首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The potential for surface and groundwater contamination of soil applied herbicides is partly dependent on soil properties. Sorption and desorption of diuron and norflurazon were studied in seven soils representative of the southern citrus-belt of Florida using the batch-equilibrium technique. Sorption of herbicides was influenced by soil properties. Sorption coefficients (K d) ranged from 0.84 to 3.26 mL g?1 for diuron and 0.63 to 2.20 mL g?1 for norflurazon indicating weak to moderate binding of herbicides to soil. For norflurazon, K dwas significantly related to organic C content, soil pH, and cation exchange capacity. For diuron, absence of a significant relationship between K dand selected soil properties suggests that the soil properties other than those studied may play a role in determining sorption on these soils. Desorption studies showed that higher amounts of diuron and norflurazon was desorbed by water than by 0.5 M CaCl2. An inverse relationship was apparent between herbicides sorbed and that which was desorbed among the soils studied. The soil which exhibited higher sorption had lower desorption and the soil which exhibited lower sorption had higher desorption.  相似文献   

2.
The effects of elevated atmospheric SO 4 2? deposition on S cycling in forest soils were assessed in an irrigation experiment using stable S isotopes. Over a period of 20 months, core lysimeters of five acidic forest soils from Southern Germany with different parent material and pedogenesis were irrigated with solutions chemically similar to canopy throughfall. Sulfate deposition in three experimental variants corresponded to 23, 42 and 87 kg S ha?1 yr?1. The SO 4 2? used for irrigation had aδ 34S ratio of +28.0‰ CDT (Canon Diablo Troilite standard), differing by more than +25‰ from natural and anthropogenic S in Southern Germany. A combination of chemical and isotopic analyses of soil and seepage water samples was used to elucidate the fluxes and transformations of simulated wet SO 4 2? deposition in each soil core. Retention of experimentally deposited S ranged from 57±5% in coarse-grained soils low in sesquioxides and clay, to 80±8% in loamy soils with high sesquioxide content. The sesquioxide content proved to be the major factor governing S retention. The ratio of S retained as inorganic SO 4 2? (mainly by adsorption) to that incorporated into organic compounds (presumably by microbial synthesis) ranged from 2 to 4. For the organic S pool, the amount of S retained as C-bonded S exceeded by far that immobilized as ester sulfate in four of the five soils. Application of34S-enriched SO 4 2? appears to be a suitable experimental tool to assess fluxes and transformations of deposited S in forest soils, if aerobic conditions are maintained. In contrast to radioactive S tracers, the concept should be applicable not only in laboratory and lysimeter experiments, but also in long term studies of whole forest ecosystems (e.g., experimental watersheds).  相似文献   

3.
A steady state soil chemistry model was used to calculate the critical load of acidity for forest soils and surface waters at Lake GÄrdsjön in S.W. Sweden. The critical load of all acid precursors (potential acidity) for the forest soil is 1.64 kmolc ha?1 yr?1, and 1.225 kmolc ha?1 yr?1 for surface waters. For the most sensitive receptor, the critical load is exceeded by 1.0 kmolc ha?1 yr?1, and a 80% reduction in S deposition is required, if N deposition remains unchanged. The critical load is largely affected by the present immobilization of N in the terrestrial ecosystem which is higher than the base cation uptake. The model, PROFILE, is based on mass balance calculations for the different soil layers. From measurable soil properties, PROFILE reproduces the present stream water composition as well as present soil solution chemistry. The model calculates the weathering rate from independent geophysical properties such as soil texture and mineral composition.  相似文献   

4.
To quantify the effects of reduced sulfate input on the chemistry of soil solution and soil S storage in acid forest soils, an experiment with undisturbed soil columns from two different sites was implemented. The acid cambisol of the Solling is subjected to a high sulfate input and especially the B-horizon has a high sulfate content. On the contrary, the podzol of the Fuhrberg site is subjected to low input and has low sulfate content. Undisturbed soil columns were taken from both sites and were irrigated at 6 °C with a precipitation rate of 3 mm d?1 over 10 mo. In treatment No. 1, an artificial throughfall with pH 5.2 and reduced sulfate load (45 μmol L?1) was applied. In treatment No. 2, an artificial througfall representing a high sulfate deposition (427 μmol L?1, pH 3.2) was used. In case of the Solling soil, the pH of soil solution was unaffected by treatments during the entire experiment. Alkalinity of the soil solution was slightly increased in treatment No. 1 at a depth of 20 cm. While treatment No. 1 resulted in a reduction of the sulfate concentrations of the soil solution in the top soil, sulfate concentrations were unaffected at a depth of 40 cm. The B-horizon of the Solling soil prevented deacidification of the soil solution by desorption of previously stored sulfate. In case of the Fuhrberg soil, treatment No. 1 resulted in reduced sulfate concentrations of the soil solution even in deeper soil layers with concentrations approaching input levels. The pH of the solution was slightly elevated and the alkalinity of the solution increased. Organic S compounds in the soil seemed to have no influence on sulfate release in either soils.  相似文献   

