首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 171 毫秒
1.
为了制备高乳化活性的大豆分离蛋白(SPI),以豆粕为原始材料,采用微波辅助SPI磷酸化改性,以SPI质量分数、三聚磷酸钠(STP)添加量、微波功率和微波处理时间4个试验条件为影响因子,以乳化活性为响应值,采用中心组合旋转设计法,建立微波辅助SPI磷酸化对乳化活性影响的二次回归模型.结果表明:利用响应面法优化出制备高乳化活性大豆分离蛋白的最适工艺条件为:SPI质量分数10%、STP添加量16%、微波功率480W、微波时间4 min;所得模型拟合度高,试验误差小,可将该模型应用于对微波辅助磷酸化SPI的乳化活性进行分析和预测.在最适工艺条件下,改性后SPI的乳化活性为66.8,乳化稳定性为29.80 min,分别较原粉提高了134.4%和61.6%.  相似文献   

2.
大豆分离蛋白(SPI)经超声复合碱处理后与表没食子儿茶素没食子酸酯(EGCG)进行复合形成复合物。采用傅里叶变换红外光谱和荧光光谱对超声复合碱处理及EGCG改性的SPI结构及构象进行解析,以粒径、Zeta电位、浊度及乳化特性为指标,分析该复合体系中SPI构象改变与功能特性之间的关系。结果表明:超声复合碱处理使SPI的粒径减小、溶液电位绝对值增加、乳化性显著提高。超声复合碱处理的SPI与EGCG复合后,SPI的Zeta电位绝对值进一步显著增加,其粒径明显减小,乳化特性显著提高。光谱分析显示,超声复合碱处理以及EGCG可以改变SPI的二级结构,使蛋白链解折叠,并且改变蛋白芳香族氨基酸残基所处的微环境,使蛋白的构象发生改变。通过荧光淬灭光谱分析发现,EGCG对SPI的荧光猝灭机制为静态猝灭,SPI与EGCG之间形成了结合位点数近似于1的复合物。  相似文献   

3.
高压均质对大豆蛋白柔性和乳化性的影响及相关性分析   总被引:2,自引:0,他引:2  
以大豆分离蛋白(Soy protein isolate,SPI)对胰蛋酶的敏感性表征其柔性,研究不同均质压力(0~200 MPa)对SPI柔性和乳化性的影响,并探索SPI结构变化及其柔性与乳化性之间的相关性。结果表明,当均质压力为0~160 MPa时,SPI柔性随着均质压力的增加而增加,160~180 MPa时柔性变化不明显,当均质压力为180~200 MPa时,SPI柔性又呈现下降的趋势。表面疏水性随着均质压力的增大而增大,而浊度则随之减小,柔性随均质压力的变化趋势与乳化性随均质压力的变化趋势一致。相关性分析结果表明:SPI柔性与乳化活性和乳化稳定性呈线性正相关关系,相关系数分别为0.893和0.938。紫外扫描、内源性色氨酸荧光光谱研究发现,随着SPI柔性的增加,其结构变得更加舒展。  相似文献   

4.
为了提高大豆蛋白的冻融稳定性,在辐照场下采用湿法糖基化改性大豆分离蛋白,以接枝度和冻融后的乳析指数为指标进行优化改性工艺试验。结果表明:在大豆分离蛋白(SPI)与麦芽糖(M)质量比为4、SPI质量浓度为40mg/mL、辐照剂量为7.5kGy的条件下,制备的SPI冻融稳定性显著提高;与未改性SPI相比,改性SPI 3次冻融循环后乳液乳析指数分别降低了22.98、28.40、30.70个百分点,出油率分别降低了9.7、21.2、26.4个百分点;乳化活性指数和乳化稳定性指数比未改性的SPI分别提高了9.26m2/g和376min;红外光谱分析表明,麦芽糖分子以共价键的形式与大豆分离蛋白结合;扫描电镜表明,辐照SPI-M微观结构呈蜂窝状,呈现出良好的持水性;光学显微镜分析表明,与未改性的SPI乳液相比,冻融处理后的辐照SPI-M乳液只出现部分小油滴,乳液状态更稳定。  相似文献   

