首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We examined the short-term effect of five organic amendments and compared them to plots fertilized with inorganic fertilizer and unfertilized plots on aggregate stability and hydraulic conductivity, and on the OC and ON distribution in physically separated SOM fractions. After less than 1 year, the addition of organic amendments significantly increased ( P  <   0.01) the aggregate stability and hydraulic conductivity. The stability index ranged between 0.97 and 1.76 and the hydraulic conductivity between 1.23 and 2.80 × 10−3 m/s for the plots receiving organic amendments, compared with 0.34–0.43, and 0.42–0.64 × 10−3 m/s, respectively, for the unamended plots. There were significant differences between the organic amendments (P <  0.01), although these results were not unequivocal for both soil physical parameters. The total OC and ON content were significantly increased ( P  <   0.05) by only two applications of organic fertilizers: between 1.10 and 1.51% OC for the amended plots versus 0.98–1.08% for the unamended and between 0.092 and 0.131% ON versus 0.092–0.098% respectively. The amount of OC and ON in the free particulate organic matter fraction was also significantly increased ( P  <   0.05), but there were no significant differences ( P  <   0.05) in the OC and ON content in the POM occluded in micro-aggregates and in the silt + clay-sized organic matter fraction. The results showed that even in less than 1 year pronounced effects on soil physical properties and on the distribution of OC and ON in the SOM fractions occurred.  相似文献   

2.
 In arable soils in Schleswig-Holstein (Northwest Germany) nearly 30% of the total organic C (TOC) stored in former times in the soil has been mineralized in the last 20 years. Microbial biomass, enzyme activities and the soil organic matter (SOM) composition were investigated in order to elucidate if a low TOC level affects microbial parameters, SOM quality and crop yield. Microbial biomass C (Cmic) and enzyme activities decreased in soils with a low TOC level compared to soils with a typical TOC level. The decrease in the Cmic/TOC ratio suggested low-level, steady-state microbial activity. The SOM quality changed with respect to an enrichment of initial litter compounds in the top soil layers with a low TOC level. Recent management of the soils had not maintained a desirable level of humic compounds. However, we found no significant decrease in crop yield. We suggest that microbial biomass and dehydrogenase and alkaline phosphatase activities are not necessarily indicators of soil fertility in soils with a high fertilization level without forage production and manure application. Received: 12 December 1997  相似文献   

3.
含水率对土壤有机质含量高光谱估算的影响   总被引:3,自引:1,他引:3  
土壤含水率对有机质(soil organic matter,SOM)含量高光谱估算精度有很大的影响。为了探讨SOM高光谱估算中土壤含水率的影响,该文对烘干土、风干土和质量含水率为5%~40%(按5%递增)的土壤样本进行了室内高光谱测量,对光谱数据进行了反射率、反射率一阶导数和反射率倒数对数3种光谱数据变换,运用偏最小二乘回归法(partial least squares regression,PLSR)建立了相应的SOM估算模型。结果表明,风干土的SOM高光谱估算精度较好;当含水率水平小于25%时,SOM估算模型精度受含水率的影响较大,光谱数据进行反射率倒数对数变换后的模型精度最高;当含水率水平大于等于25%时,水分对土壤光谱反射率的影响要大于SOM,不适宜利用土壤光谱数据进行SOM含量高光谱估算。该研究可为大田环境不同含水率情况下光谱估算SOM提供参考。  相似文献   