5.
Zinc (Zn) desorption from an exchange complex to solution, the release of Zn from organic matter (OM), crystalline minerals and other precipitates into the solution phase, is the process that controls Zn mobility in soils. An experiment was conducted to determine the pattern of Zn desorption and the soil characteristics affecting it. Desorption of Zn in 15 calcareous soils from southern Iran, treated with 10 mg Zn kg soil?1 as zinc sulfate (ZnSO4?7H2O) and 10 g organic matter (OM) kg?1 as feedlot cattle manure, equilibrated and extracted with diethylenetriamine pentaacetic acid (DTPA), was studied. Eight kinetic models were evaluated to describe the rate of Zn desorption of soil extracted with DTPA. There was a rapid rate of desorption during the first 4 h followed by a slower rate during the next 12 h. Two-constant rate and simple Elovich models were determined as the best models describing Zn desorption kinetics. Zinc desorption increased as Zn was applied, whereas it decreased with applied OM. The constants of the simple Elovich (βs) and two-constant rate equations (a and b) were closely correlated with cation-exchange capacity (CEC), OM and pH, which affect Zn solubility, sorption–desorption and diffusion in soils.  相似文献   

6.
The objective of this study was to investigate sorption, desorption, and immobilization of Pb in the clay and calcareous loamy sand soils treated with inorganic ligands (NO3?, Cl? and H2PO4?). Pb sorption was also determined in the presence of oxalate and citrate. The maximum Pb sorption capacities (q) ranged from 42.2 to 47.1 mmol kg?1 for the clay soil, and from 45.2 to 47.0 mmol kg?1 for loamy sand soil. It was observed that the binding energy constant (k) for Pb sorbed onto loamy sand soil (528–1061) is higher than that for clay soil (24.38–55.29). The loamy sand soil-sorbed greater quantities of Pb compared to the clay soil when initial pH was ≥ 3. However, it had lower sorption capacity at the lowest initial pH of 2. Additionally, the greatest Pb sorption and immobilization occurred in the soil treated with H2PO4. In the clay soil, the sorption of Pb was depressed at 0.1 mol kg?1 of Cl?, as compared with other ligands. Concerning organic acids, citrate ligand showed the highest decrease in Pb sorption. It could be concluded that the nature of Pb sorption can depend on the type and quantity of ligands present, as well as the soil type.  相似文献   

7.
干旱区绿洲灌漠土对铜的吸附解吸特性研究   总被引:1,自引:1,他引:1  
土壤对重金属的吸附解吸是影响土壤系统中重金属的移动性和归宿的主要过程.本文使用序批实验方法、单步提取方法、连续提取方法等研究了干旱区绿洲灌漠土Cu的吸附解吸特性.结果表明,灌漠土对Cu的吸附等温线可很好地用Freundlich等温方程拟合,灌漠土的Cu吸附可能受土壤理化综合因素影响,而不仅是某个土壤理化指标所控制;二次...  相似文献   

