首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A recent survey of insecticide resistance in two of the most problematic pests in UK glasshouses revealed some new developments. At least some individuals in all UK samples of Trialeurodes vaporariorum that were tested resisted the insect growth regulator (IGR) buprofezin. The most strongly resistant strains were unaffected by the field application rate of this compound, and even samples from populations that had never been exposed to buprofezin contained individuals that survived the highest concentration applied (10,000 mg litre-1). The field rate of buprofezin was shown to select for resistance through vapour action alone. The benzophenylurea teflubenzuron, an unrelated IGR, was cross-resisted by buprofezin-resistant individuals. There was no evidence of resistance to imidacloprid, but all T vaporariorum strains tested, regardless of origin, exhibited a high innate tolerance to nicotine, when compared with another whitefly species, Bemisia tabaci. Marked resistance to fenbutatin oxide and tebufenpyrad was found in single glasshouse populations of Tetranychus urticae, but these compounds and abamectin appeared to remain highly effective against all other strains collected.  相似文献   

2.
褐飞虱抗药性机理及其治理研究进展   总被引:14,自引:4,他引:14  
褐飞虱是一种重要的农业害虫,其对许多杀虫剂都产生了抗药性。化学药剂的大量不合理使用是导致褐飞虱产生抗药性的主要原因。褐飞虱的抗药性机理主要包括代谢抗性和靶标抗性。本文对褐飞虱的抗药性机理进行了综述,并对该虫的抗性治理进行了探讨。褐飞虱的抗性治理策略应包括抗性监测、使用新型药剂、合理使用杀虫剂及抗虫品种等。  相似文献   

3.
Abstract

Varying levels of resistance were detected in populations of Sitophilus zeamais (Mostch) collected from small farmers’ stores in Zimbabwe. Some populations showed 4–6‐fold resistance levels to malathion compared to a susceptible laboratory strain.  相似文献   

4.

BACKGROUND

The prophylactic use of seeds treated with neonicotinoid insecticides remains an important means of controlling aphid pests in canola (Brassica napus) crops in many countries. Yet, one of the most economically important aphid species worldwide, the peach potato aphid (Myzus persicae), has evolved mechanisms which confer resistance to neonicotinoids, including amplification of the cytochrome P450 gene, CYP6CY3. While CYP6CY3 amplification has been associated with low-level resistance to several neonicotinoids in laboratory acute toxicity bioassays, its impact on insecticide efficacy in the field remains unresolved. In this study, we investigated the impact of CYP6CY3 amplification on the ability of M. persicae to survive neonicotinoid exposure under laboratory and semi-field conditions.

RESULTS

Three M. persicae clones, possessing different copy numbers of CYP6CY3, were shown to respond differently when exposed to the neonicotinoids, imidacloprid and thiamethoxam, in laboratory bioassays. Two clones, EastNaernup209 and Osborne171, displayed low levels of resistance (3–20-fold), which is consistent with previous studies. However, in a large-scale semi-field trial, both clones showed a surprising ability to survive and reproduce on B. napus seedlings grown from commercial rates of neonicotinoid-treated seed. In contrast, an insecticide-susceptible clone, of wild-type CYP6CY3 copy number, was unable to survive on seedlings treated in the same manner.

CONCLUSION

Our findings suggest that amplification of CYP6CY3 in M. persicae clones substantially impairs the efficacy of neonicotinoid seed treatments when applied to B. napus. These findings highlight the potentially important real-world implications of resistances typically considered to be ‘low level’ as defined through laboratory bioassays. © 2023 The Authors. Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.  相似文献   