4.
 Changes to the metabolic profiles of soil microbial communities could have potential for use as early indicators of the impact of management or other perturbations on soil functioning and soil quality. We compared the relative susceptibility to management of microbial community metabolism with a number of soil organic matter (OM) and microbial parameters currently used as indicators of changes in soil biological quality. Following long-term cereal cropping, plots were subjected to a 16-month treatment period consisting of either a mixed cropping sequence of vetch, spring barley and clover or a continuous grass-clover ley which was periodically mown and mulched. The treatments had no effect on soil biomass N or respiration of microbial populations inoculated into Biolog Gram negative (GN) plates. After 16 months there were no management-induced changes to total OM, light-fraction OM C and N, labile organic N or water-soluble carbohydrates. However, patterns of substrate utilization by the soil microbial population following inoculation into Biolog GN plates were found to be highly sensitive to management practice. In the mixed cropping sequence, substrate utilization changed markedly following plough-in of the vetch crop, with a smaller change occurring after harvesting of the barley. In the ley treatment, substrate utilization was not affected until the onset of mowing, when the pattern changed to become similar to that in the mixed cropping sequence. Metabolic diversity of the Biolog-culturable microbial population was increased by the ley treatment, but was not affected by the cropping sequence. We conclude that patterns of microbial substrate utilization and metabolic diversity are more sensitive to the effects of management than are OM and biomass pools, and therefore have value as early indicators of the impacts of management on soil biological properties, and hence soil quality. Received: 7 April 1999  相似文献   

5.
Present concepts emphasize that substrate quality exerts an important control over substrate decomposability and temperature sensitivity of heterotrophic soil respiration (Rh). In this context, soil organic matter (SOM) quality is defined by its molecular and structural complexity and determines the ease by which substrate is oxidized. However, temperature not only affects SOM oxidation rates but also equally the physiology of soil microorganisms, making it difficult to use respiration rates as indicative for the quality inherent to a substrate. One way to distinguish these two would be to measure organic matter oxidation by controlled combustion and to compare the temperature sensitivity of this chemical process to that of enzyme-catalyzed microbial respiration. We analyzed reaction rates, thermal stability indices, and activation energies (Ea) during (i) microbial respiration (EaRh) and (ii) controlled combustion by differential scanning calorimetry (DSC) (EaDSC) of the same set of mineral and organic soils. A high thermal stability coincided with small heterotrophic respiration rates, indicating that thermal stability may be useful as a proxy for biological degradability. Under ambient conditions, enzymes greatly reduced Ea on average from 136 (EaDSC) to 87 (EaRh) kJ mol?1, thereby increasing CO2 release by a factor of 1.5 * 107 relative to the noncatalyzed chemical reaction. However, temperature dependency of chemical and microbial oxidation was not correlated, suggesting that they are determined by different sample properties. A high temperature sensitivity of microbial respiration is linked to parameters independent of chemical oxidizability, in our case, organic matter C/N ratio and soil pH. These factors are important controls for microbial, but not for chemical, oxidation.  相似文献   

6.
水溶性有机物在土壤中的化学行为及其对环境的影响   总被引:1,自引:0,他引:1  
水溶性有机物(Dissolved organic matter,DOM)是能够溶解于水的有机化合物的统称。尽管目前对于陆地生态系统中DOM的研究尚不完善,对其性质、组成和分类方法等问题的看法还没有达成一致,但现有研究结果已经表明DOM是一种十分活跃的重要化学组分。DOM进入土壤后将发生吸附、解吸、迁移、转化等一系列化学过程,进而对土壤及环境产生一系列重要影响:一方面,DOM可以与土壤胶体结合,形成有机无机结合体,从而改善土壤性质,DOM还可以通过其自身的分解产生养分离子,从而提高土壤肥力;另一方面,DOM也可能亲合土壤中原来与土壤胶体结合的养分,使之与DOM一起进入土壤溶液,从而增加土壤中养分离子被淋失的风险,并造成土壤养分的损失以及水体的富营养化,DOM还有可能活化土壤中重金属离子,增加土壤中重金属离子的毒性,并使土壤中的重金属离子向地下水迁移。由于其对土壤和环境的多种效应,水溶性有机物近年来已经逐渐成为土壤学、环境科学、生态学等学科的研究热点之一。  相似文献   

