首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 358 毫秒
1.
[目的]了解海南橡胶园砖红壤的光谱反射特性,为海南胶园土壤分类提供光谱特征的分类指标.[方法]采用ASD Field Spec3高光谱仪采集土壤光谱反射率,对土壤样品进行室内分析,并在此基础上利用经典统计学方法对海南胶园砖红壤光谱反射特性进行分析.[结果]海南橡胶园不同母质发育的砖红壤反射率光谱曲线走势相似,除加来农场只在1900 nm附近出现微弱水分吸收谷外,其余在1400、1900和2200nm附近光谱曲线均出现明显的吸收谷.但不同土壤类型,光谱反射率强度不同且一些特征吸收带出现的位置和表现的相对强度也不同;胶园土壤中有机质和铁离子的含量共同影响着同种母质发育的不同土壤类型的光谱特征,海南土壤中普遍富含铁而有机质含量少,一般铁对光谱的贡献要大于有机质;不同母质发育的砖红壤光谱特征有很大差异,玄武岩发育成的砖红壤光谱特征最特别,反射率始终最小,且只在1900nm附近出现微弱水分吸收谷,土壤类型最易鉴别;通过对光谱聚类分析对橡胶园砖红壤进行简单的分类,结果显示所得分类土壤之间光谱反射率存在显著差异(P<0.05).[结论]不同类型土壤的反射光谱曲线存在一定的规律性,且随着土壤母质、土壤中的有机质含量及铁离子含量的不同而表现一定的光谱特征差异,因此土壤反射光谱可作为土壤分类的一个指标.  相似文献   

2.
基于高光谱的土壤有机质含量预测模型的建立与评价   总被引:17,自引:1,他引:17  
 【目的】土壤有机质含量是反映土壤肥力的重要特征,利用高光谱技术对有机质(OM)含量进行定量化反演为土壤信息化管理和资源评价提供了重要的依据。【方法】利用ASD2500高光谱仪在室内条件下测定了风干土壤样品的可见—近红外光谱,分析了不同区域范围土壤光谱反射率曲线形状变化和土壤有机质含量的变化特点,并针对东北地区以黑土为主的土样光谱反射率不同变换形式与有机质含量进行了相关性分析。【结果】结果表明,有机质含量较高的黑土的光谱曲线与其它土壤类型的光谱曲线在形状上有很大差异,即在600~900 nm附近,以黑龙江土样为代表的东北黑土表现为直缓上升,而河南和山东的潮土则表现为曲陡上升。相关分析结果表明,土壤有机质含量与原始光谱反射率在545~830 nm呈显著负相关,其中在580~738 nm波段范围内达到极显著负相关。与一阶导数光谱相关性进一步增强,在481~598 nm呈现极显著负相关,而在816~932 nm和1 039~1 415 nm波段范围内具有极显著的正相关性。土壤有机质含量与部分波段处的吸收深度和反射峰高度也表现为不同程度的相关性。【结论】利用570~590 nm波段的一阶导数光谱和1 280 nm处反射峰高度P_Depth1280可以较好地预测东北主要土壤类型有机质含量。在此基础上建立了土壤有机质含量的高光谱反演模型并进行了验证。  相似文献   

3.
为明确土壤反射光谱特征的主要影响因素、避免非相关土壤理化参数的反射光谱模型,以单一土壤类型黑土为研究对象,利用数理统计与因子分析方法分析影响黑土反射光谱特征的主要土壤理化参数。结果表明:1)土壤理化参数与黑土高光谱反射率的相关系数随波长变化呈4种模式,分别为有机质控制型、水分控制型、正相关型和不相关型,有机质与水分是黑土反射光谱特征的主导因素;2)黑土高光谱反射率的4个主要公因子分别对应水分响应波段(2210 nm)、可见光有机质响应波段(485 nm)、光谱曲线快速上升阶段(1290 nm)和可见光范围噪声较多波段(360 nm);3)有机质、pH、全氮、全磷可以利用黑土反射光谱特征进行预测。  相似文献   

4.
为了探寻快速、准确估测土壤有机质含量的方法以推动精准农业化进程,以北疆绿洲农田灰漠土为研究对象,通过野外实地调查收集土壤样品,室内化学分析测得土壤样品有机质含量,暗室内利用SVC HR-768高光谱仪测定土壤样品光谱反射率。通过对土壤光谱反射率进行倒数、对数、一阶微分、倒数的一阶微分、对数的一阶微分变换,运用单相关分析法提取土壤光谱特征波段,采用多元逐步方法对土壤有机质含量定量反演,分析研究土壤有机质含量和室内土壤光谱的特征关系。结果表明,在波长567、1 697 nm和2 221 nm处,采用反射率对数的一阶微分建立的土壤有机质含量反演模型预测精度最高,模型决定系数达到0.82。北疆绿洲农田灰漠土土壤有机质含量高光谱反演模型的建立为土壤有机质的快速测定提供了新的途径。  相似文献   

