首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 47 毫秒
1.
Previous studies have shown that Pacific herring populations in the Bering Sea and north-east Pacific Ocean can be grouped based on similar recruitment time series. The scale of these groups suggests large-scale influence on recruitment fluctuations from the environment. Recruitment time series from 14 populations were analysed to determine links to various environmental variables and to develop recruitment forecasting models using a Ricker-type environmentally dependent spawner–recruit model. The environmental variables used for this investigation included monthly time series of the following: southern oscillation index, North Pacific pressure index, sea surface temperatures, air temperatures, coastal upwelling indices, Bering Sea wind, Bering Sea ice cover, and Bering Sea bottom temperatures. Exploratory correlation analysis was used for focusing the time period examined for each environmental variable. Candidate models for forecasting herring recruitment were selected by the ordinary and recent cross-validation prediction errors. Results indicated that forecasting models using air and sea surface temperature data lagged to the year of spawning generally produced the best forecasting models. Multiple environmental variables showed marked improvements in prediction over single-environmental-variable models.  相似文献   

2.
We investigated the hypothesis that synchronous recruitment is due to a shared susceptibility to environmental processes using stock–recruitment residuals for 52 marine fish stocks within three Northeast Pacific large marine ecosystems: the Eastern Bering Sea and Aleutian Islands, Gulf of Alaska, and California Current. There was moderate coherence in exceptionally strong and weak year‐classes and correlations across stocks. Based on evidence of synchrony from these analyses, we used Bayesian hierarchical models to relate recruitment to environmental covariates for groups of stocks that may be similarly influenced by environmental processes based on their life histories. There were consistent relationships among stocks to the covariates, especially within the Gulf of Alaska and California Current. The best Gulf of Alaska model included Northeast Pacific sea surface height as a predictor of recruitment, and was particularly strong for stocks dependent on cross‐shelf transport during the larval phase for recruitment. In the California Current the best‐fit model included San Francisco coastal sea level height as a predictor, with higher recruitment for many stocks corresponding to anomalously high sea level the year before spawning and low sea level the year of spawning. The best Eastern Bering Sea and Aleutian Islands model included several environmental variables as covariates and there was some consistent response across stocks to these variables. Future research may be able to utilize these across‐stock environmental influences, in conjunction with an understanding of ecological processes important across early life history stages, to improve identification of environmental drivers of recruitment.  相似文献   

3.
The protistan parasite Ichthyophonus occurred in populations of Pacific herring Clupea pallasii Valenciennes throughout coastal areas of the NE Pacific, ranging from Puget Sound, WA north to the Gulf of Alaska, AK. Infection prevalence in local Pacific herring stocks varied seasonally and annually, and a general pattern of increasing prevalence with host size and/or age persisted throughout the NE Pacific. An exception to this zoographic pattern occurred among a group of juvenile, age 1+ year Pacific herring from Cordova Harbor, AK in June 2010, which demonstrated an unusually high infection prevalence of 35%. Reasons for this anomaly were hypothesized to involve anthropogenic influences that resulted in locally elevated infection pressures. Interannual declines in infection prevalence from some populations (e.g. Lower Cook Inlet, AK; from 20–32% in 2007 to 0–3% during 2009–13) or from the largest size cohorts of other populations (e.g. Sitka Sound, AK; from 62.5% in 2007 to 19.6% in 2013) were likely a reflection of selective mortality among the infected cohorts. All available information for Ichthyophonus in the NE Pacific, including broad geographic range, low host specificity and presence in archived Pacific herring tissue samples dating to the 1980s, indicate a long‐standing host–pathogen relationship.  相似文献   

