction enzymes were combined and a principal component analysis performed on the presence/absence of fragments. Also the fungal diversity expressed as number of restriction fragments were analysed. There was significantly higher fungal species richness in the experimental plots compared to the forest and field soils, but no differences between sown and naturally colonized plots. The different plant treatments did not influence the below ground fungal community composition. Soil water content on the other hand had an impact on the fungal community composition.  相似文献   

15.
The aim of the study reported here was to assess the impact of climate continentality across Europe on the structure and diversity of oribatid communities. Five sites were chosen along a West–East transect from The Netherlands to the Moscow region in Russia in the zone of deciduous forest. Our results suggest that at the chosen scale climate has a moderate impact on abundance and biomass of oribatid communities. However there is a clear impact of continentality on the functional structure and diversity of oribatid populations expressed as the increase of soil-dwelling species abundance towards the East and the decrease of litter-dwellers. There are also strong indications of a gradual faunistic shift along the transect. Soil type plays a modulating role in oribatid communities composition and species richness.  相似文献   

16.
A small-scale field study of oribatid and collembolan communities was conducted in the floodplain area of the Ondava River in the East-Slovak Lowland, to assess the role of temporary water pools in microdepressions with heavy soils for microarthropod distribution in an agricultural landscape. Soil samples were taken from five sites across a microdepression without water outflow located in a cultivated field. For comparison, willow field margin was included into the study. Results from ordination analysis showed specific communities at the pool-shore, clearly different from those of the arable field and willow margin sites. Pool-shore communities were mainly affected by soil pH (positive correlation) and dominated by oribatid mites Subiasella quadrimaculata and Microppia minus, together with Collembola Folsomia quadrioculata and Lepidocyrtus cyaneus. The soil surrounding freshwater pools is assumed to be a temporary microhabitat for several microarthropod species that contribute to the biodiversity of the agricultural landscape.  相似文献   

17.
Soil macroinvertebrates were studied in a Mediterranean-type forest on brown-pebble forest soils in southern Russia. At the site, 144 intact soil cores (76 cm2 each) forming a grid of 24 × 6 units were taken in order to determine animal spatial distribution. Abundance of isopods was 166.3 ± 16.0 indiv. m–2 and they constituted about 12% of the total macrofaunal abundance. Biomass of isopods was 3.5 g m–2, or about 21% of the total biomass of macrofauna. Three woodlice genera (Armadillidium, Cylisticus, and Trachelipus) were found at the site. The two latter genera formed almost all (93%) of the isopod population. We found that spatial distribution of woodlice was heterogeneous: areas with 4–5 individuals per sample were neighboring those without animals. In order to study soil factors influencing isopod distribution in the brown-pebble forest soil, the size of a sample was artificially increased by combining adjacent sample units. Litter mass (r = 0.41) and loss on ignition (LOI) (r = –0.55) significantly influenced isopod distribution. Soil pH was near neutral (6.79), LOI was 8.39, and the water holding capacity was 70.9%. Pebbles comprised up to 84% of the sample's mass. Ca. 40 samples are recommended for estimation of isopod abundance in brown forest soil.  相似文献   

18.
Two key determinants of biological diversity that have been examined in aboveground and aquatic systems are productivity, or resource supply, and physical disturbance. In this study, we examined how these factors interact under field conditions to determine belowground diversity using microarthropods (mites and Collembola) as our test community. To do this, we established a field manipulation experiment consisting of crossed, continuous gradients of nitrogenous (N) fertilizer addition (up to 240 kg N ha?1) and disturbance (imitated trampling by cattle) to produce a gradient of soil nutrient availability and disturbance. Due to the relatively short-term nature of our study (i.e. 2 years), we only detected minimal changes in plant diversity due to the experimental manipulations; in the longer term we would expect to detect changes in plant diversity that could potentially impact on soil fauna. However, disturbance reduced, and additions of N increased, aboveground biomass, reflecting the potential effects of these manipulations on resource availability for soil fauna. We found that disturbance strongly reduced the abundance, diversity, and species richness of oribatid mites and Collembola, but had little effect on predatory mites (Mesostigmata). In contrast, N addition, and therefore resource availability, had little effect on microarthropod community structure, but did increase mesostigmatan mite richness and collembolan abundance at high levels of disturbance. Oribatid community structure was mostly influenced by disturbance, whereas collembolan and mesostigmatan diversity were responsive to N addition, suggesting bottom-up control. That maximal species richness of microarthropod groups overall occurred in undisturbed plots, suggests that the microarthropod community was negatively affected by disturbance. We found no change in microarthropod species richness with high N additions, where plant productivity was greatest, indicating that soil biotic communities are unlikely to be strongly regulated by competition. We conclude that the diversity of soil animals is best explained as a combination of their many varied life history tactics, phenology and the heterogeneity of soils that enable so many species to co-exist.  相似文献   

19.
A study was carried out on some basic characteristics of the organic matter in the surface horizons of soils from the two different geological (calcareous and acid metamorphic rocks) and ecological systems under a Mediterranean climate in Southeast Spain. The results show some noticeable differences in soil organic matter composition. This is likely due to typical Mediterranean climate and well adapted vegetation. There is a tendency towards a greater stability for the soil humus formed under slightly alkaline soil in comparison to the slightly acidic environment. The samples taken from the latter environment have a higher content in free organic matter, a lower content in total extractable humin and a greater relative proportion of aliphatic chains and lignin in the humic acids. The results also suggest some differences caused by the type of vegetation (forest and scrubland ecosystems) in the soil humus chemistry, with a more obvious negative effect under reforestations with species of Pinus in an acidic soil environment (a higher content in free organic matter, lesser presence of fungal-derived perylenequinonic pigments in the humic acids, and a higher content in little evolved forms of nitrogen and lignin in the humic acids). In general the organic matter under scrubland and Quercus vegetation is more decomposed and the humus is more evolved than under Pinus vegetation.  相似文献   

20.
This study examined the influence of forest management intensity (3 unmanaged, 3 mild managed, 5 intensively managed stands) on soil microarthropods in montane spruce forest. We particularly focused on Oribatida and Collembola which play important roles in organic matter decomposition and nutrient cycling. Our results showed a significant shift from fungivory and carnivory to detritivory in the Oribatida community accompanying management intensification. Similarly, parthenogenetic oribatid mite species contributed more to the community in intensively managed forests and the presence of Collembola species with developed furca increased with management intensification. Although there was no remarkable influence of management intensity on total densities or diversity indices, important and significant shifts in species composition and functional groups showed that soil functions and processes were affected by forest management. Trait assessment indicates a shift in roles Oribatida play in decomposition; fragmentation and comminuting of undecomposed litter seems to gain importance in the intensively managed forest, whereas fungivorous species affect primary decomposers through feeding on fungi in the unmanaged forest.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号