5.
针对西北地区典型土壤类型黑垆土和栗钙土光谱特征的分析,利用ASD手扶式光谱辐射仪对21个不同环境条件下形成的土壤样本剖面的各个土层进行光谱测量,得到各土层的反射光谱曲线,并结合各层的有机质含量、氧化铁含量进行相关性分析与回归分析。发现在可见光和近红外波段,有机质对土壤反射率影响最大,呈负相关。氧化铁在900 nm左右处与反射率负相关性最强。黑垆土和栗钙土的有机质和氧化铁含量差异较大,导致其光谱特征差异明显,但在特征波段具有一致趋势。  相似文献   

6.
以博斯腾湖西岸湖滨带为研究区,利用ASD Field Spec 3便携式光谱仪对土壤样品反射率进行测量,结合土壤盐分数据,建立研究区土壤含盐量估算模型,探讨土壤盐分含量和反射率曲线之间关系。结果表明:研究区土壤盐分类型以硫酸盐为主;土壤样品光谱曲线形态特征相似,且基本平行,土壤光谱曲线在400~1 500、1 900~2 100和2 100~2 300nm区域出现明显的吸收带;在350~1 350、1 430~1 750和1 950~2 400nm区域土壤光谱反射率与土壤盐分含量相关系数较其他波段大,曲线平缓,相关系数均值为-0.35,且光谱反射率的一、二阶导数微分均可以增强反射率与土壤盐分含量之间的相关性;由土壤光谱发射率一阶导数微分建立的多元回归模型可以较好地预测土壤盐分含量,相关系数为0.90,均方根误差为0.22。  相似文献   

7.
以兴国县稻田土高光谱反射率为研究对象,对比分析了同一种光谱反射率变换形式下土壤全钾、速效钾与高光谱反射率的相关性,提取了全钾和速效钾的高光谱敏感波段,建立了基于反射光谱特征的南方丘陵稻田土全钾、速效钾高光谱反演模型.经分析可知,在355~620 nm波段,土壤全钾、速效钾含量与光谱反射率相关性同增同减,而在621~2 250 nm波段内,土壤全钾含量与光谱反射率相关性要大于土壤速效钾;通过分析兴国县稻田土全钾、速效钾含量与光谱反射率18种数学变换的相关系数,提取全钾的敏感波段为602、804 nm,速效钾的敏感波段为602、1 058、1 638、2 214 nm;采用偏最小二乘回归,利用高光谱指数构建的反演模型能较好地预测全钾、速效钾含量,模型建模的相关系数和验证系数都较高,基于速效钾含量建立的南方丘陵稻田土高光谱反演模型预测能力较好.  相似文献   

8.
【目的】建立基于可见-近红外光谱的土壤游离铁精确预测模型,简单、快速、经济地预测土壤游离铁,有助于研究土壤发生和分类。【方法】采集广西壮族自治区的铁铝土、富铁土、淋溶土和雏形土等82个旱地土壤剖面的B层土壤,进行室内土壤化学分析、光谱测定,分析不同光谱变换后的光谱反射率与土壤游离铁含量的相关性。基于特征波段利用偏最小二乘回归(PLSR)和逐步多元线性回归(SMLR)法建立土壤游离铁含量光谱预测模型,通过决定系数(R2)、均方根误差(RMSE)和相对预测偏差(PRD)确定最优模型。【结果】土壤光谱曲线分别在457、800和900 nm波段附近有明显的游离铁吸收和反射峰特征;土壤游离铁含量与原始光谱反射率呈负相关;原始光谱经过微分变换后,游离铁含量与光谱反射率相关性显著提高;基于400~580和760~1 300 nm特征波段和一阶微分光谱变换的SMLR模型预测精度最高,其验证集的R2和RPD分别为0.85和2.62,RMSE为8.41 g·kg~(-1)。【结论】将可见近红外光谱技术应用于土壤游离铁含量高效快速地预测具有良好的可行性。广西旱地土壤光谱反射率与土壤游离铁含量具有高度的相关性,应用逐步多元线性回归方法可以很好地建立土壤游离铁含量反演模型。  相似文献   