4.
Following the 1989 MV Exxon Valdez oil spill (EVOS) and subsequent herring population collapse in Alaska's Prince William Sound (PWS), the Pacific herring (Clupea pallasii) fishery was closed. In the 25 yr since EVOS, herring and several herring‐dependent marine bird species have failed to reach pre‐spill population levels. One hypothesis is that intense predation pressure may be inhibiting herring recovery. To inform herring modeling efforts, this study estimated marine bird consumption of juvenile and adult herring in PWS for 10 winters over an 18‐yr period (1989–90 through 2006–2007). Total estimated herring consumption by wintering marine birds averaged 2409 ± 950 t, indicating that avian consumption represents a substantial and inter‐annually variable source of herring mortality. Common murre (Uria aalge) consumed the greatest portion (16–80%) of herring in all years among marine bird species. Juvenile herring biomass consumed annually by common murre was greater than murre consumption of adult herring biomass. Time lag analyses showed that marine bird consumption of adult herring is negatively correlated with the amount of herring spawn observed in subsequent years, but such effects were not observed more than 2 yr. Our models indicate that during years in which herring recruitment is low or bird populations are particularly large, marine birds can consume up to 10% of the annual adult herring biomass. Our results highlight the importance of herring to wintering PWS birds. We propose that future management of herring stocks seeks to reduce negative impacts on marine birds that prey on herring.  相似文献   

5.
Physical and biological variables affecting juvenile Pacific herring (Clupea pallasi) in Prince William Sound (PWS) from 1995 to 1998 were investigated as part of a multifaceted study of recruitment, the Sound Ecosystem Assessment (SEA) program. Though more herring larvae were retained in eastern PWS bays, ages‐0 and ‐1 herring used bays throughout PWS as nursery areas. Water transported into PWS from the Gulf of Alaska (GOA) contributed oceanic prey species to neritic habitats. Consequently, variations in local food availability resulted in different diets and growth rates of herring among bays. Summer food availability and possible interspecific competition for food in nursery areas affected the autumn nutritional status and juvenile whole body energy content (WBEC), which differed among bays. The WBEC of age‐0 herring in autumn was related to over‐winter survival. The limited amount of food consumption in winter was not sufficient to meet metabolic needs. The smallest age‐0 fish were most at risk of starvation in winter. Autumn WBEC of herring and winter water temperature were used to model over‐winter mortality of age‐0 herring. Differences in feeding and energetics among nursery areas indicated that habitat quality and age‐0 survival were varied among areas and years. These conditions were measured by temperature, zooplankton abundance, size of juvenile herring, diet energy, energy source (GOA vs. neritic zooplankton), WBEC, and within‐bay competition.  相似文献   

6.
Abstract. Viral erythrocytic necrosis (VEN) has been associated with large epizootics and high mortality in Pacific herring, Clupea harengus pallasi (Valenciennes), from two different locations in south-eastern Alaska, USA. Clinical signs of disease included whirling, pale gills, watery colourless blood, discoloured livers, pathog-nomonic magenta erythrocytic inclusion bodies and histopathological changes consistent with other infectious haemolytic anaemias in higher animals. Transmission electron microscopy confirmed the presence of iridovirus-type particles associated with the cytoplasmic erythrocytic inclusion bodies. Other apparently healthy herring of various age classes from four additional areas in south-east Alaska also had clinical signs of VEN suggesting a wide distribution of the virus in Alaskan Pacific herring populations. Evidence regarding the two herring epizootics indicated that osmoregulatory stress may have precipitated mortalities in fish having severe anaemia caused by the VEN virus. This is the first reported occurrence of VEN in Alaska and the first natural epizootic known to be associated with the disease.  相似文献   

7.
In 2003, the Alaska walleye pollock industry reported product quality issues attributed to an unspecified parasite in fish muscle. Using molecular and histological methods, we identified the parasite in Bering Sea pollock as Ichthyophonus. Infected pollock were identified throughout the study area, and prevalence was greater in adults than in juveniles. This study not only provides the first documented report of Ichthyophonus in any fish species captured in the Bering Sea, but also reveals that the parasite has been present in this region for nearly 20 years and is not a recent introduction. Sequence analysis of 18S rDNA from Ichthyophonus in pollock revealed that consensus sequences were identical to published parasite sequences from Pacific herring and Yukon River Chinook salmon. Results from this study suggest potential for Ichthyophonus exposures from infected pollock via two trophic pathways; feeding on whole fish as prey and scavenging on industry‐discharged offal. Considering the notable Ichthyophonus levels in pollock, the low host specificity of the parasite and the role of this host as a central prey item in the Bering Sea, pollock likely serve as a key Ichthyophonus reservoir for other susceptible hosts in the North Pacific.  相似文献   

