首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 406 毫秒
1.
Increasing nitrogen deposition due to human activity might have a serious impact on ecosystem functions such as the nitrogen transformations conducted by microbes. We therefore focused on nitrous oxide (N2O) production as an indicator of soil microbial activity. The rates of N2O emission from the forest floor were measured every two weeks in two forest stands in the central part of Japan: a red pine stand at Kannondai and a deciduous stand at Yasato. Nitrogen deposition rates by throughfall were 30.6 kg N ha?1 y?1 at Kannondai and 15.7 at Yasato. The rates of N2O emission ranged from 0.5 to 14.2 µg N m?2 h?1 (mean 4.5) at Kannondai and from 0.2 to 7.0 µg N m?2 h?1 (mean 2.3) at Yasato. The N2O emission rate showed significant positive relationships with soil temperature and nitrogen deposition during the preceding two weeks. The annual emission rates of N2O were 0.38 kg N ha?1 y?1 at Kannondai and 0.20 at Yasato. As a the annual nitrogen deposition, these rates were 1.23% at Kannondai and 1.27% at Yasato.  相似文献   

2.
To elucidate the influence of airborne materials on the ecosystem of Japan??s Yakushima Island, we determined the elemental compositions and Sr and Nd isotope ratios in streamwater, soils, vegetation, and rocks. Streamwater had high Na and Cl contents, low Ca and HCO3 contents, and Na/Cl and Mg/Cl ratios close to those of seawater, but it had low pH (5.4 to 7.1), a higher Ca/Cl ratio than seawater, and distinct 87Sr/86Sr ratios that depended on the bedrock type. The proportions of rain-derived cations in streamwater, estimated by assuming that Cl was derived from sea salt aerosols, averaged 81?% for Na, 83?% for Mg, 36?% for K, 32?% for Ca, and 33?% for Sr. The Sr value was comparable to the 28?% estimated by comparing Sr isotope ratios between rain and granite bedrock. The soils are depleted in Ca, Na, P, and Sr compared with the parent materials. At Yotsuse in the northwestern side, plants and the soil pool have 87Sr/86Sr ratios similar to that of rainwater with a high sea salt component. In contrast, the Sr and Nd isotope ratios of soil minerals in the A and B horizons approach those of silicate minerals in northern China??s loess soils. The soil Ca and P depletion results largely from chemical weathering of plagioclase and of small amounts of apatite and calcite in granitic rocks. This suggests that Yakushima??s ecosystem is affected by large amounts of acidic precipitation with a high sea salt component, which leaches Ca and its proxy (Sr) from bedrock into streams, and by Asian dust-derived apatite, which is an important source of P in base cation-depleted soils.  相似文献   

3.
The natural Sr isotope composition of acid leached soils developed on loess, under beech forest, in central Belgium was used as a tracer of soil forming processes, in conjunction with physico‐chemical and quantitative mineralogical investigations. Attention was focused on weathering and exchange processes, with special emphasis on the origin of the current soil exchangeable fraction and the influence of the atmospheric deposition and biological cycling on the calcium exchangeable pool (Sr acts as a proxy for Ca). The determination of 87Sr/86Sr ratios was made on the bulk soil, on the clay‐ and silt‐size soil separates, on 0.1 m HCl extracts, on the labile pool, on the soil solution and on the bulk precipitation. The acid leached soil profiles are characterized by a sequence of weathering processes that is highlighted by both mineralogical and isotopic changes. From the calcareous unweathered loess (pH 7.5) to the uppermost soil horizons (pH < 4.0) the evolution of the 87Sr/86Sr isotope ratio clearly reflects: (i) the selective weathering of Ca‐plagioclase (small 87Sr/86Sr ratio) and the increasing proportion of resistant K‐ and Rb‐rich minerals (large 87Sr/86Sr ratio) in the uppermost soil horizons; and (ii) a downward translocation of clay minerals with a large isotopic ratio, a physical breakdown of muscovite and a non‐congruent chemical weathering of K‐feldspar. The influence of organic restitutions or atmospheric deposition is not significant. The comparison between the Sr isotopic signature of the soil solution, and the exchangeable and HCl‐extractible soil fractions provides information about cation exchange efficiency, soil–water interaction and the origin of the exchangeable pool.  相似文献   

