首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
【目的】不同丛枝菌根 (abuscular mycorrhizal,AM) 真菌菌种 (株) 因其分离地点及宿主的不同,其生理发育与生态功能差异显著,尤其是土壤养分状况对其影响更明显。研究不同土壤磷水平对 AM 真菌侵染宿主及生长发育繁殖的影响,以及不同 AM 真菌对玉米生长及氮磷吸收的影响,可以深化了解 AM 真菌与土壤磷的关系。 【方法】采用盆栽试验,以玉米为宿主植物,土壤灭菌后分别添加 0、50、200、500 mg/kg 4 个水平的磷营养 (P0、P50、P200、P500),并分别接种 6 种 AM 真菌,以不接种为对照。测定了 AM 真菌侵染率、丛枝丰度、孢子数、菌丝密度、玉米植株氮磷比 (N/P) 生态化学计量特征,讨论了不同土壤磷水平与 AM 真菌生长发育间的关系,以及 AM 真菌对玉米吸收利用氮、磷的影响。 【结果】在 P50 条件下,AM 真菌的侵染率、根内丛枝结构、根外生物量 (孢子数、菌丝密度) 显著高于不加磷 P0 和 P200 和 P500 处理,而且 AM 真菌侵染及生长发育指标在高磷水平时,显著下降。不同磷水平处理下,不同 AM 真菌对玉米的侵染能力及生物量存在明显差异。在 P0 和 P50 条件下,接种 G.m 处理侵染率达到 75%,菌丝密度达 240 m/g,显著高于其他五个 AM 真菌。AM 真菌 C.c、R.a、C.et 的菌根侵染状况及生物量次之,D.s、D.eb 最差。在高磷 P200 和 P500 条件下,仅有 F.m 真菌处理的侵染状况及生物量最高。在 P0、P50 水平下,接种 F.m、R.a、D.eb 显著降低了植株氮含量;在不加磷 (P0) 水平下,接种处理均显著促进了玉米植株中磷含量的提高,在 P50 水平下,F.m 植株磷含量显著高于不接种对照;在 P0、P50、P200 水平下,接种 AM 真菌处理降低了玉米植株中 N/P 比,且不同菌种间存在差异,接种真菌 F.m 处理的 N/P 比明显最低。 【结论】土壤添加低量磷 (50 mg/kg) 更适合 AM 真菌的侵染及生长发育,也利于菌根效应的发挥。侵染能力及效应以耐高磷菌种 F.m 最好,然后依次为 C.c、R.a、C.et。在适量磷条件下,接种 AM 真菌能够调节植株体 N/P 比达到平衡,改善植物营养状况,促进玉米生长。  相似文献   

2.
【目的】在田间原位条件下研究丛枝菌根(Arbuscular mycorrhizal, AM)真菌根外菌丝表面有无解磷细菌定殖,并对存在的解磷细菌的种类进行鉴定,对其活化有机磷的能力进行检测,从而为更好地认识菌丝际土壤有机磷的周转和磷的生物地球化学循环过程提供依据。【方法】利用河北省曲周县中国农业大学实验站的玉米长期定位试验,采用田间埋膜方式从玉米根系周围收集AM真菌的根外菌丝,用蒙金娜有机磷固体培养基筛选菌丝表面具有矿化植酸钙能力的细菌,对筛选出的细菌进行分离、 培养,然后提取细菌DNA,通过16S rDNA测序分析来确定解磷细菌的种类。分离鉴定的菌株先用蒙金娜有机磷固体培养基通过测定菌落直径(d)及溶磷圈直径(D)初步鉴定其活化植酸钙的能力,再用无菌的蒙金娜有机磷液体培养基确定每株解磷细菌矿化植酸磷的能力,并对溶液的pH进行测定,每个菌株重复3次。最后采用两室隔网根盒将分离纯化的解磷细菌回接至AM真菌根外菌丝,鉴定回接成功率,确定分离出的解磷细菌能否成功定殖于菌丝表面。【结果】从AM真菌根外菌丝表面分离得到了29株具有活化有机磷能力的细菌,分属于芽胞杆菌、 假单胞菌、 沙雷氏菌、 葡萄球菌和肠杆菌5个不同的属。通过有机磷液体培养进一步检测这些菌株活化植酸磷的能力,发现它们对植酸磷的矿化率为1.9%~21.9%。其中假单胞菌属细菌的解磷能力相对较强,对植酸磷的矿化率达14%以上,液体培养基的pH值下降2~4个单位。将分离纯化的细菌回接至两室隔网根盒的菌丝室,培养30 d后,从菌丝表面再次检测到除假单胞菌属外的芽胞杆菌属(Bacillus)、 沙雷氏菌属(Serratia)、 葡萄球菌属(Staphylococcus)和肠杆菌属(Enterobacter)细菌,另外还检测到贪铜菌属(Cupriavidus)细菌。【结论】在田间原位条件下,与玉米共生的AM真菌的根外菌丝表面有多种解磷细菌定殖,它们活化有机磷能力存在差异,其中以假单胞菌属细菌的解磷能力相对较强。  相似文献   

