首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A three month experimental study to evaluate the relative performance of three different designs of ‘event’ precipitation chemistry samplers was carried out at Woodbridge, Ontario beginning in August 1979. The samplers evaluated were an automatic Aerochem Metrics, ‘wet-only’ type (A), a funnel-and-bottle type (F), and a large-mouth plastic bucket with a specially-fabricated polyethylene bag insert (S). Each sampler was run in duplicate, with a sampling period of 24 hr. The results show that at sites where dry deposition is important, bulk samplers (‘F’ and ‘S’ types) yield significantly different results from the wet-only collector including rainfall amount, H+ , SO4 ?, NO3 ?, Na+, K+, Ca++, and Mg++. However, the bulk samplers, especially the ‘S’ type, are found to be satisfactory under certain conditions. For conditions which correspond to daily rainfall less than 2.8 mm and windier and drier sampling, there is even evidence of dry contamination of the wet-only type sampler.  相似文献   

2.
为明确不同物种组成和群落结构的河岸林对降雨再分配及其养分特征的影响,于2014年5—10月对辽东山地典型河岸林群落(落叶松林、蒙古栎林和槭树林)大气降雨、穿透雨和树干茎流过程及其水质特征进行研究。结果表明:落叶松林、蒙古栎林和槭树林穿透雨量分别占大气降雨量的81.9%,77.9%,73.1%,树干茎流量分别占大气降雨量的1.2%,4.4%,4.3%。与大气降雨相比,穿透雨和树干茎流中铵态氮、氯离子、硝态氮和总磷的浓度较高,不同林型铵态氮、氯离子、硝态氮和总磷的浓度和输入量差异显著。不同物种组成和群落结构的河岸林通过树木的形态特征及群落的结构特征对降雨进行再分配,通过林冠表层的物理特征、化学特征和生理特性等改变降雨理化性质,加之雨量、雨强的影响共同作用使铵态氮、氯离子、硝态氮和总磷的浓度和输入量发生改变。  相似文献   

3.
Wick samplers could be used for measurements of solute transport. Water collection efficiency of wick samplers, defined as the volume of water collected by a sampler divided by the water flux from the root zone, should be close to 100%. We used three wick samplers differing in wall height in Hydric Hapludands under constant rainfall intensity and examined the effects of the rainfall intensity and wall height on the water collection efficiency based on experimental data and a numerical analysis. The water collection efficiency of wick samplers increased with the rainfall intensity and wall height because the increase in both rainfall intensity and wall height resulted in a distribution of the total potential inside the wick sampler close to that outside the wick sampler. Furthermore, the ratio of the cross-sectional area of the drain hole to that of the cylinder must be taken into account in the design of a wick sampler.  相似文献   

4.
采用植保机械喷施化学农药仍是病虫害防治最为有效的手段。喷施过程中,农药雾滴精准的采集并测定沉积、流失飘移量,对于优化植保机械的作业参数、提高农药利用率具有重要意义。该研究综述分析了室内与田间采样过程中不同类型采样器的优缺点,并分析采样效率、采样器的布置及采样条件等因素对雾滴沉积、流失飘移采样结果的影响。针对当前的采样方法,该研究提出了未来在农药雾滴采样方面的5点要求与展望,包括提高采样的准确性、提高采样方法和采样设备的标准化、增加对农药有效成分雾滴运动规律的研究、研发新型的采样传感器以提高采样效率、建立植保无人飞机喷施雾滴沉积、飘移模型。综上,通过更为标准化和精准的采样,获取可比较、准确度高的农药雾滴沉积与流失飘移数据,可为中国农药使用量"零增长"提供科学技术指导。  相似文献   

5.
Meteorological influences on the variability of stemflow generation can affect the hydrology, ecology and soil chemistry of wooded ecosystems, yet the effects of directional wind-driven rainfall on differential stemflow production remain relatively un-researched. This study examines the correspondence of directional wind-driven inclined rainfall with stemflow generation in individual tree crowns utilizing multiple correspondence analysis (MCA) and intrastorm observations at 5 min monitoring intervals. In general, preferential stemflow generation at Fair Hill was observed during episodes of inclined rainfall driven by wind from the east to north-northeast (33.76-101.25°). This was supported by MCAs which produced significant correspondences between stemflow production and periods of inclined wind-driven rainfall for nearly all monitored storm events. Intrastorm plots of stemflow production from dominant and subcanopy trees of each codominant species (Fagus grandifolia Ehrh. (American beech) and Liriodendron tulipifera L. (yellow poplar)) also verified this correspondence. Interspecific canopy characteristics of L. tulipifera and F. grandifolia affected crown position, canopy structural characteristics, and, thus, the canopy's response to inclined precipitation. The greater vertical canopy depth observed for F. grandifolia trees enabled them to more efficiently capture inclined rainfall for enhanced stemflow production; whereas, the greater horizontal surface area of L. tulipifera canopies enhanced their droplet capture efficiency and subsequent stemflow generation for periods of un-inclined rainfall. As inclined wind-driven rainfall occurred within a majority of rain events at this site, preferential stemflow production may be a significant process to consider when examining the spatial distribution of canopy-derived water fluxes to the forest floor of wooded catchments under similar meteorological conditions.  相似文献   