8.
Four types of plant residues (fruit waste, potato, sunflower, and wheat) with wide ranges of carbon to nitrogen (C/N) and carbon to phosphorus (C/P) ratios were added to the soil at the rate of 20 g kg?1 (dry weight basis) and incubated for two months. In soils treated with plant residues, the P sorption ranged from 62.0% (potato) to 96.6% (wheat) and from 12.6% (fruit waste) to 50.6% (wheat) when 20 and 1500 mg P kg?1 were added to the soils, respectively. In general, incorporation of plant residues decreased maximum P sorption capacity but increased bonding energy. The maximum P sorption capacity was reduced from 586 mg kg?1to 500, 542, and 548 by wheat, fruit, and potato residues, respectively, but increased to 665 mg kg?1 by sunflower residue. At higher P addition, the highest percentage of desorbed P was observed in soils treated with wheat residue (49.9%); followed by fruit waste (46.5%), potato (43.5%), sunflower (38.8%) and control soils (37.0%). It indicated that the P content of the organic residues had an important role in the sorption and desorption of P in calcareous soils. Among organic residues, sunflower residue showed high sorption and low desorption of P in soils, indicating a higher potential of this organic residue for P retention and reducing surface and groundwater contamination in calcareous soils.  相似文献   

9.
水溶性有机碳在各种粘土底土中的吸附:土壤性质的影响   总被引:3,自引:0,他引:3  
Clay-rich subsoils are added to sandy soils to improve crop yield and increase organic carbon (C) sequestration; however, little is known about the influence of clay subsoil properties on organic C sorption and desorption. Batch sorption experiments were conducted with nine clay subsoils with a range of properties. The clay subsoils were shaken for 16 h at 4 oC with water-extractable organic C (WEOC, 1 224 g C L-1) from mature wheat residue at a soil to extract ratio of 1:10. After removal of the supernatant, the residual pellet was shaken with deionised water to determine organic C desorption. The WEOC sorption was positively correlated with smectite and illite contents, cation exchange capacity (CEC) and total organic C, but negatively correlated with kaolinite content. Desorption of WEOC expressed as a percentage of WEOC sorbed was negatively correlated with smectite and illite contents, CEC, total and exchangeable calcium (Ca) concentrations and clay content, but positively correlated with kaolinite content. The relative importance of these properties varied among soil types. The soils with a high WEOC sorption capacity had medium CEC and their dominant clay minerals were smectite and illite. In contrast, kaolinite was the dominant clay mineral in the soils with a low WEOC sorption capacity and low-to-medium CEC. However, most soils had properties which could increase WEOC sorption as well as those that could decrease WEOC sorption. The relative importance of properties increasing or decreasing WEOC sorption varied with soils. The soils with high desorption had a low total Ca concentration, low-to-medium CEC and low clay content, whereas the soils with low desorption were characterised by medium-to-high CEC and smectite and illite were the dominant clay minerals. We conclude that WEOC sorption and desorption depend not on a single property but rather a combination of several properties of the subsoils in this study.  相似文献   

10.
Acid deposition is considered to be a major environmental problem in China, but information about effects on soils and waters is scarce. To contribute to increased knowledge about the problem a small catchment (about 7 ha) in the outskirts of Guiyang, the provincial capital of Guizhou in south-western China, was instrumented for collection of precipitation, throughfall, soil water and stream water. In addition soil samples have been collected and analyzed for key properties. Median pH in the precipitation is 4.40 (quartiles: 4.19 and 4.77) and the median sulfate concentration 228 µeq/L (quartiles: 147 and 334 µeq/L). The dry deposition of both SO2 and alkaline dust is considerable. The sum of wet deposition of sulfate and dry deposition of SO2 has been estimated to about 8.5 gSm-2yr-1. The total S-deposition may be somewhat higher due to dry deposition of sulfate and occult deposition. In soil water, SO4 2- is the major anion, generally ranging from 300 to 2500 µeq/L in the different plots. Calcium is an important cation, but there is also a considerable contribution of aluminum from the soil. In some of the plots the concentrations of inorganic monomeric aluminum (Ali) are typically between 200 and 400 µm. Potential harmful levels of aluminum and/or high Ali/(Ca2+ + Mg2+) molar ratios occur in the catchment, but damages to vegetation have not yet been reported. In most cases exchangeable aluminum accounts for between 75 and 95% of the total effective cation exchange capacity (CECE) in the mineral soils. The aluminum chemistry cannot easily be explained by conventional models as the Gaines-Thomas ion-exchange equation or equilibrium with an Al(OH)3 mineral phase. The stream water is generally less acidic and has considerably lower concentrations of aluminum than the soil water, even though quite acid events have been observed (pH < 4.4). The median pH values are 4.9 and 5.0 in the two first order streams and 6.3 in the dam at the lower boarder of the catchment.  相似文献   