4.
A hilly to mountainous watershed in Chonju in central Korea does not receive acid rain (average pH: 6.2); however, the stream water in the granite watershed is slightly acidic (6.4–6.7) and contains a low concentration of Ca compared to the stream water in sedimentary and volcanic rock watersheds (6.8–7.6). Although the concentrations of Ca and Sr and the 87Sr/86Sr ratio in the stream water change in accordance with the watershed geology, the stream 87Sr/86Sr ratios are closer to the 87Sr/86Sr ratios of rain than to those of the substrate rocks, suggesting the selective but sluggish weathering of Ca-containing minerals neutralizes acid. The concentrations of trace metals (As, Cr, Cu, Mo, Ni, Pb) in the water are lower than those in rain and less dependent on the watershed geology, indicating that they originated dominantly from the atmosphere. This result is consistent with the stream water having Pb isotope ratios close to that of rain but distinct from that of the rocks. We assume that the soil pool of exchangeable ions dominantly contains atmospherically derived heavy metals, which are subsequently discharged into streams. It is likely that the poor acid-neutralizing capacity of granite makes the aquatic systems in the granite watershed in Chonju sensitive to atmospheric acidification.  相似文献   

5.
《CATENA》1998,32(2):143-151
In calculating catchment weathering rates using strontium isotope ratios, one of the parameters required is the 87Sr/86Sr ratio of the streamwater. The effect of flow rate on this ratio is not well understood with conflicting reports in the literature. To provide more detailed information on the effect of flow rate on strontium isotope ratios, the 87Sr/86Sr ratio was measured in streamwater samples taken at low and high flow rates and also in samples taken at four and eight hourly intervals during two rain events in a small catchment (area 90 ha) in andesitic lavas. The 87Sr/86Sr ratio varied over a narrow range of 0.70797 to 0.70852 for a flow rate range of 6.1 to 41.51 s−1 and showed no relationship to flow rate. Weathering of non-radiogenic plagioclase feldspar in the soils controls the isotope signature of the streamwater and the constancy of the ratio with flow rate indicates that (1) more radiogenic minerals such as K-feldspar and mica do not contribute any more significantly during high flow than during low flow, and (2) from the available information, it is not necessary to take flow rate into account when using 87Sr/86Sr ratios in weathering studies in this particular catchment, although it must be emphasized that this conclusion may not apply to other catchments. The concentration of strontium in the streamwater was inversely proportional to the flowrate.  相似文献   

6.
The decrease in anthropogenic deposition, namely SO42— and SO2, in European forest ecosystems during the last 20 years has raised questions concerning the recovery of forest ecosystems. The aim of this study was to evaluate if the long term data of element concentrations at the Fichtelgebirge (NE‐Bavaria, Germany) monitoring site indicates a relationship between the nutrient content of needles and the state of soil solution acidity. The soil at the site is very acidic and has relatively small pools of exchangeable Ca and Mg. The trees show medium to severe nutrient deficiency symptoms such as needle loss and needle yellowing. The Ca and Mg concentrations in throughfall decreased significantly during the last 12 years parallel to the significant decline in the throughfall of H+ and SO42— concentrations. Soil solution concentrations of SO42—, Ca and Mg generally decreased while the pH value remained stable. Aluminum concentrations decreased slightly, but only at a depth of 90 cm. Simultaneously a decrease in the molar Ca/Al and Mg/Al ratios in the soil solution was observed. Ca and Mg contents in the spruce needles decreased, emphasizing the relevance of soil solution changes for tree nutrition. The reasons for the delay in ecosystem recovery are due to a combination of the following two factors: (1) the continued high concentrations of NO3 and SO42— in the soil solution leading to high Al concentrations and low pH values and, (2) the decreased rates of Ca and Mg deposition cause a correlated decrease in the concentration of Ca and Mg in the soil solution, since little Ca and Mg is present in the soil's exchangeable cation pools. It is our conclusion that detrimental soil conditions with respect to Mg and Ca nutrition as well as to Al stress are not easily reversed by the decreasing deposition of H+ and SO42—. Thus, forest management is still confronted with the necessity of frequent liming to counteract the nutrient depletion in soils and subsequent nutrient deficiencies in trees.  相似文献   