7.
 Soil organic matter level, mineralizable C and N, microbial biomass C and dehydrogenase, urease and alkaline phosphatase activities were studied in soils from a field experiment under a pearl millet-wheat cropping sequence receiving inorganic fertilizers and a combination of inorganic fertilizers and organic amendments for the last 11 years. The amounts of soil organic matter and mineralizable C and N increased with the application of inorganic fertilizers. However, there were greater increases of these parameters when farmyard manure, wheat straw or Sesbania bispinosa green manure was applied along with inorganic fertilizers. Microbial biomass C increased from 147 mg kg–1 soil in unfertilized soil to 423 mg kg–1 soil in soil amended with wheat straw and inorganic fertilizers. The urease and alkaline phosphatase activities of soils increased significantly with a combination of inorganic fertilizers and organic amendments. The results indicate that soil organic matter level and soil microbial activities, vital for the nutrient turnover and long-term productivity of the soil, are enhanced by use of organic amendments along with inorganic fertilizers. Received: 6 May 1998  相似文献   

8.
Climate warming is projected to increase the frequency and severity of wildfires in boreal forests, and increased wildfire activity may alter the large soil carbon (C) stocks in boreal forests. Changes in boreal soil C stocks that result from increased wildfire activity will be regulated in part by the response of microbial decomposition to fire, but post-fire changes in microbial decomposition are poorly understood. Here, we investigate the response of microbial decomposition to a boreal forest fire in interior Alaska and test the mechanisms that control post-fire changes in microbial decomposition. We used a reciprocal transplant between a recently burned boreal forest stand and a late successional boreal forest stand to test how post-fire changes in abiotic conditions, soil organic matter (SOM) composition, and soil microbial communities influence microbial decomposition. We found that SOM decomposing at the burned site lost 30.9% less mass over two years than SOM decomposing at the unburned site, indicating that post-fire changes in abiotic conditions suppress microbial decomposition. Our results suggest that moisture availability is one abiotic factor that constrains microbial decomposition in recently burned forests. In addition, we observed that burned SOM decomposed more slowly than unburned SOM, but the exact nature of SOM changes in the recently burned stand are unclear. Finally, we found no evidence that post-fire changes in soil microbial community composition significantly affect decomposition. Taken together, our study has demonstrated that boreal forest fires can suppress microbial decomposition due to post-fire changes in abiotic factors and the composition of SOM. Models that predict the consequences of increased wildfires for C storage in boreal forests may increase their predictive power by incorporating the observed negative response of microbial decomposition to boreal wildfires.  相似文献   

9.
土壤有机质对有效磷及水提取磷含量的影响   总被引:4,自引:0,他引:4  
为了解土壤有机质对有效磷与总磷、水提取磷与有效磷关系的影响,采用田间调查的方法,对洛阳市郊主要农田4种土壤耕作层土壤进行取样调查,并采用常规土壤测试方法,分别测定土样有机质、金磷、有效磷和水提取磷含量.根据有机质含量(高于或低于16.0 g·kg-1)把土样分成两组,对两组土样的总磷与有效磷、有效磷与水提取磷分别做相关关系分析.结果表明:与低有机质土样组相比,高有机质土样组有效磷与总磷相关方程的斜率较大,水提取磷与有效磷相关方程的斜率较小,这一趋势在以Olsen法和Mehlich-3法测定有效磷时均相同.表明在缺磷环境中,有机质增加条件下,虽然磷的生物有效性降低,但有助于在土壤溶液中维持相对较高的磷酸根浓度,这可能是由于磷的周转加快;随着土壤磷含量增加,有机质增加有助于更快提高磷的生物有效性,但土壤溶液中维持相对较低的磷酸根浓度,这可能有助于减轻农田磷的渗漏流失.  相似文献   