11.
A number of biological and chemical processes may affect soil phosphorus availability when forest fires occur, partly as a result of heating. We describe here a laboratory experiment to study the effects of soil heating on changes in sorption and desorption of P. Autoclaving was also included as an additional treatment of moist heating under pressure. Five forest soils (two Podzols, one Arenosol, one Luvisol and one Alisol) were heated to 60°C, 120°C and 250°C or autoclaved for 30 min. They were repeatedly extracted with Bray I and analysed for inorganic and organic P fractions. The desorbed P data were fitted to an asymptotic exponential equation to obtain the desorption rate and capacity parameters. Podzol and Arenosol soils showed a quick P desorption after heating, while Luvisol and Alisol soils showed a slow desorption rate. The immediate increase in available P that occurred after heating or autoclaving originated mostly from solubilisation of microbial metabolites and soil organic components. Autoclaving decreased P sorption capacity in all soils, but the effects of heating on P sorption differed among soils. Except for one of the soils, the low P-fixing soils (Podzol and Arenosol) showed a decrease in P sorption when heated to high temperatures, whereas the high P-fixing soils (Luvisol and Alisol) showed little changes after heating. Fire intensity and soil characteristics are important factors determining short-term and long-term soil P dynamics.  相似文献   

12.
Zinc sorption–desorption by sand, silt and clay fractions of six representative calcareous soils of Iran were measured. Sand, silt and clay particles were fractionated after dispersion of soils with an ultrasonic probe. Zinc sorption analysis was performed by adding eight rates of Zn from 6 to 120 μmol g?1. For the desorption experiment, samples retained after the measurement of Zn sorption were resuspended sequentially in 0.01 M NaNO3 solution and shaken for 24 h. Results indicated that Zn sorption by soil fractions increased in the order clay > silt > sand, and correlated negatively with CaCO3 content and positively with cation exchange capacity (CEC) and smectite content. Results indicated that for all fractions, the Langmuir equation described the sorption rates fairly well. In contrast to sorption, Zn desorption from soil fractions increased in the order sand > silt > clay, and correlated positively with CaCO3 content, CEC and smectite content. Results showed that parabolic diffusion and two constant equations adequately described the reaction rates of Zn desorption. In general, for all soils studied, the coarser the particle size, the less Zn sorption and more Zn desorption, and this reflects much higher risk of Zn leaching into groundwater or plant uptake in contaminated soils.  相似文献   

13.
Iodine-129 is an important radionuclide released from nuclear facilities because of its long radioactive half-life and its environmental mobility. Its retention in surface soils has been linked to pH, organic matter, and Fe and Al oxides. Its inorganic solution chemistry indicates I will most likely exist as an anion. Three investigations were carried out to provide information on the role of the inorganic and organic chemistry during sorption of I by soil. Anion competition using Cl? showed that anion exchange plays a role in I sorption in both mineral and organic soils. The presence of Cl decreased the loss of I? from solution by 30 and 50% for an organic and a carbonated sandy soil respectively. The I remaining in solution was associated primarily with dissolved organic carbon (DOC). The loss rate from solution appears to depend on two reactions of I with the soil solids (both mineral and organic) creating both a release to and a loss from solution, and the reaction of I with the DOC (from very low to high molecular weight). Composition analyses of the pore water and the geochemical modelling indicate that I sorption affects the double-charged anion species in solution the most, particularly SO4 ?. Iodide introduced to natural bog groundwater at three concentrations (10?3, 10?1 and 10 meq L?1) remained as I? and was not lost from solution quickly, indicating that the association of I with DOC is slow and does not depend on the DOC or I concentration. If sorption of I to soil solids or DOC is not sensitive to concentration, then stable I studies, which by necessity must be carried out at high environmental concentrations, can be linearly extrapolated to radioactive I at much lower molar concentrations.  相似文献   

