首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 156 毫秒
1.
纯电动拖拉机与传统燃油拖拉机性能对比分析   总被引:2,自引:0,他引:2  
针对传统燃油拖拉机排放差、变速箱挡位多及底盘布置柔性化差等问题,基于某型传统燃油拖拉机提出了一种纯电动拖拉机动力系统驱动方案。分别在CI=700的麦茬地、CI=900的麦茬地、柏油路和土路4种典型作业路面,充分考虑滑转率、牵引效率的影响,借助Mat Lab软件预测了两种拖拉机作业性能。结果表明:新设计的纯电动拖拉机作业速度曲线、牵引功率曲线基本能够覆盖传统燃油拖拉机,作业性能更优。这说明,所设计的纯电动拖拉机传递方案可行,且结构简单、挡位少、底盘布置柔性化,具备传统燃油拖拉机的作业能力。  相似文献   

2.
纯电动拖拉机动力系统设计及性能分析   总被引:2,自引:0,他引:2  
针对传统燃油拖拉机油耗高、污染大、变速器结构复杂、底盘布置柔性化差等缺点,提出一种纯电动拖拉机动力系统传递方案。基于东方红—200P型拖拉机,通过理论计算对牵引电动机、变速器、动力电池组等主要部件完成选型,并在充分考虑滑转率影响下分析了选型后纯电动拖拉机作业性能。结果表明,所设计纯电动拖拉机能够实现犁耕、运输等多种作业工况,在整个驱动力范围内,滑转率控制在0.028~0.122之间,处于理想范围,犁耕作业速度在6km/h时的作业时间为5.7h,满足设计要求。  相似文献   

3.
作为解决能源短缺和环境污染的主要措施,电动车辆发展得到世界各国广泛认同。与电动汽车相比,电动拖拉机发展较为缓慢,随着相关基础研究的不断进步,电动拖拉机经过电网供电第一发展阶段,已经进入车载电源供电第二发展阶段。通过筛选第二发展阶段相关研究成果,从整机结构设计及其性能分析、电池及能量管理、电机驱动及其控制、系统仿真技术和其他相关研究等五个方面总结中国电动拖拉机研究进展。电动拖拉机整机结构不必完全遵循拖拉机传统方式,应以适应农业作业环境为导向,提升作业性能为要求为方向。加快第二代动力锂电池在电动拖拉机中的应用,设计符合农业工况的拖拉机用电池能量管理系统。紧密联系电机研发厂商,开发适合农用的电机及其驱动和控制技术。进一步探索电动拖拉机系统仿真技术,以加快电动拖拉机开发速度。要以第三代智能控制理论为发展方向,全面提升电动拖拉机的智能化作业能力和使用性能,实现我国农业机械的跨越式发展。  相似文献   

4.
电动拖拉机发展及其关键技术   总被引:1,自引:0,他引:1  
回顾了电动拖拉机近100多年的发展历史,可以看出,上世纪70年代以前的电动拖拉机基本上由电网提供电源,其作业范围受到限制,自上世纪70年代以来,电动拖拉机得到快速发展,动力源发展为车载动力电池,且电池性能不断提高,但在续驶里程、作业时间等方面与实际的要求还有不小的差距,电动拖拉机的应用范围还非常有限。进一步分析了影响电动拖拉机发展的关键技术:电池及能量管理技术、电机及其控制技术和用于开发设计电动拖拉机的系统仿真技术,以及这些技术的目前发展状况,以期为我国电动拖拉机的研究与开发提供借鉴。  相似文献   

5.
《山东农机》2012,(6):61-62
近日,中国一拖将与美国通用电气合作。实现电动拖拉机关键技术的突破。 经过1年多的接洽,2012年5月4日,中国一拖与美国通用公司正式签订电动拖拉机项目合作协议。该项目中,中国一拖和通用电气公司将发挥各自优势合作开发电动拖拉机,即中国一拖发挥其在制造拖拉机方面的优势.通用电气公司在电器(电机、电控、电池等)系统集成和系统优化、电动拖拉机系统仿真、控制策略方面提供技术支持,共同搭建电动拖拉机原型机。  相似文献   