9.
[目的]揭示土壤水分对土壤光谱的影响机理,并为其他土壤参数的遥感监测提供理论支持。[方法]以新疆塔里木盆地北缘渭干河—库车河三角洲野外光谱反射数据为研究对象,运用光谱分析法研究土壤水分光谱特征及土壤水分特征波段。[结果]波长740、1 768、1 962、1 450、2 216 nm是土壤水分的吸收带。[结论]土壤光谱反射率比变化主要依赖于土壤含水量状况和波长。在波长较短的部分,土壤反射率随土壤水分变化迅速,而对于波长较长的部分,水分的吸收起显著的作用,反射率变化缓慢。  相似文献   

10.
土壤水与有机质对高光谱的作用及交互作用规律   总被引:3,自引:0,他引:3  
【目的】定量揭示土壤水分与有机质对高光谱的作用规律,为提高土壤水分、有机质的光谱估测精度提供基础。【方法】以山东省泰安市岱岳区90个棕壤土样为研究对象,进行室外光谱采集、室内土壤水分和有机质测定,运用Savitzky-Golay filter对光谱曲线进行平滑去噪预处理。根据含水量、有机质含量的高低将土壤样本分为9组,运用比较法对9组原始光谱数据进行分析,初步探究土壤水、有机质对光谱的作用规律。然后采用相关分析法,分析水、有机质与土壤原始光谱反射率(raw spectral reflectance,R)、光谱一阶微分变换(first order differential reflectance,D(R))以及分组光谱的相关性。在假定其他影响因素基本相同的条件下,利用有交互作用的双因素方差分析法,定量分析水、有机质对土壤光谱反射率、光谱一阶微分的作用程度及其交互作用。根据土壤水与有机质的交互作用规律,按相关系数较大而交互作用小的原则选取特征因子,采取偏最小二乘回归模型建立土壤有机质含量的高光谱估测模型,分析依据两者交互作用规律选取的因子对提高光谱估测模型精度的有效性。【结果】在田间持水量范围内,水对土壤光谱反射率影响起主要作用;水与有机质对土壤光谱客观存在交互作用,当土壤含水量小于10%时,600—1 800 nm的原始光谱能较好反映有机质的作用,而当土壤含水量大于15%时,有机质的作用几乎被水的作用所掩盖。水、有机质对土壤原始光谱的作用及其交互作用分别在360—1 800,410—1 800,509—1 800 nm达到显著水平,且三者均在1 951—2 450 nm达到显著水平(α=0.05);对土壤光谱的作用程度由大到小依次为:水、有机质、交互作用;在425—1 800 nm水对土壤光谱的作用大约是有机质的5—8倍,在1 950—2 300 nm为8—12倍;在350—2 500 nm有机质对土壤光谱的作用大约是水与有机质交互作用的2倍。光谱经一阶微分变换之后,在450—530、600—790、1 019—1 027、2 000—2 020以及2 045—2 075 nm土壤水的作用增强,而在其他波段处减弱;土壤有机质的作用在471—824、851—949、967—1 140、1 172—1 340、1 379—1 428、1 450—1 770、1 953—2 122、2 174—2 199以及2 271—2 342 nm处得到增强,而在其他波段处减弱。水与有机质的交互作用也在不同波段处有所变化,但相对于土壤水与有机质的作用变化幅度而言是相对减弱的。基于土壤水与有机质的交互作用规律选取的特征因子,所建立的土壤有机质高光谱估测模型精度有所提高,其中16个检验样本的决定系数R2由不考虑交互作用的0.6764提高到0.7934。【结论】研究表明,在反演土壤含水量时,可以不考虑有机质对光谱的影响;而在反演有机质含量时,必须要剔除水对反射率的影响,还要考虑水与有机质对光谱的交互作用。考虑水与有机质对土壤光谱的交互作用,可有效提高土壤有机质的光谱估测精度。  相似文献   

11.
针对滇中乔木植被光谱研究较少问题,运用高光谱遥感技术提取分析植被的特征波段,补充滇中乔木光谱,以期能为遥感识别分类植被、监测乔木长势,以及植被反演等提供科学依据。利用SOC710VP地物光谱仪,对滇中的侧柏(Platycladus orientalis)、樟木(Cinnamomum longepaniculatum)、柳杉(Cryptomeria fortunei)3种植被进行反射光谱测定,分析3种植被的叶片光谱特征差异,使用光谱一阶导数和连续统去除处理其原始光谱。原始反射率曲线表明,400~420 nm柳杉的曲线呈下降趋势,区别于樟木和侧柏;侧柏、樟木、柳杉的反射率在700~760 nm存在显著差异。红边波段光谱一阶导数凸显了3种乔木植被特有的波峰波谷特征,侧柏的峰谷特征尤其突出,识别度更大。连续统去除变换能够突出3种乔木植被在可见光波段的吸收和反射特征差异,樟木和柳杉的连续统去除值在440~760、950~1 000 nm存在较大差异。通过比较3种植被的原始光谱特性和反射率,可以从一定程度上把3种植被区分开。光谱一阶导数和连续统去除变换可以突出3种植被原始光谱特征之外的特征,增加识别分类3种植被的特征波段,区分识别3种植被的效果更显著。  相似文献   