3.
适应玉米的溶磷细菌筛选及其对玉米生长的影响   总被引:5,自引:0,他引:5  
从石灰性土壤中分离获得4株高效溶磷细菌X5、X6、Z4和Z8,研究其生物学特征,探索其单独及复合的溶磷促生潜能。研究发现菌株X5、X6、Z4和Z8均可以利用玉米根系分泌物作碳源生长。菌株X6和Z4均能产生吲哚乙酸(IAA)和铁载体,菌株Z8可产生IAA不产生铁载体,菌株X5可产生铁载体不产生IAA。盆栽试验结果表明,接种单一溶磷菌及4株菌复合处理均可促进玉米生长,但复合菌群的溶磷促生效果显著高于单一菌株。通过16S r RNA基因序列分析研究菌株的分类地位,初步鉴定X5、X6、Z4、Z8分别为荧光假单孢菌(Pseudomonas fluorescens)、草假单胞菌(Pseudomonas poae)、巨大芽孢杆菌(Bacillus megaterium)和枯草芽孢杆菌(Bacillus subtilis)。  相似文献   

4.
Plant growth-promoting rhizobacteria and arbuscular mycorrhizal (AM) fungi represent two main groups of beneficial microorganisms of the rhizosphere. The role of different strains of Azospirillum on AM fungi development was evaluated by measuring the percentage of AM colonisation of the root system in durum wheat and maize plants, grown under both greenhouse and field conditions. The effect of wild-type Azospirillum brasilense strain Sp245 and genetically modified (GM) derivatives overproducing indole-3-acetic acid was assessed at greenhouse level in (1) three different cultivars of durum wheat, in the presence of indigenous AM fungi and (2) maize plants artificially inoculated with Glomus mosseae and Glomus macrocarpum. In addition, the establishment of natural AM fungal symbiosis was evaluated using Azospirillum lipoferum CRT1 in maize plants at field level. Despite the stimulatory effect of the different Azospirillum inocula on root growth, no significant differences in AM colonisation were found, independently of the AM fungus involved, either in wheat or in maize plants. Similarly, GM A. brasilense, which strongly stimulates root development, did not affect AM formation. Although these results were obtained in conditions in which the mycorrhization rate was moderate (15–30%), overall considered they indicate that the use of wild-type or GM Azospirillum phytostimulators does not alter mycorrhization.  相似文献   

5.
Phosphate-solubilizing bacteria (PSB) were isolated and characterized from the rhizosphere and bulk soils of Areca catechu plants. A long history of phosphate fertilizer use has elicited a direct effect on the incidence of soil PSB. Their abundance and ability to solubilize insoluble phosphate were significantly greater (P?<?0.0001) in soils with low available phosphorus (P) content than in other soil types. Three efficient PSB strains, namely, ASL12, ASG34, and ADH302, were identified as Acinetobacter pittii, Escherichia coli, and Enterobacter cloacae by characterizing 16S rRNA sequences and biochemical characteristics; they produced gluconic acid at concentrations of 7862.4, 4306.5, and 2663.8 mg L?1, respectively. The highest amount of solubilized P was determined in Pikovskaya (PVK) medium for the bacterial strain ASL12. The secretion of gluconic acid was related to the available P of rhizosphere soils and P solubilization. Under shaded conditions, the application of these three strains significantly improved plant height, shoot and root dry weight, and nutrient uptake of A. catechu seedlings. A further increase in P solubilization was observed by co-inoculating the three strains and also applying tricalcium phosphate (TCP) or aluminum phosphate (AP). A significant (P?<?0.05) correlation was also observed between P-solubilization activity and A. catechu plant growth in pot experiments. Thus, the three strains can be potentially applied as inoculants in tropical and aluminum-rich soils.  相似文献   