8.
Hatcheries release >4.5 billion juvenile Pacific salmon (Oncorhynchus spp.) into the North Pacific Ocean annually, raising concerns about competition with wild salmon populations. We used retrospective scale analysis to investigate how the growth of chum salmon (Oketa) from western Alaska is affected by the abundance of chum salmon from Japanese hatcheries and wild pink salmon (Ogorbuscha) from the Russian Far East. Over nearly five decades, the growth of Kuskokwim River chum salmon was negatively correlated with the abundance of Japanese hatchery chum salmon after accounting for the effects of sex and spring/summer sea‐surface temperature in the Bering Sea. An effect of wild eastern Kamchatka pink salmon abundance on the growth of Kuskokwim River salmon was detectable but modest compared to the intraspecific competitive effect. A decrease in Japanese hatchery chum salmon releases in 2011–2013 was not associated with increased growth of Bering Sea chum salmon. However, the abundance of wild chum salmon from the Russian Far East increased during that time, possibly obscuring reduced competition with hatchery chum salmon. Our results support previous evidence that chum salmon are affected by intraspecific competition, and to a lesser extent interspecific competition, in the North Pacific, underscoring that the effects of salmon hatchery production transcend national boundaries.  相似文献   

9.
《Fisheries Research》2007,84(2-3):319-331
Pacific herring (Clupea pallasii) and walleye pollock (Theragra chalcogramma) are important forage species in the North Pacific Ocean, but their seasonal abundance patterns are poorly known. During three consecutive years of monthly acoustic surveys in Lynn Canal, southeastern Alaska, large schools of herring dominated during winter and were present in a 60-km long submarine gully; this gully appears to provide critical winter habitat for herring when their prey are less available and energy expenditure must be reduced. The salient change in pollock distribution is a shift from shallow waters during summer to deeper waters during winter, such that shallow (<40 m) waters are nearly devoid of pollock during winter. The shift presumably occurs in response to the build-up of secondary productivity during summer and predator avoidance during winter. The seasonal changes in herring abundance drove seasonal changes in predator abundance, as Steller sea lions (Eumetopias jubatus) and humpback whales (Megaptera novaeangliae) preyed upon the winter aggregation of herring. Such seasonal links likely serve an important role in structuring trophic relationships in the North Pacific Ocean ecosystem.  相似文献   

10.
In the central and western subarctic Pacific, zooplankton biomass and chlorophyll concentrations during the mid 1960s to mid 1970s were a few times higher than in the preceding and following decades, corresponding to higher values of the atmospheric Northern Hemisphere Zonal Index (NHZI). In the Alaskan Gyre, however, it was reported that biomass of zooplankton and nekton doubled after the atmospheric regime shift in the mid 1970s. In the subtropical North Pacific, chlorophyll a concentration decreased drastically after 1980, although a decrease of zooplankton biomass was clearly seen only in the northern part of the subtropical gyre. Chlorophyll concentration in the central subarctic Pacific and zooplankton biomass in the Oyashio have been decreasing since the early 1980s. Additionally, chlorophyll concentration in the western subarctic Pacific and eastern Bering Sea, and zooplankton biomass in the central subarctic Pacific and eastern Bering Sea have also been decreasing since the late 1980s. In these regime-shift situations, there is a general tendency for intensification of wind speed or de-stratification to cause plankton biomass to decrease in regions where the upper mixed layer is deep, such as the western subarctic and north-western subtropical water, whereas in relatively stratified areas, such as in the eastern subarctic and south-western subtropical water, the effect is an increase of plankton biomass.  相似文献   