5.
为探究添加不同质量分数(1%、3%、5%和7%)菊粉(Inulin,INU)对豌豆分离蛋白(Pea protein isolate,PPI)乳化性及乳液稳定性的影响,以PPI作为乳化剂,采用高压均质法制备了PPI/INU乳液,通过zeta电位测定、粒径测定、激光共聚焦显微镜(CLSM)、酶标法和内源荧光光谱等技术对乳液进行表征。结果表明:添加1%INU后,乳液具有最大zeta电位绝对值(为34.03 m V)和最小平均粒径(d4,3为395.50 nm); CLSM显示,低浓度(质量分数1%和3%)的INU使乳液液滴分布更均匀; INU质量分数为1%时,分别使PPI的乳化活性指数、乳化稳定性指数和乳液界面蛋白吸附率增加了7.8%、22%和11%;荧光光谱显示,随着INU浓度的增加,连续相中PPI-INU复合物的生成量增多,对乳液的稳定性产生了负面影响。由此说明低浓度(质量分数为1%和3%)的INU可改善PPI的乳化性、提高PPI乳液的稳定性,其中添加1%INU效果最显著。  相似文献   

6.
物理改性对大豆蛋白柔性与乳化性的影响及其相关性分析   总被引:1,自引:0,他引:1  
通过不同物理改性方法(热处理、超声处理、高压均质处理、微波处理)分别得到不同柔性的大豆分离蛋白(SPI),并利用SPI对胰蛋白酶的敏感性表征柔性,研究物理改性对SPI柔性与乳化性的影响并分析两者之间的相关性。结果表明,各改性方式对SPI柔性和乳化性产生不同的影响且乳化性随柔性的上升而上升。与其他处理条件相比,121℃热处理10 min得到最高的柔性和乳化活性,高压均质处理对SPI柔性影响小但对乳化活性影响大。相关性分析结果表明:热处理、超声处理条件下SPI柔性与乳化活性、乳化稳定性呈极显著正相关,相关系数分别为0.969、0.950和0.942、0.954。超高压均质处理条件下SPI柔性与乳化活性、乳化稳定性呈正相关,相关系数分别为0.771、0.720。微波处理条件下SPI柔性与乳化活性呈极显著正相关,与乳化稳定性呈显著正相关,相关系数分别为0.976、0.862。  相似文献   

7.
大豆-乳清混合蛋白对O/W乳液稳定性及流变性的影响   总被引:2,自引:0,他引:2  
采用大豆分离蛋白-乳清分离蛋白(SPI-WPI)作为乳化剂制备O/W(水包油)乳液,通过测定粒径、Zeta电位、乳化活性指数、乳化稳定性系数、乳液稳定性系数、扫描电镜、流变等指标,探究不同蛋白混合比例及浓度对复合乳液稳定性及流变特性的影响。结果表明:当SPI-WPI乳液蛋白质量分数为2.0%、SPI与WPI质量比为1∶9时,乳液体积平均粒径最小,为288.56nm,Zeta电位绝对值达到最大,为35.0mV,乳化活性指数最大,为108.23m2/g,乳化稳定性指数最大,为3.78471min,稳定性系数最大,为93.59%,此时乳液稳定性最好。当SPI-WPI乳液蛋白质量分数为2.0%、SPI与WPI质量比为9∶1时,乳液的粘度最大,乳液的剪切应力最大,流变特性较好。添加乳清分离蛋白增大了乳液的稳定性,降低了乳液的粘度和剪切力。  相似文献   

8.
以大豆分离蛋白(SPI)、阿拉伯树胶(GA)及卡拉胶(CA)为原料,经物理混合成功制备不同多糖与SPI复合物,考察不同添加量(SPI与GA/CA质量比为20、15、10、5)对蛋白-多糖复合物结构、性能变化趋势及其乳液稳定性的影响规律,最终探明蛋白与不同多糖复合物的相互作用机制;运用红外光谱、荧光光谱及电子显微镜解析不同复合物的结构特征,采用乳化特性、粒径、Zeta电位、表面疏水性等指标明确不同复合物的理化特性,并通过探讨不同复合物乳液的乳化活性、乳化稳定性、表观粘度及乳析指数明晰其稳定特性。结果表明,两种多糖在酸性条件下可与SPI生成复合物,并且当SPI与CA质量比为20时,复合物的Zeta电位最高,为(20.47±0.82)mV,平均粒径最小,为(1.37±0.01)μm,分布均匀,乳化活性指数最高,为(106.46±4.75)m2/g,乳化稳定性指数为(145.33±8.53)min,此时复合乳液的稳定性较好,CA的加入显著降低SPI内源荧光强度并改变SPI的二级结构,SPI与CA结合形成了稳定的复合物。  相似文献   