6.
The effect of inoculation with the saprophytic fungi Alternaria alternata or Fusarium equiseti on maize (Zea mays) and lettuce (Lactuca sativa) with or without arbuscular mycorrhizal (AM) colonization by Glomus mosseae was studied in a greenhouse trial. Plant dry weights of non-AM-inoculated maize and lettuce were unaffected by the presence of A. alternata and F. equiseti. In contrast, A. alternata and F. equiseti decreased plant dry weights and mycorrhization when inoculated to the rhizosphere before G. mosseae. The saprophytic fungi inoculated 2 weeks after G. mosseae did not affect the percentage of root length colonized by the AM endophyte, but did affect its metabolic activity assessed as succinate dehydrogenase activity. Although F. equiseti inoculated at the same time as G. mosseae did not affect mycorrhization of maize roots, its effect on AM colonization of lettuce roots was similar to that with A. alternata. In the rhizosphere of both plants, the population of saprophytic fungi decreased significantly, but was not affected by the presence of G. mosseae. Our results suggest that there may have been a direct effect of the saprophytic fungi on the mycorrhizal fungi in the extramatrical phase of the latter, and when the AM fungus was established in the root the AM fungus was less affected by the saprophytic fungi. Received: 16 January 1996  相似文献   

7.
A pot experiment was conducted to investigate the effect of epigeic earthworm (Eisenia fetida) and arbuscular mycorrhizal (AM) fungi (Glomus intraradices) on soil enzyme activities and nutrient uptake by maize, which was grown on a mixture of sterilized soil and sand. Maize plants were grown in pots inoculated or not inoculated with AMF, treated or not treated with earthworms. Wheat straw was added as a feed source for earthworms. Mycorrhizal colonization of maize was markedly increased in AM fungi inoculated pots and further increased by addition of epigeic earthworms. AM fungi and epigeic earthworms increased maize shoot and root biomass, respectively. Soil acid phosphatase activity was increased by both earthworms and mycorrhiza, while urease and cellulase activities were only affected by earthworms. Inoculation with AM fungi significantly (p?<?0.001) increased the activity of soil acid phosphatase but decreased soil available phosphorus (P) and potassium (K) concentrations at harvest. Addition of earthworms alone significantly (p?<?0.05) increased soil ammonium-N content, but decreased soil available P and K contents. AM fungi increased maize shoot weight and root P content, while earthworms improved N, P, and K contents in shoots. AM fungi and earthworm interactively increased maize shoot and root biomass through their regulation of soil enzyme activities and on the content of available soil N, P, and K.  相似文献   

8.
Arbuscular mycorrhizal (AM) fungi have been shown to induce the biocontrol of soilborne diseases, to change the composition of root exudates and to modify the bacterial community structure of the rhizosphere, leading to the formation of the mycorrhizosphere. Tomato plants were grown in a compartmentalized soil system and were either submitted to direct mycorrhizal colonization or to enrichment of the soil with exudates collected from mycorrhizal tomato plants, with the corresponding negative controls. Three weeks after planting, the plants were inoculated or not with the soilborne pathogen Phytophthora nicotianae growing through a membrane from an adjacent infected compartment. At harvest, a PCR-Denaturing gradient gel electrophoresis analysis of 16S rRNA gene fragments amplified from the total DNA extracted from each plant rhizosphere was performed. Root colonization with the AM fungi Glomus intraradices or Glomus mosseae induced significant changes in the bacterial community structure of tomato rhizosphere, compared to non-mycorrhizal plants, while enrichment with root exudates collected from mycorrhizal or non-mycorrhizal plants had no effect. Our results support that the effect of AM fungi on rhizosphere bacteria would not be mediated by compounds present in root exudates of mycorrhizal plants but rather by physical or chemical factors associated with the mycelium, volatiles and/or root surface bound substrates. Moreover, infection of mycorrhizal or non-mycorrhizal plants with P. nicotianae did not significantly affect the bacterial community structure suggesting that rhizosphere bacteria would be less sensitive to the pathogen invasion than to mycorrhizal colonization. Of 96 unique sequences detected in the tomato rhizosphere, eight were specific to mycorrhizal fungi, including two Pseudomonas, a Bacillus simplex, an Herbaspirilium and an Acidobacterium. One Verrucomicrobium was common to rhizospheres of mycorrhizal plants and of plants watered with mycorrhizal root exudates.  相似文献   