11.
Pacific halibut (Hippoglossus stenolepis) are an ecologically, commercially, and culturally important Alaskan groundfish species. Commercial harvest of halibut dates back to the late 19th century and has been managed by the International Pacific Halibut Commission (IPHC) since 1921. IPHC surveys have revealed declining trends in survey biomass in multiple regions and region‐specific declines in mean size‐at‐age (size‐at‐age) over the past two decades (>50% in some areas). Changes in size‐at‐age can arise from a variety of physical, ecological, sampling, and fishery effects, including size‐dependent fishery or predation mortality, alteration in growth from variability in prey quality or quantity, and changes in temperature‐dependent metabolic demands. Here, we develop and apply a bioenergetics model for halibut using survey‐based diet and temperature data for Alaska to evaluate potential environmental drivers of size‐at‐age. In general, juvenile (<40 cm fork length) foraging rates were highest in the Gulf of Alaska concomitant with higher potential growth and elevated basal metabolic demands during warm summer conditions. In contrast, adult (40–120 cm FL) potential growth was highest in the Eastern Bering Sea, potentially reflecting lower metabolic costs and higher rates of prey consumption in that region. We additionally find evidence for interannual variation in potential growth, with a higher frequency of reduced growth potential in the last decade, particularly in the Eastern Bering Sea in 2015 and 2016 for both juvenile and adult halibut. These results suggest the potential for patterns in size‐at‐age to arise from trophic and environmental constraints that collectively limit growth in some regions and years.  相似文献   

12.
Recruitment of age‐0 Pacific bluefin tuna (Thunnus orientalis) from 1952 to 2014 was examined by a sequential regime shift detection method. The regime shifts in recruitment were detected in 1957, 1972, 1980, 1994 and 2009. The durations of regime shift ranged from 8–15 years and averaged 13.0 years. In both the total (1952–2014) and data rich (1980–2014) periods, negative relationships were found between recruitment and the Pacific Decadal Oscillation in autumn, and positive relationships were found between recruitment and sea surface temperature (SST) anomalies in the northern part of the East China Sea, in the southwestern part of the Sea of Japan, and in the waters off Shikoku and Tokai in summer and autumn. The 1994 and 2009 regime shifts in recruitment occurred in the same years as shifts in SST anomalies in the northern part of the East China Sea in summer. These results suggest that the ocean conditions in the northern part of the East China Sea are closely related to recruitment of Pacific bluefin tuna, and that the warmer conditions result in higher recruitment of the species.  相似文献   

13.
More than 1,000 age-identified chum salmon Oncorhynchus keta collected at 23 stations in the Bering Sea and the North Pacific Ocean in June to July 2003 were used to estimate their origin of stocks using a DNA microarray developed for analyzing the mitochondrial (mt)DNA haplotypes. The observed haplotype distribution was nearly the same as that reported previously for fish collected in September 2002 and 2003 in the present surveyed areas. A conditional maximum-likelihood method for estimation of stock compositions indicated that the Japanese stocks mainly distributed in north central Bering Sea, whereas the Russian stocks were mainly in western Bering Sea. The North American stocks were abundant in eastern Bering Sea and around the Aleutian Islands. Such an area-specific stock composition was not significantly different between mature and immature fish. Thus, the combined results of 2 years suggest that the distribution of chum salmon is nonrandom in the surveyed areas in summer and autumn, and that fish of the same origin migrate together to the same area irrespective of age.  相似文献   

14.
Pacific halibut Hippoglossus stenolepis (Schmidt) is presently considered to consist of a single spawning population extending from California through the Bering Sea. However, this satellite tagging investigation suggests that geographic landforms and discontinuities in the continental shelf appear to limit the interchange of mature Pacific halibut among large marine ecosystems and delineate the boundaries of potential spawning components in the Gulf of Alaska and Bering Sea, with smaller components along the Aleutian Islands. The geographic segregation of these spawning components may be reinforced by regional behavioural adaptations and different temperature regimes in each area. These results suggest that the Pacific halibut population may be segregated into somewhat discrete spawning units among which less mixing is likely than that which occurs within them. As such, future stock assessment metrics may be most effective in preserving population function if spawning ecology is treated as a basin‐scale process.  相似文献   