5.
6.
Plants have developed mechanisms to successfully co-exist in the presence of pathogenic organisms. Some interactions between plants and pathogens are based on recognition of specific elicitor molecules from avirulent pathogen races (avr gene products), which is described in the gene-for-gene resistance theory. Another type of resistance, multigenic (horizontal) resistance, is a less well-studied phenomenon that depends upon multiple genes in the plant host. All plants possess resistance mechamisms which can be induced upon pre-treatment of plants with a variety of organisms or compounds. This general phenomenon is known as induced systemic resistance (ISR). At least in some plant species, ISR depends on the timely accumulation of multiple gene products, such as hydrolytic enzymes, peroxidases or other gene products related to plant defences. The pre-treatment of plants with an inducing organism or compound appears to incite the plant to mount an effective defense response upon subsequent encounters with pathogens, converting what would have been a compatible interaction to an incompatible one. Our studies in three plant–pathogen systems clearly document that multigenic-resistant plants constitutively express specific isozymes of hydrolytic enzymes that release cell wall elicitors, which in turn may activate other defense mechanisms. ISR induces constitutive accumulation of these and other gene products prior to challenge. ISR is known to function against multiple organisms, and there is no specificity observed in the accumulation patterns of defense-related gene products when ISR is induced. It is therefore hypothesized that the constitutive accumulation of specific isozymes of hydrolytic enzymes, or other defense related gene products, is an integral part of both multigenic resistance and the phenomenon of ISR. Further, plants in which ISR has been activated appear to move from a latent resistance state to one in which a multigenic, non-specific form of resistance is active.  相似文献   

7.
8.
苹果全爪螨是重要的蔷薇科果树害虫之一, 具有体型小、繁殖快、世代周期短等生物学特点。该螨以若螨和成螨取食苹果叶片和嫩芽, 影响果树生长发育, 造成果实品质和产量下降, 自20世纪60年代开始其在我国果园的发生逐年加重。国内外对苹果全爪螨的防治主要采用化学杀螨剂, 由于化学杀螨剂长期不规范的使用, 致使该螨对多种类型的化学杀螨剂产生了抗药性。本文总结了苹果全爪螨的发生、为害、抗药性现状及其抗性机理, 同时结合国内外苹果全爪螨抗药性和防治相关研究, 提出该螨抗药性治理策略, 以期为其防治提供参考。  相似文献   

9.
Organophosphates are valuable insecticides used to control Helicoverpa armigera on cotton in Australia. Those most commonly used for Helicoverpa spp. control are pro-fenofos, parathion-methyl and chlorpyrifos. However, there is an emerging organophosphate-resistance threat in Australian H. armigera, which is compounded by cross-resistance between profenofos and parathion-methyl. An insensitive acetylcholinesterase has been identified as the common resistance mechanism. No resistance to chlorpyrifos has been detected and acetylcholinesterase remains fully sensitive to the chlorpyrifos oxon. © 1998 Society of Chemical Industry  相似文献   

10.
太子参叶斑病抗性诱导因子筛选   总被引:1,自引:0,他引:1  
为筛选诱导太子参产生对叶斑病抗性的诱导因子,在离体培养条件下,用水杨酸、草酸、壳聚糖、磷酸氢二钾、亚硒酸钠和太子参叶斑病粗毒素液这6种因子诱导处理太子参组培苗,在1~7d内测定叶片相关酶活性的变化。诱导培养7d后,用太子参叶斑病粗毒素液对组培苗进行离体叶片针刺接种抗性鉴定,结果表明,诱导处理后能明显增强太子参叶片内POD、PPO和PAL的活性;6种因子均能诱导太子参对叶斑病产生抗性,以190mg.L-1和380mg.L-1草酸的诱抗效果较好,分别达到76.1%和74.7%,极显著高于其它诱导因子的诱抗效果。  相似文献   

11.
12.
棉蚜抗药性及其化学防治   总被引:11,自引:0,他引:11  
棉蚜[Aphis gossypii(Glover)]属半翅目蚜科,是一种世界性的害虫,主要通过取食植物汁液和传播病毒给农业生产造成严重损失。长期以来,棉蚜的防治一直以化学防治为主,棉蚜对有机氯、有机磷、氨基甲酸酯、拟除虫菊酯、新烟碱类等多种杀虫药剂已经产生了抗性。本文主要从棉蚜抗药性发展历史、抗药性机制以及棉蚜的化学防治等方面进行论述,期望能为农业生产上延缓棉蚜抗药性产生、有效治理棉蚜提供指导。  相似文献   