9.
磷细菌筛选及其对土壤无机磷转化的影响   总被引:1,自引:0,他引:1  
从潮土、水稻土、砂姜黑土和石灰土等土壤的植物根际土壤和根中分离了86株磷细菌,通过液体摇瓶培养3d,培养液水溶磷含量为4.2~387.3mg/L,水溶磷含量与培养液pH呈显著负相关(R2=0.621 6)。用筛选出的1株磷细菌(HCW115)进行玉米盆栽试验,结果表明,磷细菌处理的玉米干物重和吸磷量与对照相比分别增加了37.5%和40.2%,达到显著差异。磷细菌对土壤Al-P、Fe-P和O-P转化无明显影响,但可以促进土壤Ca2-P、Ca8-P和Ca10-P向有效磷转化而被玉米吸收,与原土相比,Ca2-P、Ca8-P和Ca10-P含量分别减少了74.9%,12.3%和1.51%。  相似文献   

10.
Sugar beet waste has potential value as a soil amendment and this work studied whether fermentation of the waste by Aspergillus niger would influence the growth and P uptake of arbuscular mycorrhizal (AM) fungi. Plants were grown in compartmentalised growth units, each with a root compartment (RC) and two lateral root-free compartments (RFC). One RFC contained untreated soil while the other RFC contained soil, which was uniformly mixed with sugar beet waste, either untreated (SB) or degraded by A. niger (ASB) in a rock phosphate (RP)-supplied medium. The soil in each pair of RFC was labelled with 33P and 32P in order to measure P uptake by the AM fungal mycelium, of which length density was also measured. Whole cell fatty acid (WCFA) signatures were used as biomarkers of the AM fungal mycelium and other soil microorganisms. The amount of biomarkers of saprotrophic fungi and both Gram-positive and Gram-negative bacteria was higher in SB than in ASB treatments. Whilst ASB increased growth and activity of AM mycelium, SB had the opposite effect. Moreover, shoot P content was increased by the addition of ASB, and by inoculation with AM fungi. Modification of soil microbial structure and production of exudates by A. niger, as a consequence of fermentation process of sugar beet waste, could possibly explain the increase of AM growth in ASB treatments. On the other hand, the highest P uptake was a result of the solubilisation of rock phosphate by A. niger during the fermentation.  相似文献   

11.
ABSTRACT

The exploitation of phosphate mines generates an important quantity of phosphate sludge that remains accumulated and not valorized. In this context, composting with organic matter and rhizospheric microorganisms offers an interesting alternative and that is more sustainable for agriculture. This work aims to investigate the synergetic effect of arbuscular mycorrhizal fungi (AMF), phosphate-solubilizing bacteria (PSB) and phospho-compost (PC), produced from phosphate-laundered sludge and organic wastes, and their combination on plant growth, phosphorus solubilization and phosphatase activities (alkaline and acid). Inoculated mycorrhizae and bacteria strains used in this study were selected from plant rhizosphere grown on phosphate-laundered sludge. Significant (p < .05) increases in plant growth was observed when inoculated with both consortia and PC (PC+ PSB+ AMF) similar to those recorded in plants amended with chemical fertilizer. Tripartite inoculated tomato had a significantly (p < .05) higher shoot height; shoot and root dry weight, root colonization and available P content, than the control. Co-inoculation with PC and AMF greatly increased alkaline phosphatase activity and the rate of mycorrhizal intensity. We conclude that PC and endophytic AMF and PSB consortia contribute to a tripartite inoculation in tomato seedlings and are coordinately involved in plant growth and phosphorus solubilization. These results open up promising prospects for using formulate phospho-compost enriched with phosphorus-solubilizing microorganisms (PSM) in crop cultivation as biofertilizers to solve problems of phosphate-laundered sludge accumulation.  相似文献   

