首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到14条相似文献,搜索用时 15 毫秒
1.
It is known from laboratory studies that tobacco-associated forms of Myzus persicae (Sulzer) and the closely related tobacco aphid Myzus nicotianae (Blackman) are often somewhat less susceptible to imidacloprid than non-tobacco strains of M. persicae. Choice tests (floating leaf technique) showed that tobacco aphids were also less susceptible to the antifeedant potential of imidacloprid in contact bioassays. Synergists like piperonyl butoxide or DEF did not enhance the susceptibility of tobacco-associated morphs of Myzus ssp. to imidacloprid, thus providing evidence that neither oxidative detoxication nor hydrolytic metabolization took place. However, in an attempt to study the influence of endosymbiotic bacteria on the efficacy of imidacloprid, we allowed small populations of tobacco aphids to feed on diets containing the antibiotic chlortetracycline prior to imidacloprid treatment. While the effectiveness of imidacloprid, i.e. lower LC50 values, could be improved in all strains, including the susceptible reference strain, there was no change in overall tolerance factors. In order to investigate any possible alteration of the target site, the affinity of imidacloprid and nicotine to nicotinic acetylcholine receptors in whole-aphid homogenates was measured. All strains (and clones) showed the same high-affinity binding sites and no detectable difference. Studies using the FAO dip method revealed that the lower susceptibility of M. nicotianae is not restricted to chloronicotinyls like imidacloprid or acetamiprid, because other insecticides with different modes of action such as pymetrozine and fipronil were also affected in laboratory studies. It is considered that the observed tolerance to chloronicotinyls in certain strains of Myzus ssp. is a natural variation in response, probably not coupled with any known mechanism of resistance in this species complex. © 1998 SCI  相似文献   

2.
Neonicotinoids represent a class of insect-selective ligands of nicotinic acetylcholine receptors. Imidacloprid, the first commercially used neonicotinoid insecticide, has been studied on neuronal preparations from many insects to date. Here we report first intrinsic binding data of thiamethoxam, using membranes from Myzus persicae Sulzer and Aphis craccivora Koch. In both aphids, specific binding of [3H]thiamethoxam was sensitive to temperature, while the absolute level of non-specific binding was not affected. In M persicae, binding capacity (Bmax) for [3H]thiamethoxam was ca 450 fmol mg(-1) of protein at 22 degrees C and ca 700 fmol mg(-1) of protein at 2 degrees C. The negative effect of increased temperature was reversible and hence not due to some destructive process. The affinity for [3H]thiamethoxam was less affected by temperature: Kd was ca 11 nM at 2 degrees C and ca 15 nM at 22 degrees C. The membranes also lost binding sites for [3H]thiamethoxam during prolonged storage at room temperature, and upon freezing and thawing. In A craccivora, [3H]thiamethoxam was bound with a capacity of ca 1000 fmol mg(-1) protein and an affinity of ca 90 nM, as measured at 2 degrees C. Overall, the in vitro temperature sensitivity of [3H]thiamethoxam binding was in obvious contrast to the behaviour of [3H]imidacloprid studied in parallel. Moreover, the binding of [3H]thiamethoxam was inhibited by imidacloprid in a non-competitive mode, as shown with M persicae. In our view, these differences demonstrate that thiamethoxam and imidacloprid, which represent different structural sub-classes of neonicotinoids, do not share the same binding site or mode. This holds also for other neonicotinoids, as we report in a companion article.  相似文献   

3.
Neonicotinoids bind selectively to insect nicotinic acetylcholine receptors with nanomolar affinity to act as potent insecticides. While the members of the neonicotinoid class have many structural features in common, it is not known whether they also share the same mode of binding to the target receptor. Previous competition studies with [3H]imidacloprid, the first commercialised neonicotinoid, indicated that thiamethoxam, representing a novel structural sub-class, may bind in a different way from that of other neonicotinoids. In the present work we analysed the mode of [3H]imidacloprid displacement by established neonicotinoids and newly synthesized analogues in the aphids Myzus persicae Sulzer and Aphis craccivora Koch. We found two classes of neonicotinoids with distinct modes of interference with [3H]imidacloprid, described as direct competitive inhibition and non-competitive inhibition, respectively. Competitive neonicotinoids were acetamiprid, nitenpyram, thiacloprid, clothianidin and nithiazine, whereas thiamethoxam and the N-methyl analogues of imidacloprid and clothianidin showed non-competitive inhibition. The chloropyridine or chlorothiazole heterocycles, the polar pharmacophore parts, such as nitroimino, cyanoimino and nitromethylene, and the cyclic or acyclic structure of the pharmacophore were not relevant for the mode of inhibition. Consensus structural features of the neonicotinoids were defined for the two mechanisms of interaction with [3H]imidacloprid binding. Furthermore, two sub-classes of non-competitive inhibitors can be discriminated on the basis of their Hill coefficients for imidacloprid displacement. We conclude from the present data that the direct competitors share the binding site with imidacloprid, whereas non-competitive compounds, like thiamethoxam, bind to a different site or in a different mode.  相似文献   