6.
原始红松林和次生白桦林降雨截留分配效应研究   总被引:1,自引:0,他引:1       下载免费PDF全文
 以小兴安岭原始红松林为研究对象,通过97场的降雨测定,对原始红松林的降雨截留分配效应进行系统研究。结果表明:原始红松林在生长季内的林冠截留量为98.68 mm,占同期降雨量的19.61%,是次生白桦林的1.3倍。与全国其他森林类型的平均林冠截留率(11.4%~36.5%)相比,原始红松林的林冠截留率处于中等水平。原始红松林在生长季内的穿透雨量和树干径流量分别为395.77和8.78mm,分别占同期降雨量的78.65%和1.74%。与次生白桦林相比,其穿透雨量减少,而树干径流量增加。统计分析表明,原始红松林的林冠截留量、林内穿透雨量和树干径流量与林外降雨量之间均呈现紧密的三次多项式函数关系(p<0.01),而次生白桦林的林内穿透雨量与林外降雨量之间却呈现良好的直线关系(p<0.01)。最后,对影响林内穿透雨和树干径流的因子进行筛选和分析,为研究针阔混交林的降雨分配效应提供重要参考。  相似文献   

7.
树干茎流研究方法及其述评   总被引:14,自引:2,他引:14  
树干茎流研究是国内外森林水文学研究中的重要内容,对国内外树干茎流的研究方法及研究成果进行综述,并将树干茎流研究方法分为野外实测法和数学模型估测法,分别进行了系统分类和简要述评。树干茎流的野外实测法有观测标准株的选取与树干茎流水的收集两个关键技术环节。树干茎流的数学模型分为3种类型,即经验模型、概念模型、理论模型。经验模型反映的是树干茎流量(或茎流流率)与降雨量的定量关系,概念模型描述的是茎流量与降雨特征及林分特征因子的数量关系,理论模型刻画了树干茎流形成的机理和动态变化过程(树干茎流随降雨的时空变化规律),分别给出了各类模型主要的数学表达式,并分析了各类模型主要的优点和缺点。  相似文献   

8.
Wet deposition (WD), throughfall (TF) and stemflow (SF) measurements undertaken in a deciduous forest show 85% of the WD liquid flux is observed as TF and approximately 2% as SF. TF and SF were observed to be enriched in base cations and accordingly had an average pH of 6.1 and 5.9, respectively relative to a WD pH of 5.1. The seasonal variability of TF pH below the deciduous canopies was more pronounced than that of WD though both exhibited a growing season maximum, and there is evidence that the seasonal variability of TF pH below the pines is inverted relative to the deciduous canopies likely due to enhanced dust capture and buffering by calcium carbonate. TF ion concentrations differed significantly between deciduous and pine canopies during the growing season, and there is some evidence that variation in sky view factor of 0.18–0.22 is sufficient to manifest statistically differing TF composition below sugar maples. The total atmospheric flux of inorganic nitrogen to the forest is approximately 14–18 kg-N ha?1 yr?1 with approximately half taken up by the canopy. Associated experiments designed to quantify uncertainties in the nutrient fluxes included laboratory tests of the Aerochem automated wet-dry sampler. These experiments indicate the delay in initiating sample collection is less than half a minute for rainfall rates above 1 cm h?1, but may increase substantially for lower precipitation rates.  相似文献   

9.
[目的]探究宁夏回族自治区固原市原州区彭堡镇红梅杏经济林降雨集流渗灌系统的雨水收集能力,明确当地红梅杏经济林降雨分配特征,为降雨集流的定量研究和该地区集雨农业的发展提供科学依据。[方法]以当地红梅杏为研究对象,采用对比观测的方法,以天然降雨和人工模拟降雨相结合的方式,对红梅杏降雨集流过程进行观测与模拟。[结果] 2019年7—9月在彭堡红梅杏基地观测到的总计19场降雨数据,天然降雨中5 mm以下的降雨次数占到天然降雨总次数的83.3%,天然降雨与人工模拟降雨的相似系数为0.91,总体的集流率为61.29%,渗灌系统截留率为27.12%,林冠截留率为11.95%。[结论]试验地小降雨频率大,两种降雨方式具有较高相似性,降雨集流渗灌系统集流效率高,渗灌系统的集流量与降雨量成线性关系(R~2=0.995 5),集流率与降雨量成对数关系(R~2=0.693 9)。  相似文献   