12.
Two indole-producing Paenibacillus species, known to be associated with propagules of arbuscular mycorrhizal (AM) fungi, were examined for their mycorrhization helper bacteria activity at pre-symbiotic and symbiotic stages of the AM association. The effects were tested under in vitro and in vivo conditions using an axenically propagated strain of the AM fungus Glomus intraradices and Glycine max (soybean) as the plant host. The rates of spore germination and re-growth of intraradical mycelium were not affected by inoculation with Paenibacillus strains in spite of the variation of indole production measured in the bacterial supernatants. However, a significant promotion in pre-symbiotic mycelium development occurred after inoculation of both bacteria under in vitro conditions. The Paenibacillus rhizosphaerae strain TGX5E significantly increased the extraradical mycelium network, the rates of sporulation, and root colonization in the in vitro symbiotic association. These results were also observed in the rhizosphere of soybean plants grown under greenhouse conditions, when P. rhizosphaerae was co-inoculated with G. intraradices. However, soybean dry biomass production was not associated with the increased development and infectivity values of G. intraradices. Paenibacillus favisporus strain TG1R2 caused suppression of the parameters evaluated for G. intraradices during in vitro symbiotic stages, but not under in vivo conditions. The extraradical mycelium network produced and the colonization of soybean roots by G. intraradices were promoted compared to the control treatments. In addition, dual inoculation had a promoting effect on soybean biomass production. In summary, species of Paenibacillus associated with AM fungus structures in the soil, may have a promoting effect on short term pre-symbiotic mycelium development, and little impact on AM propagule germination. These findings could explain the associations found between some bacterial strains and AM fungus propagules.  相似文献   

13.
Neem (Azadirachta indica A. Juss) seedlings were inoculated with arbuscular mycorrhizal (AM) fungi, Glomus intraradices Schenck and Smith and G. geosporum (Nicol. and Gerd.) Walker, Azospirillum brasilense, and phosphate-solubilizing bacteria (PSB) individually or in various combinations in unsterile soil under nursery conditions. Seedlings were harvested at 60 and 120 days after transplantation. Microbial inoculation resulted in increased mycorrhizal colonization, greater plant height, leaf area and number, root collar diameter, biomass, phosphorus, nitrogen and potassium content, and seedling quality. Inoculated seedlings also had low root/shoot ratios and low nutrient utilization efficiencies. Populations of PSB declined with seedling growth; contrarily populations of A. brasilense increased. A. brasilense and PSB populations were related to each other and influenced root colonization by AM fungi. Microbial inoculation effects were greatest when seedlings were inoculated with a combination of microbes rather than individually. This clearly indicates that these microorganisms act synergistically when inoculated simultaneously, with maximum response being when both AM fungi were coinoculated with A. brasilense and PSB. The results emphasize the importance of microbial inoculations for the production of robust, rapidly growing seedlings in nurseries and illustrate the advantage of inoculating soils of a low microbial population with indigenous microbes.  相似文献   

14.
Adequate soil structural stability favours the establishment and viability of a stable plant cover, protecting the soil against water erosion in desertified Mediterranean environments. We studied the effect of soil drying-rewetting, inoculation with a mixture of three exotic arbuscular mycorrhizal (AM) fungi (Glomus intraradices Schenck & Smith, Glomus deserticola (Trappe, Bloss. & Menge) and Glomus mosseae (Nicol & Gerd.) Gerd. & Trappe) and addition of a composted organic residue on aggregate stabilisation of the rhizosphere soil of Juniperus oxycedrus. The AM fungi and composted residue produced similar increases in plant growth, independently of the water conditions. Under well-watered conditions, the highest percentages of stable aggregates were recorded in the amended soil, followed by the soil inoculated with AM fungi. Excepting microbial biomass C, the soil drying increased labile C fractions (water soluble C, water soluble and total carbohydrates), whereas the rewetting decreased significantly such C fractions. Desiccation caused a significant increase in aggregate stability of the rhizosphere soil of all plants, particularly in the amended and inoculated plants. In all treatments, the aggregates formed after soil drying were unstable, since, in the rewetting, they disappear, reaching the initial levels before soil drying. Our results suggest that the aggregation mechanisms developed by rhizosphere microbial community of the amended and inoculated plants under water stress can be particularly relevant in desertified soils exposed to long desiccation periods.  相似文献   