4.
The metabolism of the chloronicotinyl insecticide imidacloprid is strongly influenced by the method of application. Whilst in foliar application most of the residues on the leaf surface display unchanged parent compound, most of the imidacloprid administered to plants by soil application or seed treatment is metabolized more or less completely, depending on plant species and time. The present study revealed that certain metabolites of imidacloprid which have been described in crop plants are highly active against aphid pests in different types of bioassays. Some of these metabolites showed a high oral activity against the green peach aphid (Myzus persicae), and the cotton aphid (Aphis gossypii). The aphicidal potency of the metabolites investigated was weaker in aphid dip tests than in oral ingestion bioassays using artificial double membranes. The most active plant metabolite was the imidazoline derivative of imidacloprid. The LC50 values of this metabolite for M. persicae and A. gossypii in oral ingestion bioassays were in the lower ppb-range, i.e. 0·0044 and 0·0068 mg litre-1, respectively. Most of the other reported metabolites showed much weaker activity. Compared to imidacloprid, the imidazoline derivative showed superior affinity to housefly (Musca domestica) head nicotinic acetylcholine receptors, while all other metabolites were less specific than imidacloprid. It seems possible that, after seed treatment or soil application, a few of the biologically active metabolites arising are acting in concert with remaining levels of the parent compound imidacloprid, thus providing good control and long-lasting residual activity against plant-sucking pests in certain crops. © 1998 SCI.  相似文献   

5.
6.
N3-substituted imidacloprid congeners containing C1-C6 alkyl groups or various analogous groups, and their corresponding nitromethylene analogues, were used in this study. Their insecticidal activity against the housefly, Musca domestica, and their binding activity toward the nicotinic acetylcholine receptor were determined. The insecticidal test was conducted using the synergists piperonyl butoxide and propargyl propyl phenylphosphonate. The binding assay was performed with housefly head membrane preparations using radio-labelled alpha-bungarotoxin. Both insecticidal and binding activities were drastically lowered by the introduction of alkyl/allyl groups at the imidazolidine NH sites of both nitroimino and nitromethylene compounds. The binding activity of N3-substituted nitromethylene analogues was much higher than that of the corresponding nitroimino analogues. However, the insecticidal activity of both series of compounds with a given substituent was nearly identical. The insecticidal activity correlated positively with the binding activity after taking into account the structural difference of the nitroimino and nitromethylene moieties and a structural feature of the N3-substituents.  相似文献   

7.
8.
9.
Variously substituted benzyl derivatives of chloronicotinyl insecticides were synthesized with a wide range of substituents including halogens, NO2, CN, CF3 and small alkyl and alkoxy groups at the ortho, meta and para positions, as well as multiple‐substituted benzyl analogues. Their binding activity to the α‐bungarotoxin binding site in housefly (Musca domestica) head membrane preparations was measured. Among the compounds tested, the activity of the meta‐CN derivative was the highest, being 20–100 times higher than those of imidacloprid, acetamiprid and nitenpyram. The synergized insecticidal activity against houseflies was also measured for selected compounds with the metabolic inhibitor, NIA16388 (propargyl propyl phenylphosphonate). For the nitromethylene analogues, including both benzyl and pyridylmethyl analogues, higher binding activity usually resulted in higher insecticidal activity. © 2000 Society of Chemical Industry  相似文献   

10.
11.
The binding activity of imidacloprid and related compounds to nicotinic acetylcholine receptors (nAChR) of house flies was measured by use of radioactive α-bungarotoxin as a ligand. Variations in the activity were examined three-dimensionally using comparative molecular field analysis (CoMFA). The CoMFA results suggest that one conformer among the four stable ones is active and provide support for one of the proposed binding models for this class of compound, in which the nitrogen atom of the pyridine ring and the nitrogen atom at the 1-position of the imidazolidine ring interact with the hydrogen-donating and electron-rich sites of nAChR, respectively. The CoMFA field map showed that the nitroimino moiety and a portion of the imidazolidine ring were mainly surrounded by a sterically and electrostatically sensitive region of nAChR. © 1998 Society of Chemical Industry  相似文献   

12.
13.
14.
BACKGROUND: Spodoptera litura (F.) is a cosmopolitan pest that has developed resistance to several insecticides. The aim of the present study was to establish whether an emamectin‐selected (Ema‐SEL) population could render cross‐resistance to other insecticides, and to investigate the genetics of resistance. RESULTS: Bioassays at G1 gave resistance ratios (RRs) of 80‐, 2980‐, 3050‐ and 2800‐fold for emamectin, abamectin, indoxacarb and acetamiprid, respectively, compared with a laboratory susceptible population Lab‐PK. After three rounds of selection, resistance to emamectin in Ema‐SEL increased significantly, with RRs of 730‐fold and 13‐fold compared with the Lab‐PK and unselected (UNSEL) population respectively. Further studies revealed that three generations were required for a tenfold increase in resistance to emamectin. Resistance to abamectin, indoxacarb, acetamiprid and emamectin in UNSEL declined significantly compared with the field population at G1. Furthermore, selection with emamectin reduced resistance to abamectin, indoxacarb and acetamiprid on a par with UNSEL. Crosses between Ema‐SEL and Lab‐PK indicated autosomal and incomplete dominance of resistance. A direct test of a monogenic model and Land's method suggested that resistance to emamectin was controlled by more than one locus. CONCLUSION: Instability of resistance and lack of cross‐resistance to other insecticides suggest that insecticides with different modes of action should be recommended to reduce emamectin selection pressure. Copyright © 2010 Society of Chemical Industry  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号