6.
针对缺乏适宜温室大棚作业的小功率电动拖拉机的问题,本文设计了一台10 kW增程式电动履带拖拉机,完成了工况分析、电驱系统设计和试验。针对行走、旋耕、开沟工况进行了性能测试,试验结果表明所设计的增程式电动拖拉机能够实现传统燃油履带式拖拉机所具备的功能。测试结果表明,速度4.8 km/h行走工况电动机消耗功率约为3.2 kW,速度2 km/h旋耕作业工况电机消耗功率约为3.75 kW,速度2 km/h开沟工况电机消耗功率约为3.3 kW。当前电池配置下,可以支持行走工作2.2 h,旋耕工作1.9 h和开沟工作2.1 h,纯电模式基本满足小规模温室大棚零排放作业需求。需要持续大负载工作时,增程式电动拖拉机可以启动增程器与电池协同供电以实现持续工作。  相似文献   

7.
针对目前电动拖拉机底盘布置研究相对较少的情况,基于现有的整机匹配结果进行了底盘布置设计,利用三维建模软件建立模型,输入质量参数,提取整机主要零部件重心位置参数,然后通过分析拖拉机牵引机组作业时的力学特性,建立相关数学模型。以电动拖拉机的牵引效率和整机质量作为优化目标,采用NSGA-Ⅱ算法进行多目标优化。综合考虑了犁耕作业下拖拉机的稳定性要求、驱动力要求、载荷波动情况以及传动系和行走系零件寿命等影响因素,制定了算法运行的约束条件,建立了约束方程组。以电动拖拉机的使用重力、前后电池组的质心和整机质心为目标变量,推导出动力性和经济性最优的目标函数。通过ModeFRONTIER平台,采用NSGA-Ⅱ算法对电池分布式方案进行了多目标优化。两种不同耕深条件下的优化结果对比分析表明,按照本文方式优化布置后的电动拖拉机在耕深为180mm时,优化后的整体质量与经验法相比减少了14.3%,配重质量为25.3kg;耕深为240mm时,优化后的整体质量与经验法相比减少了10.3%,配重质量仅为4.4kg,说明在牵引工况下无需额外增加配重就能达到良好的牵引性能。与经验法相比,两种耕深条件下拖拉机的配重都小很多,说明基于传统拖拉机的配重经验法计算并不适用于电动拖拉机,同时也能说明,电动拖拉机因自身总质量超过同功率段传统拖拉机,可以通过合理设计底盘布置方案,在没有配重的情况下达到理想的牵引效率。优化后的电动拖拉机底盘布置方案,在作业工况下驱动轮滑转率小于特征滑转率,整机牵引效率明显提高。  相似文献   

8.
针对传统燃油农用车辆在环保、动力等性能方面存在的不足,研制一种新型电动四轮农用车辆,对样机进行牵引性能测试。针对作业和行驶工况,提出后轮电机中央驱动、前轮轮毂电机独立驱动的新型电动四驱动力系统方案,对整机牵引动力学进行分析,并进行牵引性能实车试验和经济性分析。研究表明,新型电动四轮农用车具有较好的牵引性能和经济性:牵引性能方面,后轮驱动的最大牵引力为1 925 N,最大牵引效率为74%;经济性方面,中耕作业单位面积能量消耗降至传统燃油拖拉机的42.4%,单位面积成本费用降至传统燃油拖拉机的80.1%。该机适应温室大棚等设施农业、观光休闲农业等绿色环保的新型农业生产方式快速发展的需要,也为全新电动农业车辆设计提供参考。  相似文献   

9.
电动拖拉机动力电池压载构型设计与参数优化   总被引:1,自引:0,他引:1  
为改善电动拖拉机动力电池压载效果以提升整机牵引性能,提出了一种位置可调的电池压载框架结构;基于牵引性能预测基本方程,以驱动效率、滑转率和前轴安全压载综合最优为目标建立电池压载参数优化模型,该模型可根据作业条件给出最优电池压载参数;在Matlab/Simulink仿真平台上搭建了电动拖拉机牵引作业仿真模型,针对负载1~5kN范围内的水平牵引工况,对电池压载参数优化前后的牵引性能进行了仿真对比分析;基于所提出的位置可调电池压载框架结构,搭建了电动拖拉机实验样机,并在室内土槽环境下对压载参数优化模型进行验证。结果表明:在保证前桥安全压载的前提下,所提出的电池压载构型使牵引车速和能量利用率分别提升4.16%和5.66%,有效提升了电动拖拉机的牵引作业性能。  相似文献   