10.
森林对降雨的分配是森林生态水文和生物地球化学循环中的重要过程之一。通过对黄土丘陵区2种典型林分(刺槐林和辽东栎林)生长季降雨分配过程的实地监测,探究2种林分的降雨分配特征及其主要影响因素。结果表明:试验期间,刺槐林和辽东栎林降雨分配各组[JP]分均表现为穿透雨量(325.0,295.1 mm)>冠层截留量(39.8,73.6 mm)>树干径流量(25.8,21.9 mm),同时穿透雨率(83.2%和75.6%)>冠层截留率(10.2%和18.8%)>树干径流率(6.6%和5.6%)。次降雨量是影响降雨分配的关键因子,穿透雨量和树干径流量与次降雨量间呈现极显著线性关系,冠层截留量与次降雨量间呈现极显著对数函数关系;穿透雨率和树干径流率与次降雨量间呈现显著对数函数关系,冠层截留率与次降雨量间呈现极显著指数函数关系。刺槐林和辽东栎林产生穿透雨的次降雨阈值分别为1.0,1.3 mm,产生树干径流的次降雨阈值分别为5.9,5.4 mm。刺槐林产生的穿透雨量和[JP]树干径流量均大于辽东栎林,而冠层截留量小于辽东栎林。研究结果为黄土丘陵区森林生态水文过程的研究提供基础数据,对该地区植被恢复过程中植被类型的选择具有指导意义。  相似文献   

11.
Rainfall, stemflow, and throughfall were collected from 1996 to 1999 at two types of forest sites: (1) forests near the traffic roads and urban areas and (2) forests away from the urban areas at Mt. Gokurakuji, Hiroshima, western Japan in order to estimatethe effects of anthropogenic activities on atmospheric deposition. Rainfall deposition for major ions showed small differences between the sites. The NO3 - and SO4 2-concentrations in stemflow were higher at the urban-facing slope than at the mountain-facing slope. Throughfall deposition of NO3 - and SO4 2- was also higher at urban-facing slopes. Net throughfall (NTF) deposition (throughfall minus rainfall) of NO3 - and SO4 2- accounted for 77 and50% of the total throughfall deposition on urban-facing slopes, respectively, while it accounted for 44 and 23% on themountain-facing slopes, respectively. These results indicated a higher contribution from dry deposition on urban-facing slopes compared to mountain-facing slopes. Atmospheric N (NO3 - +NH4 +) deposition from throughfall was estimated to be around 17–26 kg N ha-1 yr-1 on urban-facing slopes, which was greater than the threshold of N deposition that could cause nitrogen leaching in Europe and the United States. The highload of atmospheric N deposition may be one of the factors bringing about the decline of pine forests on urban-facing slopesof Mt. Gokurakuji.  相似文献   

12.
The chemistry of stemflow for the forests at Fu-shan site has not been studied. The objective of this study was to compare stemflow of three dominant tree species in a subtropical rain forest of northeastern (NE) Taiwan. The three dominant tree species were yellow basket-willow (Engelhardtia roxburghiana), Morris persimmon (Diospyros morrisiana) and Chinese cryptocarya (Cryptocarya chinensis). Stemflow from yellow basket-willow had the highest pH and concentration of cations and anions. In general, mean concentrations of NH4 + and NO3 - in stemflow were lower than those in precipitation, reflecting uptake processes in vegetation. On the other hand, stemflow was greatly enriched with SO4 2-. We believe this is due to dry deposition rather than from leached metabolites. There are no clear temporal patterns for most of the ions observed in stemflow chemistry. Stemflow was greatly enriched in K+ concentrations during growth season from April to May of 1991 and 1992.  相似文献   