7.
Critical loads of acid deposition are exceeded in parts of the Southern Uplands of Scotland where base saturation in the topmost mineral horizons in many soils developed on greywackes and shales is <10%. Long-term weathering rates calculated by the elemental depletion method from nine soil profiles across a 200 km transect indicate losses of base cations in the range 4–31 meq m?2a?1. In every profile the most depleted base cation is Mg which is directly related to the weathering of chlorite which is often present at the 20–40% level in basal horizons but is often completely weathered out in E horizons. The second most depleted base cation is usually K, and this is clearly related to the weathering of mica to a vermiculitic mineral which, in the clay fractions, contains polymeric hydroxyaluminium in the interlamellar space if the soil pH is >4.3. The base cation least depleted is Ca and this is in sharp contrast to current weathering rates calculated from input-output budgets where Ca is the main base cation being exported. This discrepancy may be due to a contribution to the output from easily soluble Ca-bearing minerals (e.g. calcite) in narrow veins and fractures in the bedrock.  相似文献   

8.
Aeolian particles originating from arid areas in China, termed Kosa, are considered to be a major source of non-sea-salt Ca, a dominant base cation, in acid precipitation in northeastern Asia. We extracted evaporite minerals (halite, gypsum, and carbonate) from the surface soil collected at eight desert and loess areas in northern China with water and acetic acid. Most 87Sr/86Sr ratios of the extracted fractions fell in a restricted range (0.7115 ± 0.0015) and differed from those of bulk soils and acid-insoluble minerals (0.712–0.717). The selective dissolution of the soil carbonates in the atmosphere is consistent with two facts: (1) their 87Sr/86Sr ratios are close to the maximum 87Sr/86Sr ratios of spring precipitation in Japan, when Kosa activity is marked; and (2) their mole ratios of Mg/Ca (0.15) and Sr/Ca (0.001) are almost identical to those of precipitation in China and Japan when Kosa activity is marked. The 87Sr/86Sr, Mg/Ca, and Sr/Ca ratios in the acid-soluble components can be used as indexes of Kosa aerosols in the precipitation of the northwestern Pacific.  相似文献   

9.
Weathering in an upland granitic till catchment receiving an intermediate level of acidic deposition has been studied by chemical and mineralogical analyses of soil profiles and chemical analysis of precipitation and streamwater. Long-term weathering rates for base cations calculated from analyses of soil profile horizons using Zr as an internal, immobile, index element are similar for alpine podzols and peaty podzols and are 2–3 meq.m–2.a–1 for Ca and Mg, and 10–11 meq.m–2.a–1 for K and Na. The high loss of Na is associated with the weathering of oligoclase, particularly in the coarse sand fraction. Loss of K is related to weathering of K-feldspar and micas. Current weathering rates for base cations calculated from input-output budgets are higher than long-term rates by factors of 12, 8 and 3 for Ca, Mg and Na, but lower by a factor of 7 for K probably due to biomass uptake. The higher current overall loss of base cations may be due to increased rates of weathering in recent times but this is not conclusive as there are large uncertainties inherent in both methods of estimation.  相似文献   