10.
小麦秸秆焚烧对土壤有机质积累和微生物活性的影响   总被引:8,自引:0,他引:8  
【目的】焚烧作物秸秆是常见的处理农业废弃物减少病虫害和增加土壤养分的方法。但秸秆焚烧污染大气,妨碍农业健康发展。前人对秸秆焚烧造成大气污染已研究颇多,而对土壤环境所受影响的探究较少。本文选取焚烧不同小麦秸秆量的耕层土壤为研究对象,分析秸秆焚烧在短期内对土壤有机质积累和土壤微生物活性的影响。【方法】利用田间试验,设置对照(CK)、秸秆减量焚烧(0.24 kg/m2,A1)、全量焚烧(0.48 kg/m2,A2)和增量焚烧(0.72 kg/m2,A3)4种处理。将秸秆均匀覆盖在地表进行焚烧,并对残留较多的部分进行补充焚烧,以确保秸秆焚烧完全。焚烧完成5 h后,待土壤温度恢复正常,采集0—5 cm、5—10 cm、10—20 cm土壤样品,分析各层次土壤有机质含量、含水量、微生物数量和土壤酶活性。【结果】秸秆焚烧对0—5 cm土层的有机质含量、含水量、微生物数量及土壤酶活性影响显著,各处理均表现出减少的趋势。有机质含量下降了6.37%~19.47%,含水量减少22.15%~39.19%;细菌数量减少52.26%~75.25%,真菌减少45.21%~63.29%,放线菌减少46.87%~68.26%。蔗糖酶活性降低14.19%~30.75%,脲酶活性降低7.81%~25.48%,过氧化氢酶活性降低9.63%~39.53%,磷酸酶活性降低11.36%~40.44%;各处理与CK间大多呈显著差异。5—20 cm土层中各指标无显著变化。焚烧处理各指标的减少量均表现出A3A2A1的趋势,不同秸秆焚烧量之间大多差异显著。相关性分析表明,秸秆焚烧量与有机质含量、含水量、土壤微生物数量和酶活性之间呈显著负相关关系。【结论】小麦秸秆焚烧在短期内显著降低了0—5 cm土层中的有机质含量和微生物活性,而对5—20 cm土层的土壤影响不显著。小麦秸秆焚烧对土壤环境的影响强度随秸秆量的增多而加大。焚烧量与有机质含量、含水量、土壤微生物数量和酶活性之间呈显著负相关关系。鉴于秸秆焚烧对土壤肥力的长期效应以及对土壤理化性质影响的复杂性,焚烧对土壤有机质积累和微生物群落的影响还需要长期定位试验来探讨。  相似文献   

11.

Purpose  

Light fraction soil organic matter is characterized by rapid mineralization due to the labile nature of its chemical constituents and to the lack of protection by soil colloids. The changes in the size of light fraction soil organic matter constituents are useful early indicators of management-related carbon (C) and nutrient changes. However, previous studies have not assessed the impacts of forest management practices on the chemical composition and sources of organic matter in the light fraction. The change in the chemistry of light fraction soil organic matter may significantly affect turnover rate of organic matter in the whole soil and soil fertility. The aim of this study was to assess how different forest management practices would affect the chemical composition of light fraction soil organic matter.  相似文献   

12.
《Soil Use and Management》2018,34(2):187-196
The objective of this study was to evaluate the use of chemical and physical fractions of soil organic matter (SOM ), rather than SOM per se , as indicators of soil physical quality (SPQ ) based on their effect on aggregate stability (AS ). Chemically extracted humic and fulvic acids (HA and FA ) were used as chemical fractions, and heavy and light fractions (HF and LF ) obtained by density separation as physical fractions. The analyses were conducted on medium‐textured soils from tropical and temperate regions under cropland and pasture. Results show that soil organic carbon (SOC ), SOM fractions and AS appear to be affected by land use regardless of the origin of the soils. A general separation of structurally stable and unstable soils between samples of large and small SOC content, respectively, was observed. SOM fractions did not show a better relationship with AS than SOC per se . In both geographical regions, soils under cropland showed the smallest content of SOC , HA and carbon concentration in LF and HF , and the largest HF /LF ratio (proportion of the HF and LF in percent by mass of bulk soil). With significant associations between AS and SOC content (0.79**), FA /SOC (r  = −0.83**), HA /FA (r  = 0.58**), carbon concentration of LF (r  = 0.69**) and HF (r  = 0.70**) and HF /LF ratio (r  = 0.80**), cropland showed lowest AS . These associations indicate that SOM fractions provide information about differences in SOM quality in relation to AS and SPQ of soils from tropical and temperate regions under cropland and pasture.  相似文献   