10.
以TMS320LF2407 DSP控制器为核心,采用三相不对称半桥功率转换模块,以mos管为主开关器件,利用光电传感器检测电机位置和电机相电流,设计了一套电动农用拖拉机开关磁阻电机双轮驱动系统。实验结果表明:所设计的开关磁阻电机双轮驱动系统可以实现电动农用拖拉机运行过程中的差速控制,且系统运行比较稳定,提高了电动农用拖拉机的行驶性能。  相似文献   

11.
电动拖拉机试验具有测试对象多和物理系统复杂的特点,单一试验系统不能满足电动拖拉机性能测试要求。根据电动拖拉机作业特点,通过分析其动力传动系统数学模型,确定了以电动机效率、电池组放电特性为测试变量的设计任务。采用模块化方法,设计了能源系统试验模块、动力系统试验模块和电动拖拉机综合试验系统整体方案。通过研究试验系统总体参数设计方法,得到了加载电动机、电池测试系统和直流电池模拟器等部件的参数计算模型。通过试验系统硬件选型匹配,设计了可满足90 k W以下电动拖拉机性能测试的试验系统。在该试验平台进行了电动拖拉机性能台架试验,结果表明:试验测试误差与前期仿真分析误差在10%以内,设计的综合台架试验系统对电动拖拉机部件性能测试的适用性较好,满足整机性能分析和标定的试验需求。  相似文献   

12.
提出了以电动机作为动力的微型电动拖拉机驱动系统方案,在对微型电动拖拉机牵引作业和旋耕作业工况特性进行分析的基础上,给出了电动机所需功率的计算方法,选配了相应的电动机和调速装置;确定了传动系统的传动比,设计了传动系统机械结构;所设计的驱动系统依靠调节电动机的控制装置能实现微型电动拖拉机常用工作速度之间的无级变化。计算结果表明,所设计的电驱动传动系统能满足不同工况下的需求。  相似文献   

13.
针对汽油机为动力的单轨运输机及时停止控制和执行结构复杂,需要额外增加电控系统的问题,结合直流电机作为驱动力易于控制、结构紧凑、无污染的特点,设计一种适合在山地运行的单轨电动遥控运输机。通过对运输机和拖车组成的运输整机进行最大爬坡角度的受力分析,获得满足运输机爬坡需要的最小牵引力;设计和制作运输机驱动机构、传动装置等关键部件,并对直流无刷电动机、蓄电池、限速和失电制动电机等进行选型,设计制作以蓄电池为动力、无刷直流电动机驱动的山地单轨电动遥控运输机。所设计制作的运输机可以搭载250 kg负载,设计额定行驶速度为0.6 m/s,使用时根据实际运行需要,速度可在0~0.6 m/s之间调节,设计制作的运输机技术指标达到了设计要求。在运输机自身功率消耗条件下:水平和下坡运行时,速度对整机功率消耗影响较大,装载质量对功率消耗影响很小;上坡运行时,速度和装载质量对整机功率消耗影响都较大。根据不同工况对电机进行调速,可实现高效运行的同时解决满载大角度爬坡时蓄电池输出电流过大的问题。  相似文献   

14.
针对拖拉机在丘陵山区适应性差,田间地头转向半径大、易损害作物,耗时长和效率低等问题,设计了一种可原地转向的504型丘陵山地拖拉机底盘。整机采用四驱轮式行走系统,前进和后退速度为0~5 km/h,可无级调速。传动系统采用机械式“H”型传动路线,通过纵梁内外双轴的设计将左右两侧的驱动力独立分开。采用离合器式转向分动器,通过转向分动箱内的牙嵌式离合器两两组合,完成底盘不同作业状态的控制,两路动力通过正转+正转、反转+反转、正转+反转和反转+正转4种状态的组合,实现拖拉机的前进、倒退、左右大小半径转向和原地转向。结果表明,整机最大牵引力为10.78 kN,最大及最小总传动比分别为732.50和73.25,前后驱动桥传动轴最高及最低转速分别为31.07和6.21 r/min。底盘的轮距和轴距比值为1,其所受滑移阻力矩与滚动阻力矩之和小于其所受驱动力矩,可在窄小地头实现原地转向,减小拖拉机田间作业的空行程,提高作业效率,有效保护农作物。   相似文献   