15.
Pacific and Atlantic herring populations (genus Clupea) commonly experience episodic collapse and recovery. Recovery time durations are of great importance for the sustainability of fisheries and ecosystems. We collated information from 64 herring populations to characterize herring fluctuations and determine the time scales at low biomass and at high and low recruitment, and use generalized linear models and Random Survival Forests to identify the most important bottom‐up, top‐down and intrinsic factors influencing recovery times. Compared to non‐forage fish taxa, herring decline to lower minima, recover to higher maxima and show larger changes in biomass, implying herring are more prone to booms and busts than non‐forage fish species. Large year classes are more common in herring, but occur infrequently and are uncorrelated among regionally grouped stocks, implying local drivers of high recruitment. Management differs between Pacific and Atlantic herring fisheries, where at similarly low biomass, Pacific fisheries tend to be closed while Atlantic fisheries remain open. This difference had no apparent effect on herring recovery times, which averaged 11 years, although most stocks with longer recovery periods had not yet recovered at the end of the observation period. Biomass recovery is best explained by median recruitment and variability in sea surface height anomalies and sea surface temperatures—higher variability leads to shorter recovery times. In addition, the duration of recruitment failure is closely linked with low biomass. While recovery times rely on the nature of the relationship between spawning biomass and recruitment, they are still largely governed by complex and uncertain processes.  相似文献   

16.
A qualitative understanding of the long‐term variation in the population dynamics of Yellow Sea (YS) herring is particularly important for clarifying the evolutionary processes and driving mechanisms of the YS large marine ecosystem. Unfortunately, because of a lack of long‐term, continuous, and simultaneous monitoring data, the specific driving processes and mechanisms of climate effects on the population dynamics of YS herring remain largely unknown. In response to this scientific issue, we preliminarily propose the idea of reconstructing long‐term changes in YS herring abundance over the past 590 years (AD 1417–2004) based on historical documents and attempt to explore the impacts of climate on the population. Our results show that YS herring abundance maintained at a relatively high level from AD 1417 to 1870 (during the Little Ice Age); in contrast, the population declined significantly from AD 1870 to 2004 at different rates. In addition, we also found that there were strong relationships between the population abundance of YS herring and the Pacific decadal oscillation (PDO) and drought/flood cycles. We suggest that the fluctuations in YS herring abundance may be influenced by ocean–climatic circulation shifts throughout the North Pacific, especially the PDO.  相似文献   

17.
Interannual, decadal and interdecadal variations in summer plankton biomass during 1954–1994 in the whole subarctic Pacific and Bering Sea were compared among regions as well as with climatic and oceanographic conditions. The zooplankton biomass and chlorophyll concentration during the mid 1960s to early 1970s in the central and western subarctic Pacific were a few times higher than those in the preceding and following decades. The values in the eastern Bering Sea and eastern subarctic Pacific also increased in the mid 1960s, but remained at an elevated level until the end of the 1980s. These decades of higher and mid plankton biomass levels during the mid 1960s to early 1970s and mid 1970s to late 1980s correspond to the period of positive and negative values of the Northern Hemisphere zonal index (NHZI), respectively. In the decadal scale, one can see a significant positive correlation between the summer plankton biomass and the wind speed during winters in the eastern Bering Sea. The effect of grazing by biennially fluctuating Asian pink salmon on zooplankton biomass and its effect on chlorophyll concentration in the central subarctic Pacific is also significant.  相似文献   