10.
Sequential leaching experiments using H2O, H2O2, NH4Cl, and HCl were performed on surface soils on an andesite substrate at four sites in the Kawakami mountainous area, central Japan. The solutions extracted from the dehydrated soil by H2O, H2O2, and NH4Cl have relatively constant ratios with respect to Ca, Mg, and Sr, while they have variable 87Sr/86Sr ratios depending on the site. The elemental ratios and Sr isotopes in the extracted solution are different from those of the soil minerals but identical to those of the soil solution and the plants. Sr isotopic data indicate that the residues after extraction from fine-grained minerals by NH4Cl and HCl are a mixture of acid-resistant minerals derived from bedrock and from arid areas in China. We suggest that there is a vital exchange of Sr and other cations between plants and the soil pool of exchangeable cations through the soil solution, while soil minerals, except chlorite, do not participate in the exchange reaction.  相似文献   

11.
The 87Sr/86Sr ratios in rain at three sites in Japan were about 0.706 to 0.712, whereas those at one site in central Korea were higher (0.711 to 0.716), reflecting the difference in geology between the two countries. Because the 87Sr/86Sr ratios of exchangeable sites in soil minerals are indistinguishable from those of associated plants, aerosol Sr originating from both can be grouped together as plant-derived Sr. Spatial and temporal variations in 87Sr/86Sr and Sr/Ca ratios in the rain suggest the presence of plant-derived Sr and Ca in addition to Sr and Ca derived from sea-salt, acid-soluble aeolian carbonate from China, and cement-derived carbonate. However, systematic data on the 87Sr/86Sr ratios and elemental concentrations of soils, plants, fly-ash, and road dust are required to put reliable constraints on the provenance of atmospheric Ca.  相似文献   

12.
Négrel  P.  Pauwels  H. 《Water, air, and soil pollution》2004,151(1-4):261-285
Strontium- and sulphur-isotope data as well as major ions, from shallow and deep groundwater in three granite and Brioverian `schist' areas of the Armorican Massif (northwest France) are discussed. The investigated areas, e.g. the Pleine-Fougères, Coët Dan and Arguenon catchments, are located in Brittany with intensive agriculture covering large parts.The stable-isotope signatures of the waters plot close to the general meteoric-water line, reflecting a meteoric origin and the lack of significant evaporation or water-rock interaction. The water chemistry from the different catchments shows large variation in the major-element contents. Plotting Na vs. Cl contents and Mg, NO3, K, SO4, Sr concentrations reflect agricultural input from hog and livestock farming and fertilizer applications, with local sewage-effluent influence, although some water samples are clearly unpolluted.The δ34S(SO4) is controlled by several potential sources (atmospheric sulphate, pyrite-derived sulphates, fertilizer sulphates). Some δ18O and δ34S values are expected to increase through sulphate reduction, with higher effect on δ34S for the dissimilatory processes and on δ18O for assimilatory processes. The range in Sr contents of groundwater samples from different catchments agrees with previous work on groundwaters sampled from granitic rocks in France. The Sr content is well correlated with Mg and therefore both are related to agricultural practises. The 87Sr/86Sr ratios range from 0.71265 and 0.72009 also agreeing with Sr isotopic ratios found on granite-gneiss watersheds in France. The relationship between the 87Sr/86Sr and the Mg/Sr ratios allows defining the different end-members (e.g. rain, agricultural practises, water-rock interaction).  相似文献   