13.
BACKGROUND: Neonicotinoid insecticides were first used commercially for Colorado potato beetle [Leptinotarsa decemlineata (Say), Coleoptera: Chrysomelidae] control in the United States in 1995, and since then have been critical for management of this pest. Field populations from the northeastern and midwestern United States were tested from 1998 to 2010 for susceptibility to imidacloprid and thiamethoxam using standard topical dose assays with adults. RESULTS: From 1998 to 2001, imidacloprid resistance was present in only a few locations in the eastern United States. By 2003, imidacloprid resistance was common in the northeastern Unites States. In 2004, imidacloprid resistance in Colorado potato beetle was detected for the first time in the midwestern United States. In 2003, the first case of resistance to thiamethoxam was found in a population from Massachusetts. Neonicotinoid resistance in summer‐generation adults was higher than in overwintered adults from the same locations. By 2009, 95% of the populations tested from the northeastern and midwestern United States had significantly higher LD50 values for imidacloprid than the susceptible population. CONCLUSIONS: The increasing resistance to neonicotinoid insecticides raises concerns for the continued effective management of Colorado potato beetles in potatoes and highlights the need for more rigorous practice of integrated pest management methods. Copyright © 2011 Society of Chemical Industry  相似文献   

14.
The most common and effective way to control phoma stem canker (blackleg) caused by Leptosphaeria maculans in oilseed rape (Brassica napus) is through the breeding of resistant cultivars. Race specific major genes that mediate resistance from the seedling stage have been identified in B. napus or have been introgressed from related species. Many race specific major genes have been described and some of them are probably identical in B. napus (allotetraploid AACC) and the parental species B. rapa (diploid AA). More work is needed using a set of well-characterised isolates to determine the number of different major resistance genes available. In some B. napus cultivars, there is resistance which is polygenic (mediated by Quantitative Trait Loci) and postulated to be race non-specific. Many of these major genes and Quantitative Trait Loci for resistance to L. maculans have been located on B. napus genetic maps. Genes involved in race specific and polygenic resistance are generally distinct.  相似文献   

15.
石丹丹  张帅  梁沛 《植物保护》2023,49(5):270-278
棉蚜Aphis gossypii Glover是农业生产上最重要的害虫之一。化学杀虫剂一直以来都是棉蚜综合防治体系中的重要组成部分, 但化学杀虫剂的不合理使用导致棉蚜对多种杀虫剂均产生了高水平抗性。现有研究表明, 靶标位点突变、解毒酶基因的过表达以及某些肠道共生菌丰度的变化是导致棉蚜对杀虫剂产生抗性的主要机制。针对棉蚜抗性发展现状及其抗药性机制, 制定科学合理的抗性治理策略, 是充分发挥化学防治的优势、实现棉蚜可持续治理的关键。本文主要从棉蚜的抗药性现状、抗性机制和抗性治理策略3个方面对近10多年的主要进展进行了综述, 旨在为棉蚜抗药性长效治理和科学施策提供理论依据。  相似文献   

16.
黄淮海大豆新品种(系)的抗病性评价   总被引:4,自引:0,他引:4  
大豆花叶病毒(SMV)、大豆孢囊线虫(SCN)和大豆根腐病(SRR)是危害中国乃至世界大豆生产的3种主要病害。为了评价黄淮海选育的大豆新品种(系)对这3种病害的抗性水平, 采用温网室接种鉴定及田间调查自然发病的方法, 对72份大豆新品种(系)进行了抗病性鉴定。结果表明, ‘中作J8012’、‘蒙01-38’、‘汾豆86’、‘中作X96328’、‘阜08-190’等9个品系对SMV流行株系SC3和SC7表现高抗或抗病, 占参试品种总数的12.5%; ‘周01015-1’、‘远育8号’和‘冀豆17’ 3个品系对SCN 1号生理小种表现中抗; 自然条件下, 抗SRR病情指数在15以下的大豆材料有31份, 占鉴定总数的43.06%; 对SMV和SRR的抗性水平均在中抗及以上的有‘阜08-325’、‘HD0113’、‘太丰6号’等8个品系, 占参试品种数的11. 11%, 而对3种病害的抗性水平均在中抗以上的材料仅有‘冀豆17’1份。本研究的结果可为大豆抗病育种选择亲本和培育多抗性的大豆新品种提供参考。  相似文献   

