首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
The scanning tunneling microscope (STM) and the atomic force microscope (AFM) are scanning probe microscopes capable of resolving surface detail down to the atomic level. The potential of these microscopes for revealing subtle details of structure is illustrated by atomic resolution images including graphite, an organic conductor, an insulating layered compound, and individual adsorbed oxygen atoms on a semiconductor. Application of the STM for imaging biological materials directly has been hampered by the poor electron conductivity of most biological samples. The use of thin conductive metal coatings and replicas has made it possible to image some biological samples, as indicated by recently obtained images of a recA-DNA complex, a phospholipid bilayer, and an enzyme crystal. The potential of the AFM, which does not require a conductive sample, is shown with molecular resolution images of a nonconducting organic monolayer and an amino acid crystal that reveals individual methyl groups on the ends of the amino acids. Applications of these new microscopes to technology are demonstrated with images of an optical disk stamper, a diffraction grating, a thin-film magnetic recording head, and a diamond cutting tool. The STM has even been used to improve the quality of diffraction gratings and magnetic recording heads.  相似文献   

2.
The atomic force microscope (AFM) was used to image an electrode surface at atomic resolution while the electrode was under potential control in a fluid electrolyte. A new level of subtlety was observed for each step of a complete electrochemical cycle that started with an Au(111) surface onto which bulk Cu was electrodeposited. The Cu was stripped down to an underpotential-deposited monolayer and finally returned to a bare Au(111) surface. The images revealed that the underpotential-deposited monolayer has different structures in different electrolytes. Specifically, for a perchloric acid electrolyte the Cu atoms are in a close-packed lattice with a spacing of 0.29 +/- 0.02 nanometer (nm). For a sulfate electrolyte they are in a more open lattice with a spacing of 0.49 +/- 0.02 nm. As the deposited Cu layer grew thicker, the Cu atoms converged to a (111)-oriented layer with a lattice spacing of 0.26 +/- 0.02 nm for both electrolytes. A terrace pattern was observed during dissolution of bulk Cu. Images were obtained of an atomically resolved Cu monolayer in one region and an atomically resolved Au substrate in another in which a 30 degrees rotation of the Cu monolayer lattice from the Au lattice is clearly visible.  相似文献   

3.
The adsorption of neutral molecules and ions on the surfaces of zeolites was observed in real time with an atomic force microscope (AFM). Direct imaging of the surface of the zeolite clinoptilolite was possible by using a diluted tert-butyl ammonium chloride solution as a medium. Images of the crystal in different liquids revealed that molecules could be bound to the surface in different ways; neutral molecules of tert-butanol formed an ordered array, whereas tert-butyl ammonium ions formed clusters. These absorbed molecules were not rearranged by the AFM tip when used in an imaging mode. However, when a sufficiently large force was applied, the tip of the AFM could rearrange the tert-butyl ammonium ions on the zeolite surface. This demonstration of molecular manipulation suggests new applications, including biosensors and lithography.  相似文献   

4.
The rupture force of single covalent bonds under an external load was measured with an atomic force microscope (AFM). Single polysaccharide molecules were covalently anchored between a surface and an AFM tip and then stretched until they became detached. By using different surface chemistries for the attachment, it was found that the silicon-carbon bond ruptured at 2.0 +/- 0.3 nanonewtons, whereas the sulfur-gold anchor ruptured at 1.4 +/- 0.3 nanonewtons at force-loading rates of 10 nanonewtons per second. Bond rupture probability calculations that were based on density functional theory corroborate the measured values.  相似文献   

5.
"Dip-Pen" nanolithography   总被引:1,自引:0,他引:1  
A direct-write "dip-pen" nanolithography (DPN) has been developed to deliver collections of molecules in a positive printing mode. An atomic force microscope (AFM) tip is used to write alkanethiols with 30-nanometer linewidth resolution on a gold thin film in a manner analogous to that of a dip pen. Molecules are delivered from the AFM tip to a solid substrate of interest via capillary transport, making DPN a potentially useful tool for creating and functionalizing nanoscale devices.  相似文献   

6.
原子力显微镜(Aromic force microscope,AFM)是观察样品表面结构的一种新工具,能够检测样品 之间的相互作用力,在生理条件下对样品进行实时观察。文章对AFM的工作原理及其近年来在畜牧业研究领域中 的应用现状进行了综述,并展望了AFM在畜牧业领域中的应用前景。  相似文献   