13.
Soil solutions were taken from three forest areas with granite bedrock in Japan (Abukuma, Tateyama and Hiroshima) to investigate pH values, forms of Al and the molar BC/Al ratios. In each area, 10 sites were chosen for study. At each site, a target tree was selected, and two soil solution samples were taken from 10 cm depth at points 10 cm and 100 cm from the trunk of the tree to evaluate the effects of stemflow and throughfall on soil solution chemistry. Values of pH of samples taken 10 cm from the trunks (referred to as S samples) and 100 cm from the trunks (referred to as T samples) ranged from 3.66 to 6.52 and from 4.55 to 6.48, respectively. For Japanese cedar (Cryptomeria japonica) and Japanese cypress (Chamaecyparis obtusa) trees, S samples showed lower pH than T samples, whereas the inverse relation was observed for broadleaf trees. In the Abukuma and Tateyama areas, the concentrations of monomeric Al (Alm) were mostly below 30 µmol L?1. In the Hiroshima area, however, extremely high Alm concentrations (up to 293 µmol L?1) were observed at some sites. The molar ratio of BC (= Ca + Mg + K) to inorganic monomeric Al was higher than 1 for all samples, except for an S sample from the Hiroshima area having a ratio of 0.72.  相似文献   

14.
Are Indicators for Critical Load Exceedance Related to Forest Condition?   总被引:1,自引:0,他引:1  
The aim of this study was to evaluate the suitability of the (Ca?+?Mg?+?K)/Al and the Ca/Al ratios in soil solution as chemical criteria for forest condition in critical load calculations for forest ecosystems. The tree species Norway spruce, Sitka spruce and beech were studied in an area with high deposition of sea salt and nitrogen in the south-western part of Jutland, Denmark. Throughfall and soil water were collected monthly and analysed for pH, NO3-N, NH4-N, K, Ca, Mg, DOC and Altot. Organic Al was estimated using DOC concentrations. Increment and defoliation were determined annually, and foliar element concentrations were determined every other year. The throughfall deposition was highest in the Sitka spruce stand (maximum of 40 kg N ha?1yr?1) and lowest in the beech stand (maximum of 11 kg N ha?1yr?1). The Sitka spruce stand leached on average 12 kg N ha?1yr?1 during the period 1988–1997 and leaching increased throughout the period. Only small amounts of N were leached from the Norway spruce stand whereas almost no N was leached from the beech stand. For all tree species, both (Ca?+?Mg?+?K)/Al and Ca/Al ratios decreased in soil solution at 90 cm depth between 1989 and 1999, which was mainly caused by a decrease in concentrations of base cations. The toxic inorganic Al species were by far the most abundant Al species at 90 cm depth. At the end of the measurement period, the (Ca?+?Mg?+?K)/Al ratio was approximately 1 for all species while the Ca/Al ratio was approximately 0.2. The lack of a trend in the increment rates, a decrease in defoliation as well as sufficient levels of Mg and Ca in foliage suggested an unchanged or even slightly improved health condition, despite the decreasing and very low (Ca?+?Mg?+?K)/Al and Ca/Al ratios. The suitability of these soil solution element ratios is questioned as the chemical criteria for soil acidification under field conditions in areas with elevated deposition rates of sea salts, in particular Mg.  相似文献   

15.
Johnson  D.W.  Hanson  P.J.  Todd  D.E.  Susfalk  R.B.  Trettin  C.F. 《Water, air, and soil pollution》1998,105(1-2):251-262
To investigate the potential effects of changing precipitation on a deciduous forest ecosystem, an experiment was established on Walker Branch Watershed, Tennessee that modified the amount of throughfall at -33%, ambient (no change), and +33% using a system of rain gutters and sprinklers. We hypothesized that the drier treatments would cause: 1) disproportionate changes in soil water flux, 2) increased total ionic concentrations in soil solution that would in turn cause 3) decreased SO4 2-/Cl- ratios, 4) decreased HCO3 - concentrations, and 5) increased ratios of Al to (Ca2+ + Mg2+) and of (Ca2+ + Mg2+) to K+. Hypothesis 1 was supported by simulation results. Hypotheses 2 and 3 were supported in part by field results, although interpretation of these was complicated by pre-treatment biases. Hypotheses 4 and 5 were not supported by the field results. Comparisons of field data and Nutrient Cycling Model (NuCM) simulations were favorable for most ions except Cl- and K+. The disparities may be due to underestimation of soil buffering in the case of Cl- and overestimation of soil buffering in the case of K+ in the model. Long-term simulations with NuCM suggest that reducing water inputs will slow the rate of soil acidification and P loss, but will not materially affect growth or ecosystem N status.  相似文献   