14.
Sulfur mineralization rates, changes in organic and inorganic S constituents and arylsulfatase activity were determined in four soil horizons (O2, B21h, B22hir and B23) which represent the major portion of a forest Spodosol (Becket). Biweekly, for 20 weeks, soil subsamples were leached with deionized water and analyzed for S constituents. Rates of water-soluble sulfate release were 123, 39, 34 and 18 nmol S g?1 dry mass week?1 for O2, B22hir, B23 and B21h horizons, respectively. Only in the organic O2 horizon did non-sulfate inorganic S (Zn-HCl-S) increase (15 nmol S g?1) while phosphate extractable S decreased in all the mineral horizons (13, 19 and 28 nmol S g?1 week?1, B21h, B22hir and B23, respectively) due to desorption. Ester sulfate was mineralized in the B22hir and B23 horizons (?66 and ?22 nmol S g?1 week?1) and increased in the O2 (174 nmol S g?1 week?1). Arylsulfatase activity varied among horizons and decreased with time. Carbon-bonded S decreased in all horizons, especially those with high respiration rates (i.e. O2 and B21h), but changes were not significant. Only the B22hir horizon exhibited a significant loss of total S (128 nmol S g?1 week?1). The interrelationships among inorganic and organic S dynamics were outlined.  相似文献   

15.
Over-fertilization has caused significant phosphorus(P) accumulation in Chinese greenhouse vegetable production(GVP) soils. This study, for the first time, quantified profile P accumulation directly from soil P measurements, as well as subsoil P immobilization, in three alkaline coarse-textured GVP soil profiles with 5(S5), 15(S15), and 30(S30) years of cultivation in Tongshan, Southeast China. For each profile, soil samples were collected at depths of 0–10(topsoil), 10–20, 20–40, 40–60, 60–80, and 80–100 cm. Phosphorus accumulation was estimated from the difference in P contents between topsoil and parent material(60–100 cm subsoil). Phosphorus mobility was assessed from measurements of water-soluble P concentration(PSol). Finally, P sorption isotherms were produced using a batch sorption experiment and fitted using a modified Langmuir model. High total P contents of 1 980(S5), 3 190(S15), and 2 330(S30) mg kg~(-1) were measured in the topsoils versus lower total P content of approximately 600 mg kg~(-1) in the 80–100 cm subsoils. Likewise, topsoil PSol values were very high, varying from 6.4 to 17.0 mg L~(-1). The estimated annual P accumulations in the topsoils were 397(S5), 212(S15), and 78(S30) kg ha~(-1) year~(-1). Sorption isotherms demonstrated the dominance of P desorption in highly P-saturated topsoils, whereas the amount of adsorbed P increased in the 80–100 cm subsoils with slightly larger P adsorption capacity. The total P adsorption capacity of the 80–100 cm subsoils at a solution P concentration of0.5 mg L~(-1) was 15.7(S5), 8.7(S15), and 6.5(S30) kg ha~(-1), demonstrating that subsoils were unable to secure P concentrations in leaching water below 0.5 mg L~(-1) because of their insufficient P-binding capacity.  相似文献   

16.
When investigating the reversibility of soil and water acidification due to a reduction of SO42? deposition, the size and stability of the reversibly bound SO42? fraction in soils are important parameters. The desorption behaviour of SO42? in three acid forest soils was investigated using columns with undisturbed and disturbed (< 5 mm sieved) soil material. The results were compared to batch experiments. A comparison of the undisturbed and the disturbed soil samples showed that the soil structure had no effect on the chemistry of the soil solution, the S-mineralisation rates or the SO42? desorption rates. A comparison of the batch and the column method showed only minor differences in desorption rates. However, fitting the measured desorption rates to a modified Langmuir equation showed a more distinct difference between both methods. It was concluded that the batch method was more suitable to establish SO42? desorption isotherms. When investigating SO42? dynamics of soils, the heterogeneity of the soils has to be considered because the spatial variability of isotherm parameters was found to be greater than differences between the investigated methods. Furthermore, SO42? sorption showed a distinct hysteresis. While most of the sorbed SO42? was desorbed at concentrations < 5–10 mg SO42 ?1?1, a sorption of SO42? was observed only at concentrations > 20–30 mg SO42? ·1?1.  相似文献   

17.
Increase in phosphorus (P) availability with fertilizer addition is influenced by soil properties such as P sorption capacity. We investigated P availability changes and response of maize (Zea mays L) to four P fertilizers rates (0, 20, 30 and 40 kg ha?1) in a two-site field experiment, having soils of contrastingly different available P (2.9 and 22.1 mg kg?1) and P sorption capacities (171.9 and 54.2 mg kg?1). Increase in available P was significantly greater in the soil with higher available P but lower P sorption capacity, than in the other; however, yield responses were similar in the two soils. Fertilizer P rates of 30 and 40 kg ha?1 gave significantly greater maize yields than the unfertilized treatment in both soils. Results suggest the need to account for the P sorption capacity when deciding rates of P fertilizers to increase available P in soils.  相似文献   