15.
丛枝菌根真菌(Arbuscular mycorrhizal fungi,AMF)能与多数陆生植物共生,促进植物吸收养分尤其是磷。解磷细菌(Phosphate-solubilizing bacteria,PSB)可以活化土壤中难溶性无机磷和有机磷。本研究采用苯菌灵对田间低磷土壤中土著AM真菌进行灭菌,并接种外源AM真菌(Glomusversiforme,G.v)和PSB(Pseudomonassp.),研究AM真菌和PSB接种对不同生育期玉米生长、磷养分吸收和产量的影响。结果表明,施用苯菌灵能够有效地抑制土著AM真菌对玉米根系的侵染,未施用苯菌灵处理中土著AM真菌促进了玉米前期和收获期的生长,提高了玉米吸磷量;接种Pseudomonas sp.促进了玉米六叶期根系的生长;接种外源AM真菌G.v促进了玉米六叶期和收获期地上部的生长,但降低了玉米产量。双接种Pseudomonas sp.和G.v对玉米生长、吸磷量和产量未表现出显著的协同效应。  相似文献   

16.
《Pedobiologia》2014,57(3):171-179
Arbuscular mycorrhiza (AM) mycelia networks are important for nutrient allocation in many plants, but fungivorous soil invertebrates such as Collembola can modulate the symbiosis by grazing on the extra-radical mycelium (ERM). This study employs a dual biomarker approach with stable isotopes and fatty acids to disentangle trophic interactions of Collembola in a plant-fungal soil system with maize (Zea mays) and the AM fungus Glomus mosseae. To separate ERM and root mediated effects, root (RC) and hyphal compartments (HC) were used, and the latter was spiked with labeled 15N substrate. The euedaphic Collembola species Protaphorura fimata was introduced as the fungal and root grazer. Generally, the presence of Collembola in RC fostered biomass and phosphorous uptake in roots colonized with AM. Nitrogen transport from HC to RC was not altered, indicating that Collembola did not disrupt the ERM network via grazing. Collembola–fungus interactions fostered AM hyphal proliferation in HC, whereas in RC it induced a change from fungal senescence with build-up of storage reserves, to an active foraging phase. A distinct diet switch by Collembola between HC and RC indicated different ERM palatability meditated by the presence or absence of the host plant. Overall, Collembola grazing increased ERM nutrient sequestration, particularly phosphorus, and in turn plant performance. Collembola modified fungal phenology, favoring fungal colonization over reproductive phases. These trophic interactions were strongly determined by fungal life stage, with the establishment of a functional mycorrhiza as a crucial factor.  相似文献   

17.
《Applied soil ecology》2003,22(1):15-28
The effects of two Bacillus strains (Bacillus pumillus and B. licheniformis) on Medicago sativa plants were determined in single or dual inoculation with three arbuscular-mycorrhizal (AM) fungi and compared to P-fertilization. Shoot and root plant biomass, values of thymidine and leucine incorporation as well as ergosterol and chitin in rhizosphere soil were evaluated to estimate metabolic activity and fungal biomass, respectively, according to inoculation treatments. For most of the plant parameters determined, the effectiveness of AM fungal species was influenced by the bacterial strain associated. Dual inoculation of Bacillus spp. and AM fungi did not always significantly increase shoot biomass compared to single AM-colonized plants. The most efficient treatment in terms of dry matter production was the dual Glomus deserticola plus B. pumillus inoculation, which produced similar shoot biomass and longer roots than P-fertilization and a 715% (shoot) and 190% (root length) increase over uninoculated control. The mycorrhizas were more important for N use-efficiency than for P use-efficiency, which suggests a direct mycorrhizal effect on N nutrition not mediated by P uptake. Both chemical and biological treatments affected thymidine and leucine incorporation in the rhizosphere soil differently. Thymidine was greater in inoculated than in control rhizospheres and B. licheniformis was more effective than B. pumillus in increasing thymidine. Non-inoculated rhizospheres showed the lowest thymidine and leucine values, which shows that indigenous rhizosphere bacteria increased with introduced inocula. The highest thymidine and leucine values found in P-fertilized soils indicate that AM plants are better adapted to compete with saprophytic soil bacteria for nutrients than P-amended plants. Chitin was only increased by coinoculation of B. licheniformis and G. intraradices. B. pumillus increased ergosterol (indicative of active saprophyte fungal populations) in the rhizosphere of AM plants and particularly when colonized by G. mosseae. The different AM fungi have different effects on bacterial and/or fungal saprophytic populations and for each AM fungus, this effect was specifically stimulated or reduced by the same bacterium. This is an indication of ecological compatibilities between microorganisms. Particular Glomus–bacterium interactions (in terms of effect on plant growth responses or rhizosphere population) do not seem to be related to the percentage of AM colonization. The effect on plant growth and stimulation of rhizosphere populations, as a consequence of selected microbial groups, may be decisive for the plant establishment under limiting soil conditions.  相似文献   