13.
磷(P)伴随树干茎流和穿透雨输入到森林,成为补充亚热带森林生态系统P流失的一个重要途径,但其在不同类型生态系统中的动态特征缺乏必要的关注。以中亚热带杉木人工林和米槠次生林为研究对象,通过测定2015年6月至2018年8月间树干茎流和穿透雨中P浓度,探讨了2个林分树干茎流和穿透雨P浓度的差异、季节变化特征及影响因素。结果表明,杉木人工林树干茎流和穿透雨P浓度变化范围分别为0.002~0.026,0.003~0.024 mg/L,米槠次生林树干茎流和穿透雨P浓度变化范围分别为0.003~0.024,0.003~0.031 mg/L,2个林分树干茎流和穿透雨P浓度均在夏季表现出显著差异。2个林分的树干茎流P浓度均为夏季高于冬季,杉木人工林穿透雨P浓度在季节上无显著差异,而米槠次生林夏秋季较高,冬春季偏低,树干茎流P浓度略微高于穿透雨。2个林分的树干茎流量在4个季节均具有显著差异,米槠次生林均高于杉木人工林,而穿透雨量在季节上无差异。杉木人工林P浓度与树干茎流量和穿透雨量均呈负相关关系,而米槠次生林P浓度与树干茎流量和穿透雨量均呈正相关关系。表明不同林分林冠结构和形态学特征的差异能显著影响亚热带森林生态系统降水中P的再分配。研究结果为深入认识森林生态系统P随水文过程的动态特征提供基础数据。  相似文献   

14.
Abstract

Environmental sampling designed for soil chemical analyses requires precise procedural collection methods. Furthermore, soils which are submerged, represent an enigmatic sampling situation as the sample is withdrawn through the overlaying liquid layer. Contamination may arise from the liquid as well as solid material above the collected sample. A procedural problem is that close‐faced, lined samplers do not provide enough axial friction to maintain the sample within the sampler. Since the choice of proper sampling equipment is critical in site assessments, we compared two types of soil probes in this study. Both samples were nickel (Ni)‐chromium (Cr) plated having 2‐cm diameter bores. One was an open‐faced slotted sampler while the other was a closed‐faced sampler with a PETG copolyester liner. The open‐faced slotted sampler had no significantly different Ni or Cr content than did the PETG‐lined probe and maintained the soil within the sampling tube.  相似文献   

15.
探究马尾松人工林降雨特征对降水分配格局的影响,为南亚热带人工林经营管理提供科技支撑。依托广西友谊关森林生态系统国家定位观测研究站降水分配观测场,采用野外定位研究方法,以30年马尾松人工林为研究对象,观测了2018年1—12月的林外降雨、林内透流、干流和冠层截留。结果表明:研究区年降雨总量1303.6 mm,马尾松林的透流、干流及截留量分别占同期降雨的60.9%,0.4%,38.7%。产生透流和干流的最小雨量分别为0.4,2.2 mm。4个降雨特征指标中(雨量、雨强、历时和2次降水间隔时间),降雨量在马尾松降水格局分布中影响最大,雨强和历时对透流量、透流率、干流量、冠层截留量及冠层截留率均有显著影响,而2次降水间隔时间仅对透流量、干流量和冠层截留量有显著影响。SPSS多元线性回归分析表明,3个冠层水文分量对降雨特征的响应并非同步,降雨特征对林内透流和截留的影响大于干流。  相似文献   

16.
The influence of a change from daily to weekly sampling of bulk precipitation on the obtained deposition values was studied with parallel sampling for 8 months at the station of Virolahti in 2004. Due to dry deposition, the deposition values of the whole period were found to be 5–70% higher from weekly sampling than from daily sampling, the biggest difference being for K+, Ca2+, Mg+ and Na+. The collection efficiencies of the summer sampler and the winter sampler compared to the standard rain gauge were studied from daily sampling in 1991–2003 and weekly sampling in 2004–2008. The performance was best in summer and in winter with rain samples (median value 85–88%), while the median value for daily snow samples was 72%. In winter, the total sum of precipitation collected in the daily sampler and the weekly sampler was 78% and 69%, respectively. The deficit in the weekly sampler in winter was concluded to be due to evaporation, while from the summer sampler no evaporation seemed to occur. Use of the precipitation amount measured by the standard rain gauge when calculating annual precipitation-weighted mean values gave higher mean concentrations than the use of the precipitation measured by the deposition sampler itself, the biggest difference of 8–11% being in the sea-salt ions Cl?, Mg+ and Na+. It was concluded that the concentration and deposition values measured by daily and weekly bulk sampling are incompatible, and should not be combined into the same time series.  相似文献   