13.
Soil organic matter (SOM) is biologically, chemically, and physically complex. As a major store of nutrients within the soil, it plays an important role in nutrient provision to plants. An enhanced understanding of SOM utilisation processes could underpin better fertiliser management for plant growth, with reduced environmental losses. Metaproteomics can allow the characterisation of protein profiles and could help gain insights into SOM microbial decomposition mechanisms. Here, we applied three different extraction methods to two soil types to recover SOM with different characteristics. Specifically, water-extractable organic matter, mineral-associated organic matter and protein-bound organic matter were targeted with the aim to investigate the metaproteome enriched in those extractions. As a proof-of-concept, replicated extracts from one soil were further analysed for peptide identification using liquid chromatography followed by tandem mass spectrometry. We employed a framework for mining mass spectra for both peptide assignment and fragmentation pattern characterisation. Different extracts were found to exhibit contrasting total protein and humic substance content for the two soils investigated. Overall, water extracts displayed the lowest humic substance content (in both soils) and the highest number of peptide identifications (in the soil investigated) with the most frequent peptide hits associated with diverse substrate/ligand binding proteins of Proteobacteria and derived taxa. Our framework also highlighted a strong peptidic signal in unassigned and unmatched spectra, information that is currently not captured by the pipelines employed in this study. Taken together, this work points to specific areas for optimisation in chromatography and mass spectrometry to adequately characterise SOM-associated metaproteomes.  相似文献   

14.

Purpose

Soil dissolved organic matter (DOM) as the labile fraction of soil organic carbon (SOC) is able to facilitate biogeochemical redox reactions effecting soil respiration and carbon sequestration. In this study, we took soil samples from 20 sites differing in land use (forest and agriculture) to investigate the electron transfer capacity of soil DOM and its potential relationship with soil respiration.

Materials and methods

DOM was extracted from 20 soil samples representing different land uses: forest (nos. 1–12) and agriculture (nos. 13–20) in Guangdong Province, China. Chronoamperometry was employed to quantify the electron transfer capacity (ETC) of the DOM, including electron acceptor capacity (EAC) and electron donor capacity (EDC), by applying fixed positive or negative potentials to a working electrode in a conventional three-electrode cell. The reversibility of electron accepting from or donating to DOM was measured by applying switchable potentials to the working electrode in the electrochemical system with the multiple-step potential technique. Carbon dioxide produced by soil respiration was measured with a gas chromatograph.

Results and discussion

Forest soil DOM samples showed higher ETC and electron reversible rate (ERR) than agricultural soil DOM samples, which may be indicative of higher humification rate and microbial activity in forest soils. The average soil respiration of forest soil (nos. 1–12) and agricultural soil (nos. 13–10) was 26.34 and 18.58 mg C g?1 SOC, respectively. Both EDC and EAC of soil DOM had close relationship with soil respiration (p?<?0.01). The results implied that soil respiration might be accelerated by the electroactive moieties contained in soil DOM, which serve as electron shuttles and facilitate electron transfer reactions in soil respiration and SOC mineralization.

Conclusions

DOM of forest soils showed higher ETC and ERR than DOM of agricultural soils. As soil represents one of the largest reservoirs of organic carbon, soil respiration affects C cycle and subsequently CO2 concentration in the atmosphere. As one of the important characteristics of soil DOM related to soil respiration, ETC has a significant impact on greenhouse gas emission and soil carbon sequestration but has not been paid attention to.  相似文献   

15.
Abstract

Effects of soil freeze-thaw cycles on soil microbial biomass were examined using 8 soil samples collected from various locations, including 4 arable land sites and 2 forest sites in temperate regions and 2 arable land sites in tropical regions. The amounts of soil microbial biomass C and N, determined by the chloroform fumigation and extraction method, significantly decreased by 6 to 40% following four successive soil freeze-thaw cycles (- 13 and 4°C at 12 h-intervals) compared with the unfrozen control (kept at 4°C during the same period of time as that of the freeze-thaw cycles). In other words, it was suggested that 60 to 94% of the soil microorganisms might survive following the successive freeze-thaw cycles. Canonical correlation analysis revealed a significantly positive correlation between the rate of microbial survival and organic matter content of soil (r = 0.948*). Correlation analysis showed that the microbial survival rate was also positively correlated with the pore-space whose size ranged from 9.5 to 6.0 μm (capillary-equivalent-diameter; r = 0.995**), pH(KCI) values (r = 0.925**), EC values (r = 0.855*), and pH (H2O) values (r = 0.778*), respectively. These results suggested that the soil physicochemical properties regulating the amount of unfrozen water in soil may affect the rate of microbial survival following the soil freeze-thaw cycles. The potential of organic matter decomposition of the soils was examined to estimate the effects of the soil freeze-thaw cycles on the soil processes associated with the soil microbial communities. The soil freeze-thaw cycles led to significant 6% increase in chitin decomposition and 7% decrease in rice straw decomposition (p < 0.05), suggesting that the partial sterilization associated with the soil freeze-thaw cycles might disturb the soil microbial functions.  相似文献   