18.
西北太平洋鸢乌贼种群遗传结构   总被引:3,自引:1,他引:3  
为检测西北太平洋鸢乌贼种群遗传结构,采用线粒体DNA细胞色素b基因(Cytb)序列分析方法对鸢乌贼东海群体、南海群体与菲律宾海群体进行遗传变异分析。结果显示,(1)所有群体总的单倍型多样度与核苷酸多样度分别为0.982±0.006、0.012±0.006;菲律宾海群体对应的遗传多样度均最高,分别为0.973±0.014、0.015±0.008;南海群体与东海群体的单倍型多样度分别为0.959±0.026、0.943±0.031,核苷酸多样度均为0.006±0.003。3个地理群体均具有较高的遗传多样性水平。(2)分子方差分析结果显示,34.6%的遗传变异来自于群体间,群体间遗传分化极显著。两两群体间Fst分析表明,西北太平洋鸢乌贼群体间均具有极显著的遗传分化。构建的单倍型邻接系统树和最小跨度树显示,西北太平洋鸢乌贼群体存在明显的系统发育谱系结构(谱系A、B、C),3个谱系单倍型类群间也存在极显著的遗传分化(Fst=0.735~0.805)。(3)中性检验和核苷酸不配对分析结果均表明,谱系B可能经历过近期群体扩张事件,发生群体扩张的时间在10.3~12.5万年前。综合分析认为,西北太平洋鸢乌贼的种群遗传结构模式及系统发育地理格局模式是由其栖息地海洋环境与更新世气候变化共同塑造的。建议在渔业管理上将3个地理群体划分为3个独立的管理单元。  相似文献   

19.
Eight temperature-recording data storage tags were recovered from three salmonids in Alaska (pink and coho salmon and steelhead trout) and five chum salmon in Japan after 21–117 days, containing the first long-term records of ambient temperature from Pacific salmonids migrating at sea. Temperature data imply diel patterns of descents to deeper, cooler water and ascents to the surface. Fish were found at higher average temperatures at night, with narrower temperature ranges and fewer descents than during the day. Fish tagged in the Gulf of Alaska were at higher temperatures on average (10–12°C) than chum salmon tagged in the Bering Sea (8–10°C). Chum salmon were also found at a wider range of temperatures (−1–22°C vs 5–15°C). This is probably related both to the different oceanographic regions through which the fish migrated, as well as species differences in thermal range and vertical movements. Proportions of time that individual fish spent at different temperatures seemed to vary among oceanographic regions. Steelhead trout may descend to moderate depths (50 m) and not be limited to the top few metres, as had been believed. Japanese chum salmon may seek deep, cold waters as they encounter warm surface temperatures on their homeward migrations. Temperature data from all fish showed an initial period (4–21 days) of day and night temperatures near those of sea surface temperatures, suggesting a period of recuperation from tagging trauma. A period of tagging recuperation suggests that vertical movement data from short-term ultrasonic telemetry studies may not represent normal behaviour of fish. The considerable diurnal and shorter-term variation in ambient temperatures suggests that offshore ocean distribution may be linked more to prey distribution and foraging than to sea surface temperatures.  相似文献   

20.
The importance of interspecific competition as a mechanism regulating population abundance in offshore marine communities is largely unknown. We evaluated offshore competition between Asian pink salmon and Bristol Bay (Alaska) sockeye salmon, which intermingle in the North Pacific Ocean and Bering Sea, using the unique biennial abundance cycle of Asian pink salmon from 1955 to 2000. Sockeye salmon growth during the second and third growing seasons at sea, as determined by scale measurements, declined significantly in odd‐numbered years, corresponding to years when Asian pink salmon are most abundant. Bristol Bay sockeye salmon do not interact with Asian pink salmon during their first summer and fall seasons and no difference in first year scale growth was detected. The interaction with odd‐year pink salmon led to significantly smaller size at age of adult sockeye salmon, especially among younger female salmon. Examination of sockeye salmon smolt to adult survival rates during 1977–97 indicated that smolts entering the ocean during even‐numbered years and interacting with abundant odd‐year pink salmon during the following year experienced 26% (age‐2 smolt) to 45% (age‐1 smolt) lower survival compared with smolts migrating during odd‐numbered years. Adult sockeye salmon returning to Bristol Bay from even‐year smolt migrations were 22% less abundant (reduced by 5.9 million fish per year) compared with returns from odd‐year migrations. The greatest reduction in adult returns occurred among adults spending 2 compared with 3 years at sea. Our new evidence for interspecific competition highlights the need for multispecies, international management of salmon production, including salmon released from hatcheries into the ocean.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号