12.
干旱胁迫下马蹄金草坪反射光谱研究*   总被引:1,自引:0,他引:1  
 通过在不同灌水处理下马蹄金草坪干旱胁迫试验,对草坪反射光谱的变化及所对应的叶片相对含水量、叶绿素含量以及草坪外观变化进行测定。结果表明:不同灌水处理下马蹄金草坪反射光谱在可见光波段呈规律性变化。随着干旱胁迫程度的加重,其光谱反射率随土壤含水量逐渐降低而依次升高,在波峰(556 nm)和波谷(679 nm)处尤为明显,蓝光(400~475 nm)和红光(580~700 nm)范围的反射光谱增加,与叶绿素含量呈正相关。在同一灌水处理中,草坪可见光范围反射光谱随干旱的加剧而增加,且与马蹄金植株叶片相对含水量呈显著负相关,与草坪叶绿素含量则呈正相关,且叶片相对含水量与反射光谱的相关性高于叶绿素含量与反射光谱的相关性,它们之间的关系可以用直线回归方程来表示。  相似文献   

13.
白菜苗期对不同硫处理的光谱反应   总被引:1,自引:0,他引:1  
本文以盆栽试验的方法,通过对不同土壤硫处理情况下的白菜苗期光谱曲线及其生长状况、叶绿素含量和体内营养元素含量的对应分析,结果表明:不同硫处理情况下,白菜苗期的反射光谱曲线在形状上基本相同,绿峰出现在560nm处、红端位于720nm处、近红外平台出现在780~924nm。不同土壤硫处理情况下没有“红移”和“蓝移”现象;反射光谱曲线对白菜苗期的植株生长状况的敏感有四处,可见光区为500nm和690nm,近红处区在1900nm处,2400nm波长以后,对植株含水量的敏感性增强;不同的叶绿素含量表示方法在光谱相关曲线上的反映完全不同,其中光波反射值对单位叶面积上的总叶绿素含量、叶绿素A含量和叶绿素B含量敏感点在“绿峰”和“红端”两处,而光波反射值对干基表示的总叶绿素含量、叶绿素A含量和叶绿素B含量敏感区域地2400nm以后;植株反射光谱对白菜苗期植株体内不同营养元素种类和含量均有不同的反映,根据不同营养元素的光谱相关曲线,可将白菜苗期植株体内营养元素分为三类,一类是Ca、K、Cu、Fe和N,另一类是P、Mg和Mn,Zn元素的光谱相关曲线最为特别;白菜苗期植株性状值相关性高的性状,在光谱相关曲线中最接近。  相似文献   

14.
闪旭  刘志辉  张波 《安徽农业科学》2014,(3):853-855,887
用野外光谱仪测量了融雪期天山北坡军塘湖流域典型实验场的不同积雪及雪被地物的光谱,并对测得的光谱数据进行分析,结果表明,对于纯积雪光谱,在可见光波段有较高反射率,近红外波段范围内在1 100、1 300及2 260 nm附近出现反射波峰。与新雪相比,融化的积雪的反射率峰值在可见光波段和近红外波段内(2 100~2 400 nm)有明显的衰退,而雪被地物(包括覆有积雪的植被和有积雪背景的植被、土壤等)反射曲线均相对较低。对积雪/植被的混合像元光谱特征分析表明,雪被地物的光谱反射率曲线在可见光波段呈上升趋势,这是由于积雪背景的影响。最后,根据积雪、植被、土壤和积雪/植被混合像元的光谱特征建立混合光谱拟合方程,结果表明,模拟的光谱曲线与实测值有很好的相关性,其相关系数为0.927 6。  相似文献   