16.
Determining the relative temperature sensitivities of the decomposition of the different soil organic matter (SOM) pools is critical for predicting the long-term impacts of climate change on soil carbon (C) storage. Although kinetic theory suggests that the temperature sensitivity of SOM decomposition should increase with substrate recalcitrance, there remains little empirical evidence to support this hypothesis. In the study presented here, sub-samples from a single bulk soil sample were frozen and sequentially defrosted to produce samples of the same soil that had been incubated for different lengths of time, up to a maximum of 124 days. These samples were then placed into an incubation system which allowed CO2 production to be monitored constantly and the response of soil respiration to short-term temperature manipulations to be investigated. The temperature sensitivity of soil CO2 production increased significantly with incubation time suggesting that, as the most labile SOM pool was depleted the temperature sensitivity of SOM decomposition increased. This study is therefore one of the first to provide empirical support for kinetic theory. Further, using a modelling approach, we demonstrate that it is the temperature sensitivity of the decomposition of the more recalcitrant SOM pools that will determine long-term soil-C losses. Therefore, the magnitude of the positive feedback to global warming may have been underestimated in previous modelling studies.  相似文献   

17.
土壤有机营养对“红富士”苹果果实产量和品质的影响   总被引:3,自引:1,他引:2  
通过野外调查与室内分析相结合,运用相关分析和通径分析等统计方法,研究苹果园土壤有机酸、 单糖、 B族维生素的含量与苹果果实品质和产量的关系。结果表明,土壤阿拉伯糖、 烟酰胺、 柠檬酸与果实有机酸含量呈极显著正相关,相关系数分别为0.621、 0.648、 0.587; 阿拉伯糖、 柠檬酸和维生素B2与果实可溶性糖含量通径系数大,为1.123、 0.668、 0.757,是影响可溶性糖含量的主要正因子,土壤草酸含量与其通径系数为负值(-0.558); 核糖和鼠李糖与果实花色苷的通径系数最大,为0.706、 0.644,而乙酸和草酸对花色苷形成有负影响,通径系数为-0.765、 -0.664; 三类土壤有机营养与果实维生素C含量的正相关性都极为显著;果实可溶性固形物与酒石酸、 维生素B6含量呈极显著正相关,相关系数为0.682、 0.613;土壤糖类与果实硬度大小呈负相关,与果实的大小呈显著正相关; 阿拉伯糖、 核糖、 维生素B2和乳酸与果树产量的通径系数及相关系数明显,是影响果树产量的主要因素。  相似文献   