7.
This paper gives a brief introduction to basic principle and working mode of atomic force microscope (AFM). Sample preparation methods and factors that affect the AFM imaging of polysaccharide are described in detail. Advance in using AFM for morphological observation and quantitative study on polysaccharide molecules are reviewed. Research on single molecule force spectroscopy of polysaccharide and determination and adjustment of conformational change of sugar residue are introduced. Perspective on further application of AFM in polysaccharide investigation is presented.  相似文献   

8.
An atomic force microscope (AFM) has been used to machine complex patterns and to form free structural objects in thin layers of MoO(3) grown on the surface of MoS(2). The AFM tip can pattern lines with 相似文献   

9.
A team of researchers has come up with a novel atomic imaging microscope that may dramatically speed the task of linking genetic variants to diseases. The microscope is a modification of the popular atomic force microscope (AFM), which uses an ultrasharp tip to map surfaces of everything from computer chips to DNA at the atomic level. By using this molecule-sized tip, the researchers were able get their AFM to march down a strand of DNA and identify uniquely shaped reporter molecules engineered to tag the genetic variations.  相似文献   

10.
定点单分子DNA芯片有重要用途,但其制备极具挑战性,用光镊、磁镊及原子力显微镜等方法分离单分子DNA,为此建立的平台设备昂贵,且分离效率太低,难以满足实验要求。本研究采用微流控技术,在层流基础上电泳分离与富集单粒微米珠-单根DNA的复合物,旨在为基于微米孔阵列承载这种复合物的定点单分子DNA芯片的制备提供样本。此技术的完善将为单分子DNA芯片制作开辟新的途径。  相似文献   

11.
Atomically resolved images of pressed powder samples have been obtained with the atomic force microscope (AFM). The technique was successful in resolving the particle, domain, and atomic structure of pismo clam (Tivela stultorum) and sea urchin (Strongylocentrotus purpuratus) shells and of commercially available calcium carbonate (CaCO(3)) and strontium carbonate (SrCO(3)) powders. Grinding and subsequent pressing of the shells did not destroy the microstructure of these materials. The atomic-resolution imaging capabilities of AFM can be applied to polycrystalline samples by means of pressing powders with a grain size as small as 50 micrometers. These results illustrate that the AFM is a promising tool for material science and the study of biomineralization.  相似文献   

12.
原子力显微镜技术在多糖研究中的应用   总被引:1,自引:0,他引:1  
吴佳  邓霄  张芸  汪兰  田斌强  谢笔钧 《中国农业科学》2008,41(10):3222-3228
简单介绍了原子力显微镜(AFM)的原理和工作模式,详细叙述了利用AFM研究多糖时的样品制备方法及影响成像的因素,并综述了AFM在多糖分子的形态观察和定量研究方面的进展,介绍了AFM在研究多糖单分子力学谱方面的工作和AFM对糖基构象变化过程的测定和调控,还对AFM在多糖研究中的进一步应用提出了展望。  相似文献   

13.
Images of entire cells are preceding atomic structures of the separate molecular machines that they contain. The resulting gap in knowledge can be partly bridged by protein-protein interactions, bioinformatics, and electron microscopy. Here we use interactions of known three-dimensional structure to model a large set of yeast complexes, which we also screen by electron microscopy. For 54 of 102 complexes, we obtain at least partial models of interacting subunits. For 29, including the exosome, the chaperonin containing TCP-1, a 3'-messenger RNA degradation complex, and RNA polymerase II, the process suggests atomic details not easily seen by homology, involving the combination of two or more known structures. We also consider interactions between complexes (cross-talk) and use these to construct a structure-based network of molecular machines in the cell.  相似文献   

14.
We introduce a method for the bottom-up assembly of biomolecular structures that combines the precision of the atomic force microscope (AFM) with the selectivity of DNA hybridization. Functional units coupled to DNA oligomers were picked up from a depot area by means of a complementary DNA strand bound to an AFM tip. These units were transferred to and deposited on a target area to create basic geometrical structures, assembled from units with different functions. Each of these cut-and-paste events was characterized by single-molecule force spectroscopy and single-molecule fluorescence microscopy. Transport and deposition of more than 5000 units were achieved, with less than 10% loss in transfer efficiency.  相似文献   