15.
双轮驱动电动拖拉机传动性能研究   总被引:7,自引:0,他引:7  
提出了双轮驱动电动拖拉机的总体结构方案,从作业受力和牵引效率2个方面分析了电动拖拉机的牵引性能,并进行了传动部件的匹配分析。在此基础上搭建了电动拖拉机传动试验平台,分别进行了牵引性能、带载启动及运输工况等试验。试验结果表明,所设计的电动拖拉机牵引转矩达到1 800 N·m,可满足更大耕深作业。带载启动时,驱动转矩从700 N·m增至1 600 N·m,车速由0增至7 km/h,所用时间约为1.1 s。运输试验运输货物为1 710 kg时,速度达到6.5 km/h。  相似文献   

16.
针对现有拖拉机牵引性能预测模型未包含前后轮附着差异、载荷转移和前后桥运动不协调等因素对滑转效率和滚动阻力的影响,导致四轮驱动拖拉机的田间牵引性能预测精度较低。为此本文从拖拉机轮胎的驱动特性和载荷特性入手,通过引入轮胎指数、机动指数等特征参数,分别建立了土壤-轮胎驱动模型与包含轴荷转移的前后轮胎载荷模型;在牵引受力分析的基础上,考虑实际前后桥运动不协调性对总体底盘作业的影响,分别建立了整机滚动效率与滑转效率的预测模型,导出了包含轮胎规格、土壤特性、整机前后桥运动不协调特性、传动效率的四轮驱动拖拉机牵引性能预测模型。针对模型多变量、非线性产生的求解难题,基于双维度迭代法设计了预测算法与流程;采用研究的方法开展了实例分析应用;针对预测模型的有效性验证需求,设计并开展了实车田间牵引试验,结果表明:最大牵引力与特征滑转率对应的牵引力的仿真值误差分别为1.41%与1.74%,滚动阻力误差为0.64%,较对照组准确度提升较大,总体误差较小。  相似文献   

17.
针对丘陵山地拖拉机田间地头转向困难及已作业地块易被压紧压实的难题,设计了一种自适应式丘陵山地拖拉机底盘。其采用机械传动方式,发动机横向布置于车架上,动力由发动机一端经过皮带输送到变速器等传动部件用于底盘驱动行驶,另一端输出用于田间收割等作业。转向系统为断开式梯形结构设计,采用前轮偏转和四轮偏转两种转向方式,可实现全液压四轮异相位转向。结果表明:底盘最高及最低行驶速度分别为10.98 Km/h及0.91 Km/h,最大传动比为370.37,最小传动比为61.38,底盘前轮偏转时的最小转弯半径为2003mm,四轮偏转时的最小转弯半径为1494mm。该丘陵山地拖拉机具有良好的小地块作业适应能力。  相似文献   

18.
针对单电机驱动型式的电动拖拉机难以满足农田作业多工况的问题,提出了一种基于行星齿轮耦合的双电机驱动系统。根据电动拖拉机动力传动系统的结构方案,按多种作业类型对双电机耦合驱动系统的驱动模式进行分析。采用试验数据模型和理论模型相结合的方法,建立电动拖拉机驱动系统关键部件效率模型和整机纵向动力学模型,在此基础上搭建了电动拖拉机控制仿真试验模型。针对不同驱动模式设计了驱动系统综合控制策略,通过仿真试验得到两电机的功率分配规则。在搭建的传动性能试验平台上对双电机耦合驱动系统进行恒定负载试验和牵引性能试验。试验结果表明,两种试验条件下,主、副电机的功率分配比变化范围为1. 07~2. 73,恒定负载试验中,功率分配比为1. 88时系统效率最高,牵引性能试验时,功率分配比为1. 86时系统效率最高。双电机驱动系统能够跟随负载变化按照功率分配规则实现两电机的功率分配,满足作业负载的同时降低了功率损耗。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号