17.
To evaluate the effects of different forest plantations on rainfall redistribution, we measured throughfall, stemflow, interception loss, surface runoff and soil loss from July 2004 to September 2005 in the three types of forest plantations Eucommia ulmoides, Vernicia fordii and Pinus massoniana. The results showed that differences in throughfall and stemflow between the three forest plantations were significant (p < 0·05). Throughfall was highest in the V.fordii plantation and stemflow was highest in the E.ulmoides plantation. Throughfall plus stemflow below the E.ulmoides canopy was greater than that underneath the other forest types. Moreover, significant spatial variation in throughfall was observed. Throughfall in P.massoniana was 28·0–39·7% higher at a stem distance < 60 cm or 11·5% lower at a stem distance > 120 cm than in the other forests, but the difference was not significant between E.ulmoides and V.fordii. Moreover, the difference in throughfall at stem distances 60–120 cm was not significant between the different forest plantations. For E.ulmoides, throughfall under the peripheral crown part was 16·1% higher than that close to the stem. In contrast to E.ulmoides, P.massoniana had 26·8% lower throughfall under the peripheral crown part than close to the stem. No significant difference was found in throughfall for the various stem distances underneath V.fordii. Stemflow in E.ulmoides was 2–3 times higher than in the other forests (p < 0·01). Interception loss accounted for 19·9% of gross rainfall for E.ulmoides, 20·8% for V.fordii and 27·2% for P.massoniana. Surface runoff and soil loss differed considerably among the three types of forest plantations. Annual runoff and total soil loss were lowest in the P.massoniana forest and highest in the V.fordii forest. This study indicated that P.massoniana, as a reforestation tree species, had the most positive effect on soil and water conservation among the three forest plantations. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

18.
Throughfall (TF), stemflow (SF), soil solution below the organic layer (SSorg) and at 50 cm depth (SS50), and output with stream water (SW) were measured and analyzed for four years in a moderately polluted forest catchment in southern Poland. The input of water with stemflow was ca. 6% of input with TF. However, due to higher concentrations of most ions in SF, the input of most elements with SF was from 8% to 9%. Sulphate (SO4 2–), chloride (Cl) and magnesium (Mg2+) were the only ions steadily increasing in concentrations in water percolating through the soil profile. Nitrogen reached the forest floor mainly as ammonium (NH4 +). In the soil organic layer the NH4 + concentration decreased, while concentrations of nitrate (NO3 ) and hydrogen (H+) increased, probably due to nitrification. For NO3 , sodium (Na+) and calcium (Ca2+), the highest concentrations were found in SSorg and SW. This indicates both efficient cycling in the biotic pool of the ecosystem and intensive weathering processes in the mineral soil below the plant rooting zone. The latter was especially pronounced for Mg and Ca. Concentrations of zinc (Zn), lead (Pb) and cadmium (Cd) were the highest in SSorg and SS50. As this was accompanied by a low pH and constant input of H+, NH4 + and heavy metal ions to the catchment area, it may pose a serious threat to forest health.  相似文献   

19.
The value of soil water samples used in ecological studies is highly dependent on the quality of the samplers. Tension soil-water samplers are widely used to extract soil solutions, and the samplers are often tested in the laboratory under conditions that differ significantly from field conditions. This study describes a field procedure useful for comparison of two different tension soil-water samplers. Ceramic and PTFE cups are compared. There were no differences in the concentrations sampled by the two different types of sampler for Na+, K+, Ca2+, Al3+, NH4+, H+ and NPOC (non-purgeable organic carbon). Change in the applied vacuum in the range 0 to –0.4 × 105 Pa did not change the concentrations of chemical species in the collected soil water. The ceramic cups collected significantly larger amounts of water due to differences in the hydrostatic characteristics of the two samplers. It was found that the ceramic samplers collected the highest concentrations of Mg2+ in some situations. The results are evaluated and discussed in relation to the possible sources of errors and the temporal and spatial variabilities.  相似文献   

20.
Up to 60% of the sulfate in upland forest throughfall and stemflow at Plastic Lake in central Ontario is non-precipitation by origin, but is derived from aboveground vegetation. The sources of this aboveground vegetation sulfate include dry deposited aerosols and SO2, and mineralized plant organic S. σ34S data indicate that atmospheric S dominates the upland forest ecosystems of southern and central Ontario, with little S isotope fractionation. Seasonal σ34S variations in precipitation sulfate may be due to mixing of bacteriogenic and anthropogenic S. σ18O and concentration data indicate that oxidation of dry-deposited SO2, and mineralization of organic S on vegetation surfaces may contribute one third or more of throughfall sulfate in summer and autumn, but less in late spring, perhaps due to foliar uptake of S during this season. Oxidized SO2, or mineralized organic S contributes one third or more of stemflow sulfate during these seasons.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号