15.
黄土高原煤矿区复垦农田土壤有机质含量的高光谱预测   总被引:6,自引:0,他引:6  
南锋  朱洪芬  毕如田 《中国农业科学》2016,49(11):2126-2135
【目的】针对黄土高原丘陵地多、地形复杂、有机质含量低、采样困难以及因采煤活动引起大面积土地损毁等问题,在土地复垦与综合整治过程中,为快速定量监测与评估复垦农田土壤质量提供一种新的方法。【方法】以山西省襄垣县复垦农田土壤为研究对象,选取由北向南土地损毁中间条带状区域采集样品152个,进行室内土壤农化分析、光谱测定,运用ParLes 3.1软件对光谱曲线进行多元散射校正(multipication scatter correction,MSC)、基线偏移(baseline offset correction,BOC)和Savitzky-Golay filter平滑去噪预处理。对土壤原始光谱反射率(raw spectral reflectance,R)作一阶微分(first order differential reflectance,D(R))和倒数的对数变换(inverse-lg reflectance ,lg(1/R)),分析3种不同变换形式的光谱数据与土壤有机质含量的相关性,相关系数通过P=0.01水平显著性检验来确定显著性波段的范围。基于全波段(400-2400 nm)和显著性波段利用偏最小二乘回归(partial least squares regression,PLSR)分析方法建立该区域土壤有机质含量高光谱预测模型,通过模型精度评价指标:决定系数(coefficient of determination,R2)、均方根误差(root mean square error,RMSE)和相对预测偏差(residual prediction deviation,PRD)确定最优模型。【结果】通过P=0.01水平显著性检验的波段范围为:R的400-1 800、1880-2 400 nm;D(R)的420-790、1 020-1 040、2 150-2 200 nm;lg(1/R)的400-1 830、1 860-2 400 nm。光谱与有机质含量的相关系数绝对值最大的波段是R的800 nm;D(R)的600 nm;lg(1/R)的760 nm。进行D(R)变换,光谱曲线的吸收特征更加明显,相关系数在可见光(400-800 nm)波段范围内有所增加,其最大值由0.72提高到了0.82;基于显著性波段的PLSR建模效果优于全波段,其中lg(1/R)变换的预测精度为最佳,具有很好的预测能力,其校正模型的R2和RMSE分别为0.95、7.64,预测模型的R2、RMSE和RPD分别为0.85、3.00、2.56;基于全波段的R-PLSR和lg(1/R)-PLSR模型具有较好的预测能力,其预测模型的R2、RMSE和RPD分别为0.79、3.64、2.10和0.79、3.53、2.17,而D(R)-PLSR模型只能进行粗略估测,其预测模型的R2、RMSE和RPD分别为0.61、5.43、1.41。综合分析全波段和显著性波段3种光谱数据的预测精度,发现基于显著性波段的R-PLSR、D(R)-PLSR、lg(1/R)-PLSR模型均取得了显著的预测效果。【结论】研究区土壤光谱反射率与土壤有机质含量具有高度的相关性,应用偏最小二乘回归分析方法可以很好地建立土壤有机质含量反演模型。  相似文献   

16.
农田不同粒级土壤含水量光谱特征及定量预测   总被引:3,自引:1,他引:2  
【目的】土壤含水量是土壤属性的关键参数。摸清不同机械组成条件下土壤水分的光谱变化并实现土壤含水量的定量预测,为农田水分的快速监测及土壤其他属性的定量获取提供依据。【方法】通过人为控制获得不同粒级和不同含水量的土壤样品,确定室内土壤光谱测定的几何条件,采集不同土样的光谱特征并进行比较,按粒径等级利用最小二乘法(PLSR)建立农田土壤含水量的光谱定量预测模型。【结果】土壤光谱反射率总体趋势是随含水量增加而降低,其差异随着波长的增加和含水量的降低而增加,在1 400 nm和1 900 nm的水分敏感波段随含水量增加光谱吸收深度也增加。但当含水量大于40%时,通过孔径为0.15 mm 筛子的土壤样品(处理D-1),在350-1 240 nm光谱反射率随含水量增加而升高,而1 240 nm以后随含水量增加而降低。相对于将所有样本数据混合建立模型,分粒级建立的模型在细颗粒土壤中预测效果得到了明显改善,并且样品越细模型在预测效果和稳定性也越好:最优模型均方根误差RMSE=4.13%,决定系数R2=0.90。同时,数据归一化处理后所建立的模型在一定程度上降低了噪声的影响,从而在预测效果和稳定性上也有所改善。【结论】土壤光谱随含水量的变化而变化,但并不都表现随含水量增加光谱反射率降低的特点,当含水量大于40%时,细颗粒土壤样本表现为在350-1 240 nm波段光谱反射率随含水量增加而升高;土壤含水量预测模型的精度和稳定性随着土壤粒径变小、样本量增大以及光谱数据归一化预处理而得到改善。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号