17.
BACKGROUND: Papaver rhoeas (L.) has evolved resistance to tribenuron in winter wheat fields in northern Greece owing to multiple Pro197 substitutions. Therefore, the cross‐resistance pattern to other sulfonylurea and non‐sulfonylurea ALS‐inhibiting herbicides of the tribenuron resistant (R) and susceptible (S) corn poppy populations was studied by using whole‐plant trials and in vitro ALS catalytic activity assays. RESULTS: The whole‐plant trials revealed that tribenuron R populations were also cross‐resistant to sulfonylureas mesosulfuron + iodosulfuron, chlorsulfuron and triasulfuron. The whole‐plant resistance factors (RFs) calculated for pyrithiobac, imazamox and florasulam ranged from 12.4 to > 88, from 1.5 to 28.3 and from 5.6 to 25.4, respectively, and were lower than the respective tribenuron RF values (137 to > 2400). The ALS activity assay showed higher resistance of the ALS enzyme to sulfonylurea herbicides (tribenuron > chlorsulfuron) and lower resistance to non‐sulfonylurea ALS‐inhibiting herbicides (pyrithiobac > florasulam ≈ imazamox). CONCLUSION: These findings indicate that Pro197 substitution by Ala, Ser, Arg or Thr in corn poppy results in a less sensitive ALS enzyme to sulfonylurea herbicides than to other ALS‐inhibiting herbicides. The continued use of sulfonylurea herbicides led to cross‐resistance to all ALS‐inhibiting herbicides, making their use impossible in corn poppy resistance management programmes. Copyright © 2011 Society of Chemical Industry  相似文献   

18.
Field or greenhouse grown soybeans were treated with 2,6-dichloroisonicotinic acid or benzothiadiazole and subsequently assessed for severity of white mold disease caused by Sclerotinia sclerotiorum. Three or four applications of 2,6-dichloroisonicotinic acid to field plots in 1993–1995 reduced severity of white mold after natural infection by 20–70% compared with water-treated controls in soybean cultivars Elgin 87 and Williams 82, which are considered to be highly susceptible to the disease. The effect was not as large in the cultivars Corsoy 79 and NKS19-90 which are more resistant to white mold. Two or four applications of benzothiadiazole to field plots in 1995 and 1996 reduced white mold severity by 20–60%, with the greatest reductions again observed in the more susceptible cultivars. Corresponding yields were increased compared with controls, particularly for the susceptible cultivars under conditions of high disease pressure. In greenhouse trials multiple applications of either compound resulted in significantly smaller lesion diameters following subsequent leaf inoculations with the fungus. The compounds did not result in observable phytotoxicity or inhibit growth of Sclerotinia sp. in vitro. We hypothesize that the decrease in disease severity following treatment with INA or BTH is a result of resistance induction.  相似文献   

19.
Effects of pretreatment of Brassica napus leaves with ascospores of Leptosphaeria biglobosa or chemical defence activators [acibenzolar- S -methyl (ASM) or menadione sodium bisulphite (MSB)] on infection by ascospores of Leptosphaeria maculans (phoma stem canker) and development of disease were studied in controlled-environment (phoma leaf spot) and field (phoma leaf spot and stem canker) experiments. In controlled-environment experiments, pretreatment of oilseed rape leaves (cv. Madrigal) with L. biglobosa , ASM or MSB delayed the appearance of L. maculans phoma leaf spot lesions. These pretreatments also decreased the phoma leaf spot lesion area in both pretreated leaves (local effect) and untreated leaves (systemic effect). In winter oilseed rape field experiments in the 2002/03 and 2003/04 growing seasons, pretreatment with L. biglobosa or ASM in October/November decreased not only the number of phoma leaf spot lesions per leaf caused by L. maculans in autumn/winter, but also the severity of phoma stem canker in the subsequent spring/summer. Effects were greater in 2002/03 (when natural L. maculans ascospore release began in September 2002) than in 2003/04 (when ascospore release began in December following a period of dry weather in August/September 2003). These results suggest that pretreatment with biological or chemical defence activators can induce local and systemic resistance to L. maculans , with both short-term effects on the development of phoma leaf spotting and long-term effects on the development of stem canker 8 months later.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号