16.
Evaluation of the stoichiometry of base cations (BCs, including K+, Na+, Ca2+, and Mg2+) and silicon (Si) (BCs:Si) during soil mineral weathering is essential to accurately quantify soil acidification rates. The aim of this study was to explore the differences and influencing factors of BCs:Si values of different soil genetic horizons in a deep soil profile derived from granite with different extents of mineral weathering. Soil type was typic acidi-udic Argosol. Soil samples were collected from Guangzhou, China, which is located in a subtropical region. To ensure that the BCs and Si originated from the mineral weathering process, soil exchangeable BCs were washed with an elution treatment. The BCs:Si values during weathering were obtained through a simulated acid rain leaching experiment using the batch method. Results showed that soil physical, chemical, and mineralogical properties varied from the surface horizon to saprolite in the soil profile. The BCs:Si values of soil genetic horizons during weathering were 0.3-3.7. The BCs:Si value was 1.7 in the surface horizon (A), 1.1-3.7 in the argillic horizon (Bt), and 0.3-0.4 in the cambic (Bw) and transition (BC) horizons, as well as in horizon C (saprolite). The general pattern of BCs:Si values in the different horizons was as follows: Bt > A > Bw, BC, and C. Although BCs:Si values were influenced by weathering intensity, they did not correlate with the chemical index of alteration (CIA). The release amounts of Si and BCs are the joined impact of soil mineral composition and physical and chemical properties. A comprehensive analysis showed that the BCs:Si values of the soil derived from granite in this study were a combined result of the following factors: soil clay, feldspar, kaolinite, organic matter, pH, and CIA. The main controlling factors of BCs:Si in soils of different parent material types require extensive research. The wide variance of BCs:Si values in the deep soil profile indicated that H+ consumed by soil mineral weathering was very dissimilar in the soils with different weathering intensities derived from the same parent material. Therefore, the estimation of the soil acidification rate based on H+ biogeochemistry should consider the specific BCs:Si value.  相似文献   

17.
The contributions of cation exchange and mineral weathering to the neutralization of acidity in the Jingahata watershed in central Japan were estimated through a laboratory weathering experiment and runoff chemistry measurements. The laboratory experiment was conducted in a stirred-flow reactor for a whole soil sample collected from the C horizon in the watershed. The concentration ratios of base cations (Ca2+, Mg2+, K+ and Na+) to Si (BC/Si) released during the steady-state stage of the laboratory experiment were in good agreement with the ratios of the net flux of base cations to the flux of Si in the streamwater (BC N ET/Si L).This result suggests that the acidity in the watershed is neutralized primarily by mineral weathering without causing a net loss of base cations from exchange sites. The alkalinity/acidity balance estimated for the watershed shows that the total weathering rate of base cations is approximately 3.26 keq ha?1 yr?1. Weathering of plagioclase (An41) contributes 83% of the total weathering rate. The dominant acidity source is CO2 released within the soil horizons, accounting for roughly 85% of the total acidity flux (3.20 keq ha?1 yr?1). This high internal production of acidity suppresses the relative importance of atmospheric acidity inputs (0.3 keq ha?1 yr?1).  相似文献   