18.
Sulphur deposition has diminished by about half during the last decade. For Sweden consistent estimates of total deposition are available for 1991, and 1994–97. Based on these estimates and using GIS the deposition for large drainage areas during one decade are calculated. These values are compared with the measured S transport in rivers covering about 85% of the Swedish territory, thus enabling the construction of a S budget for Sweden. The majority of the drainage areas have a net loss of S, which can be attributed to desorption of S in the soil. During the period of high deposition in the 1980:s (>60 meq m?2 yr?1 in southern Sweden) S was adsorbed, and retarded acidification. There still seems to be some S-adsorption in the northern parts of the country, where the deposition is less (now <20 meq m?2 yr?1).  相似文献   

19.

Purpose

Sorption and desorption of butachlor were simultaneously investigated on synthesized pure amorphous hydrated Fe oxides (AHOs Fe), and soils both with and without surface coating of AHOs Fe, with special interest towards how amorphous sesquioxides affect and contribute to butachlor retention in soils.

Materials and methods

The AHOs Fe was artificially synthesized pure materials. Two soils with contrasting physicochemical properties selected for study were black soil and latosol, belonging to permanent charged soil and variable charged soil, respectively. Both soils were further treated using AHOs Fe for detecting the differentiation from native soils regarding butachlor retention produced after the soils were surface-coated by AHOs Fe. A sorption experiment was conducted using a batch equilibrium technique, and desorption was carried out immediately following sorption by three sequential dilution. Hysteresis index (HI) values were calculated to investigate desorption hysteresis by developing desorption isotherms concentration dependent and time dependent, respectively.

Results and discussion

The sorption capacity for butachlor increased in the order of AHOs Fe, uncoated soils, and soils with surface coating of AHOs Fe. The sorption capacity of both soils significantly increased after surface coating by AHOs Fe (p?<?0.01), with a bigger increase achieved by black soil (52.0 %) as compared with that by latosol (45.3 %). Desorption of butachlor was coincidently hysteretic on AHOs Fe, and soils both uncoated and coated, whereas variation in desorption hysteresis was different between AHOs Fe and soils with increasing butachlor sorption loading, indicating different sorption mechanisms were operative for AHOs Fe and soils across the entire butachlor concentration range. Hysteresis of butachlor desorption was weakened after the soils were surface coated by AHOs Fe, as suggested by the changed HI values.

Conclusions

With high specific surface area and highly reactive surfaces, the “active” AHOs Fe originally has a relatively high sorption capacity and affinity for butachlor. While in natural soils, where the inevitable association derived from soil organic matter (SOM) would restrain AHOs Fe from sequestrating butachlor directly, AHOs Fe may likely contribute in a mediator way by coordinating active sites both on and within SOM. This may enhance the availability of sorption domains both on and within soils, thereby achieved an enhanced but more reversible retention for butachlor in soils after their surfaces were coated by AHOs Fe. This study has extended the observations of the role of noncrystalline sesquioxides in retention of pesticides such as butachlor from pure clay mineral systems to natural soils.  相似文献   

20.
High phosphate (Pi) sorption in soils is a serious limiting factor for plant productivity and Pi fertilization efficiency, particularly in highly weathered and volcanic ash soils. In these soils, the sorbed Pi is so strongly held on the surfaces of reactive minerals that it is not available for plant root uptake. The use of phosphate-solubilizing microorganisms (PSM) capable of Pi desorption seems to be a complementary alternative in the management of these soils. The aim of this study was to evaluate the effectiveness of the soil fungus Mortierella sp., a known PSM, to desorb Pi from four soil minerals differing in their Pi sorption capacity. The fungus was effective in desorbing Pi from all tested minerals except from allophane, and its desorption depended on the production of oxalic acid. The effectiveness of the fungus to desorb Pi was ranked as montmorillonite > kaolinite > goethite > allophane. The quantity of desorbed Pi increased by increasing the amount of sorbed Pi. The Pi sorption capacity expressed as P0.2 value (amount of P required to increase a solution P concentration up to 0.2 mg L?1) was a good indicator of the effectiveness of Mortierella sp. to desorb Pi from soil minerals.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号