15.
Monolayer Langmuir-Blodgett films of a discotic mesogen have been studied with atomic force microscopy (AFM). These measurements confirm the "edge on" arrangement for the disk-shaped molecules suggested by surface pressure-area isotherms and show that the molecules form columns that are separated by 17.7 angstroms +/- 10 percent. Column alignment is found to be predominantly along the film deposition direction, with an angular spread of 35 degrees . The AFM images also show that the mean disk separation within the columns is 5.1 +/- 1.3 angstroms, in good agreement with x-ray diffraction (XRD) results. Roomtemperature XRD measurements on bulk samples of the same material indicate a disordered-hexagonal liquid crystalline mesophase, with a column-to-column spacing of 19.9 +/- 0.2 angstroms.  相似文献   

16.
利用原子力显微镜(atomic force microscope,AFM)的振荡模式研究芥蓝叶片上表皮气孔的三维形貌,并对气孔在叶片失水过程中的形态变化进行动态观察.结果表明,通过AFM的扫描成像,观察到芥蓝叶片表皮的气孔及其周围的细胞,包括保卫细胞、副卫细胞、其他表皮细胞等的微观结构,还观测到覆盖在副卫细胞的微纤维,测量出这些微纤维的直径约为400nm,间隔约为200nm.  相似文献   

17.
Feng M  Zhao J  Petek H 《Science (New York, N.Y.)》2008,320(5874):359-362
The atomic electron orbitals that underlie molecular bonding originate from the central Coulomb potential of the atomic core. We used scanning tunneling microscopy and density functional theory to explore the relation between the nearly spherical shape and unoccupied electronic structure of buckminsterfullerene (C60) molecules adsorbed on copper surfaces. Besides the known pi* antibonding molecular orbitals of the carbon-atom framework, above 3.5 electron volts we found atomlike orbitals bound to the core of the hollow C60 cage. These "superatom" states hybridize like the s and p orbitals of hydrogen and alkali atoms into diatomic molecule-like dimers and free-electron bands of one-dimensional wires and two-dimensional quantum wells in C60 aggregates. We attribute the superatom states to the central potential binding an electron to its screening charge, a property expected for hollow-shell molecules derived from layered materials.  相似文献   

18.
Crystallization of L-cystine is a critical step in the pathogenesis of cystine kidney stones. Treatments for this disease are somewhat effective but often lead to adverse side effects. Real-time in situ atomic force microscopy (AFM) reveals that L-cystine dimethylester (L-CDME) and L-cystine methylester (L-CME) dramatically reduce the growth velocity of the six symmetry-equivalent {100} steps because of specific binding at the crystal surface, which frustrates the attachment of L-cystine molecules. L-CDME and L-CME produce l-cystine crystals with different habits that reveal distinct binding modes at the crystal surfaces. The AFM observations are mirrored by reduced crystal yield and crystal size in the presence of L-CDME and L-CME, collectively suggesting a new pathway to the prevention of L-cystine stones by rational design of crystal growth inhibitors.  相似文献   

19.
Atomic force microscopy and dissection of gap junctions   总被引:16,自引:0,他引:16  
An atomic force microscope (AFM) was used to study the structure of isolated hepatic gap junctions in phosphate-buffered saline (PBS). The thickness of these gap junctions appears to be 14.4 nanometers, close to the dimensions reported by electron microscopy (EM). When an increasing force is applied to the microscope tip, the top membrane of the gap junction can be "dissected" away, leaving the extracellular domains of the bottom membrane exposed. When such "force dissection" is performed on samples both trypsinized and fixed with glutaraldehyde, the hexagonal array of gap junction hemichannels is revealed, with a center-to-center spacing of 9.1 nanometers.  相似文献   

20.
Highest-resolution laser spectroscopy has generally been limited to single trapped ion systems because of the rapid decoherence that plagues neutral atom ensembles. Precision spectroscopy of ultracold neutral atoms confined in a trapping potential now shows superior optical coherence without any deleterious effects from motional degrees of freedom, revealing optical resonance linewidths at the hertz level with a good signal-to-noise ratio. The resonance quality factor of 2.4 x 10(14) is the highest ever recovered in any form of coherent spectroscopy. The spectral resolution permits direct observation of the breaking of nuclear spin degeneracy for the 1S0 and 3P0 optical clock states of 87Sr under a small magnetic bias field. This optical approach for excitation of nuclear spin states allows an accurate measurement of the differential Landé g factor between 1S0 and 3P0. The optical atomic coherence demonstrated for collective excitation of a large number of atoms will have a strong impact on quantum measurement and precision frequency metrology.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号