18.
Management practices including various tillage systems influence quantity and composition of soil organic matter (SOM). Parameters for evaluating both the SOM quantity (organic C [Cox], total N [Nt]) and quality (microbial biomass C, hydrophobic and hydrophilic organic components) were determined in soil samples, taken from two soil depths (0–0.1 m and 0.1–0.3 m) in a field experiment in the period 2001–2007, with different tillage systems. The experiment, founded in 1995 in Prague-Ruzyně, includes conventional soil tillage (CT) plus some selected methods of conservation tillage: (a) no tillage (NT), (b) no tillage + mulch (NTM), and (c) minimum tillage with pre-crop residues incorporated (MTS). Cox and microbial biomass C contents increased significantly with conservation tillage as compared to CT in 0–0.1 m layer, non-significant increase was found in 0.1–0.3 m layer. Nt increased non-significantly in both layers. Along with the depth of sampling, the content of the characterized parameters decreased in all variants; but the decrease in the conventionally tilled variant was, for the most part, lower than in the conservation tillage. The functional hydrophobic and hydrophilic groups of soil organic matter were identified by Fourier transform infrared (FTIR) spectroscopy, and the hydrophobic/hydrophilic group intensities ratio was calculated as the parameter of soil hydrophobicity. A higher soil hydrophobicity existed in all three conservation tillage treatments compared to CT due to the significantly higher content of hydrophobic organic components. Cox correlated significantly with microbial biomass C, Nt, hydrophobic components, and soil hydrophobicity (R = 0.552–0.654; P < 0.05). Hydrophilic components did not correlate with other soil characteristics, with the exception of hydrophobic components. These data show that shifting from CT to the conservation tillage systems increased the content of SOM in top soil layer in relatively short time, improved the SOM quality and increased soil hydrophobicity in the condition of experiment.  相似文献   

19.
Changes in soil fertility caused by various organic and N-fertilizer amendments were studied in a long-term field trial mostly cropped with cereals. Five treatments were included: (I) fallow, (II) cropping with no C or N addition, (III) cropping with N-fertilization (80 kg ha ?1 yr?1), (IV) cropping with straw incorporation (1800kg Cha?1 yr?1) and N-fertilization (80 kg ha?1yr?1), and (V) cropping with addition of farmyard manure (80 kg N + 1800kg Cha?1yr?1). The treatments resulted in soil organic matter contents ranging from 4.3% (I) to 5.8% (V). Microbial biomass and activity were determined by chloroform fumigation, direct counting of fungi (fluorescein diacetate (FDA)-staining and Jones-Mollison agar-film technique) and bacteria (acridine orange staining), most probable number determinations of protozoa, esterase activity (total FDA hydrolysis) and respiration. Both biomass estimates and activity measurements showed a highly significant correlation with soil organic matter. Microbial biomass C ranged from 230 to 600 μg C g?1 dry wt soil, as determined by the fumigation technique, while conversions from direct counts gave a range from 380 to 2260 μg C. Mean hyphal diameters and mean bacterial cell volumes decreased with decreasing soil organic matter content.  相似文献   

20.
The effects of organic and mineral fertilization on four soil organic matter (SOM) fractions (non-protected, physically protected, chemically protected, and biochemically protected) and microbial community composition were investigated by sampling soil of a 35-year-long fertilization experiment. The SOM fractions were investigated by combined physical and chemical approaches, while microbial community composition was determined by phospholipid fatty acid analysis (PLFA). Organic C (SOC) was primarily distributed within the microaggregate-protected particulate organic matter (iPOM) and the hydrolysable and non-hydrolysable silt-sized (H-Silt, NH-Silt) fractions, which accounted for 11.6–16.9, 23.4–28.9, and 25.4–30.6% of the total SOC content, respectively. The contributions of these “slow” fractions (iPOM, H-Silt, NH-Silt) to the increased SOC were 178–293, 118–209, and 85–109% higher after long-term sole manure or manure in combination with inorganic N fertilization compared with unfertilized soil (control). The combination of manure and mineral fertilizers increased the coarse and fine non-protected C (cPOM and fPOM) contents much more (34.1–60.7%) than did manure alone. PLFAs, bacteria, G (+) bacteria, and actinomycete abundances were the highest in soil with manure, followed by soil treated with manure combined with mineral N. The addition of inorganic and organic fertilization both altered the microbial community composition compared with the control. All SOM fractions contributed to 81.1% of the variance of the PLFAs-related microbial community composition by direct and indirect effects. The change in coarse unprotected particulate organic matter (cPOM) was the major factor affecting soil microbial community composition (p < 0.001). Our study indicates that physical, chemical, and biochemical protection mechanisms are important in maintaining high SOC level after the addition of manure. A close linkage between soil microbial community composition and cPOM suggests that C availability is an important factor for influencing microbial composition after long-term inorganic and organic fertilization.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号