18.
Cation exchange is often studied with disturbed and dried soils, but the applicability of the results to undisturbed soils is not straightforward. We investigated the value of exchange coefficients obtained from standard procedures for predicting cation exchange in soil. Columns of undisturbed and disturbed subsoil of a Luvisol (SBt horizon) were leached under saturated conditions with 0.4, 4, 20, 41, 102 and 205 mm BaCl2 at a Darcy velocity of 1400 mm day?1. The model PHREEQC was used to calculate one‐dimensional transport, inorganic complexation and multiple cation exchange. Two model variants were tested: m1 (exchangeable cations obtained by percolation with NH4Cl) and m2 (exchangeable cations obtained by shaking the soil with BaCl2). The exchange coefficients (Gaines–Thomas formalism) were calculated from the ion activities in solution and exchangeable cations obtained by NH4Cl percolation (m1) or shaking with BaCl2 (m2). Variant m1 predicted cation exchange of the disturbed (homogenized) soil for the entire BaCl2 concentration range, whereas variant m2 resulted in a two‐fold overestimation of desorbed K for all experiments, which was related to large amounts of K released from the soil by shaking with BaCl2. In experiments with undisturbed soil, variant m1 predicted the concentrations of Mg, Ca, K, and Na in the solution phase and the sum of cations released from exchange sites. However, variant m2 predicted changes in ion concentrations and exchangeable cations somewhat less well. This study suggests that the amounts of exchangeable cations and exchange coefficients obtained from experiments with homogenized soil by percolation are useful to predict cation concentrations in column experiments with undisturbed soils.  相似文献   

19.
Seasonal fluctuation of concentration and flux of major inorganic ions in throughfall, stem flow, snowpack and soil solution was investigated at a natural cool temperature mixed forest in Hokkaido, northern Japan, in order to clarify the effect of snowmelt on the solute dynamics in the forest soil in snow-dominated region. Na+, Ca2+, Mg2+, Cl? and SO4 2? concentrations in soil solution showed a large fluctuation in the snowmelt period. The percentage of output of these elements from soil during the snowmelt period in the annual output was as follows. Mg2+: 51%, Na+ and Cl?: 59 and 60%, SO4 2?: 65%, Ca2+: 77%. Our results indicated that the snowmelt event was very important to quantify the annual elemental budgets in this region. Although the leaching of base cation from the soil was larger than that of inputs and accumulation into the vegetation, annual decreasing rate of acid neutralization capacity (ANC(s)) from the soil was mostly affected by the base cation accumulation into the vegetation, related that the base cations weathering accompanied with bicarbonate was slow due to the acidic and weathered soil in the studied site. It is suggested that the weakly acidic soil which has low ANC(s) in snow-dominated region will be relatively sensitive to the future increase of acidic deposition.  相似文献   

20.
Runoff sediment from disturbed soils in the Lake Tahoe Basin has resulted in light scattering, accumulation of nutrients, and subsequent loss in lake clarity. Little quantified information about erosion rates and runoff particle‐size distributions (PSDs) exists for determining stream and lake loading associated with land management. Building on previous studies using rainfall simulation (RS) techniques for quantifying infiltration, runoff, and erosion rates, we determine the dependence and significance of runoff sediment PSDs and sediment yield (SY, or erodibility) on slope and compare these relationships between erosion control treatments (e.g., mulch covers, compost, or woodchip incorporation, plantings) with bare and undisturbed, or ‘native’ forest soils. We used simulated rainfall rates of 60–100 mm h−1 applied over replicated 0·64 m2 plots. Measured parameters included time to runoff (s), infiltration and runoff rates (mm h−1), SY (g mm−1 runoff), and average sediment concentration (SC, g L−1) as well as PSDs in runoff samples. In terms of significant relationships, granitic soils had larger particle sizes than volcanic soils in bulk soil and runoff samples. Consequently, runoff rates, SCs, and SYs were greater from bare volcanic as compared to that from bare granitic soils at similar slopes. Generally, runoff rates increased with increasing slope on bare soils, while infiltration rates decreased. Similarly, SY increased with slope for both soil types, though SYs from volcanic soils are three to four times larger than that from granitic soils. As SY increased, smaller particle sizes are observed in runoff for all soil conditions and particle sizes decreased with increasing slope. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号