18.
The influence of inoculation of olive trees with arbuscular mycorrhizal (AM) fungi, Glomus (G) intraradices, on microbial communities and sugar concentrations, were examined in rhizosphere of olive trees (Olea europaea L.). Analyses of phospholipid and neutral lipid fatty acids (PLFA and NLFA, respectively) were then used to detect changes in microbial community structure in response to inoculation of plantlets with G. intraradices.Microscopic observations studies revealed that the extraradical mycelium of the fungus showed formation of branched absorbing structures (BAS) in rhizosphere of olive tree. Root colonization with the AM fungi G. intraradices induced significant changes in the bacterial community structure of olive tree rhizosphere compared to non-mycorrhizal plants. The largest proportional increase was found for the fatty acid 10Me18:0, which indicated an increase in the number of actinomycetes in mycorrhizal rhizosphere soil, whereas the PLFAs i15:0, a15:0, i16:0, 16:1ω7 and cy17:0 which were used as indicators of bacteria decreased in mycorrhizal treatment compared to non-mycorrhizal control treatment. A highest concentration of glucose and trehalose and a lowest concentration of fructose, galactose, sucrose, raffinose and mannitol were detected in mycorrhizal rhizosphere soil. This mycorrhizal effect on rhizosphere communities may be a consequence of changes in characteristics in the environment close to mycorrhizal roots.  相似文献   

19.
In terrestrial ecosystems, plants are frequently in symbiosis with arbuscular mycorrhizal fungi (AMF) with mineral nutrients and photosynthesis carbon exchanges in between. This research sought to identify the effects of phosphorus (P) levels on the nitrogen (N) uptake via extraradical mycelium (ERM) and the mycorrhizal growth response (MGR) of maize plants within the AMF symbiosis. Pots were separated into root compartments and hyphae compartments (HCs) with two layers of a 30‐μm mesh membrane and an air gap in between, where only hyphae could pass through, to avoid both N diffusion and root growth effects. Maize plants were inoculated with Rhizophagus irregularis with different N fertilization in HCs under two different P fertilization levels. Our results indicated that a strong increase in MGR with low‐P fertilization. The same tendency was not observed with high‐P fertilization, although both had a large increase in P concentration as a potential source of growth in shoot tissue of mycorrhizal plants. Substantial effects (10.5% more N) were observed in the case of high‐P availability for the host plants from ERM fed with N, whereas under low‐P conditions ERM may prioritize P uptake rather than N uptake. The AM fungi increase the uptake of N and P, which are most limiting in the soil with fewer forces from soil resources. In addition, there was still more P accumulated than N due to the high N for ERM with high‐P supply. Low N in HCs corresponded with a lower colonization rate in roots but with high hyphae density in HCs; this result suggest that N and P availability might change the ratio of extraradical to intraradical hyphae length.  相似文献   

20.
The use of efficient bio-inoculants in chickpea is the best way to increase crop productivity under rainfed conditions. To assess the combined effect of bio-inoculants on crop yield, field experiments were conducted during Rabi seasons at Research Station, Punjab Agricultural University, Ballowal Saunkhri, Punjab, India. The application of different bio-inoculants significantly improved number of pods, grain and straw yield of chickpea over the un-inoculated treatment. The combined application of Rhizobium + PSB?+?AM fungi?+?azotobactor inoculums as seed treatment with 75% of recommended phosphorus produced highest grain yield. The nodule count, nodule weight, per cent root colonization of AM fungi and different enzymes activities in soil were also highest in combined bio-inoculants treatment. The present study concluded that combined application of bio-inoculants (Rhizobium, PSB, AM fungi and azotobactor) can save 25% of recommended phosphorus by sustaining the crop yield and improving the soil health.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号