9.
大豆蛋白-多糖复合物结构与性能及其稳定性研究   总被引:1,自引:0,他引:1  
以大豆分离蛋白(SPI)、阿拉伯树胶(GA)及卡拉胶(CA)为原料,经物理混合成功制备不同多糖与SPI复合物,考察不同添加量(SPI与GA/CA质量比为20、15、10、5)对蛋白-多糖复合物结构、性能变化趋势及其乳液稳定性的影响规律,最终探明蛋白与不同多糖复合物的相互作用机制;运用红外光谱、荧光光谱及电子显微镜解析不同复合物的结构特征,采用乳化特性、粒径、Zeta-电位、表面疏水性等指标明确不同复合物的理化特性,并通过探讨不同复合物乳液的乳化活性、乳化稳定性、表观粘度及乳析指数明晰其稳定特性。结果表明,两种多糖在酸性条件下可与SPI生成复合物,并且当SPI与CA质量比为20时,复合物的Zeta-电位最高,为(20.47±0.82) mV,平均粒径最小,为(1.37±0.01)μm,分布均匀,乳化活性指数最高,为(106.46±4.75) m2/g,乳化稳定性指数为(145.33±8.53) min,此时复合乳液的稳定性较好,CA的加入显著降低SPI内源荧光强度并改变SPI的二级结构,SPI与CA结合形成了稳定的复合物。  相似文献   

10.
为研究超声联合酶处理对大豆分离蛋白(SPI)结构和对谷氨酰胺转氨酶(TG)交联的SPI凝胶性能的影响,采用内源性荧光光谱、傅里叶红外变换光谱解析超声联合酶处理对SPI结构的影响,并以粒径、游离巯基含量、表面疏水性、凝胶强度、持水性及微观结构为指标,探究SPI结构改变与功能特性之间的关系。红外及荧光光谱表明,与未经处理SPI和经单一改性处理的SPI相比,超声联合酶处理使蛋白α-螺旋和β-转角相对含量降低,β-折叠和无规则卷曲相对含量上升,蛋白结构伸展,促使游离巯基和疏水基团暴露,提高了SPI游离巯基含量和表面疏水性。与未处理SPI相比,经超声联合酶处理的SPI凝胶效果最佳,形成了均匀致密的凝胶网络,其凝胶强度和持水率分别提升了(278.04±18.81)%和(89.51±2.78)%,超声联合酶处理可以改善SPI结构以及TG交联的SPI凝胶特性。  相似文献   

11.
乳液的稳定性取决于形成的水油界面处蛋白膜的稳定性,研究界面蛋白的构效关系对蛋白工业化生产十分重要.提取了不同品种大豆蛋白乳液的界面蛋白,分析了界面蛋白的结构特征,并通过对界面蛋白溶解性和乳化性质的分析,解析蛋白质柔性结构对功能性质的影响机制.结果表明,柔性较高的蛋白可以更快吸附到油滴表面,结构更易伸展;柔性较高的界面蛋...  相似文献   

12.
蚕豆蛋白富含微量元素和人体必需的8种氨基酸,具有较高的开发价值。采用超声提取和水提取的方法提取蚕豆蛋白,研究了NaCl浓度和pH对蚕豆蛋白提取率、沉淀、功能性的影响。在pH值为8~12,超声提取和水提取均有较高的提取率。蚕豆蛋白的等电点在pH4.0~4.2之间。在pH4溶解性和乳化性最低,pH值在4~12时溶解性和乳化性随pH值的升高而升高, pH值为12时溶解性和乳化性最高。NaCl浓度从0 到 1.0 mol/L,溶解性和乳化性升高;当NaCl浓度继续增加,在pH 4、pH 7溶解性和乳化性随之下降。在相同的NaCl浓度和pH值时,超声提取比水提取蛋白的溶解性和乳化性高。该研究为蚕豆蛋白的提取工艺的确定及其在食品中的应用提供依据。  相似文献   

13.
蚕豆蛋白富含微量元素和人体必需的8种氨基酸,具有较高的开发价值。采用超声提取和水提取的方法提取蚕豆蛋白,研究了NaCl浓度和pH对蚕豆蛋白提取率、沉淀、功能性的影响。在pH值为8~12,超声提取和水提取均有较高的提取率。蚕豆蛋白的等电点在pH4.0~4.2之间。在pH4溶解性和乳化性最低,pH值在4~12时溶解性和乳化性随pH值的升高而升高, pH值为12时溶解性和乳化性最高。NaCl浓度从0 到 1.0 mol/L,溶解性和乳化性升高;当NaCl浓度继续增加,在pH 4、pH 7溶解性和乳化性随之下降。在相同的NaCl浓度和pH值时,超声提取比水提取蛋白的溶解性和乳化性高。该研究为蚕豆蛋白的提取工艺的确定及其在食品中的应用提供依据。  相似文献   

14.
为了探究干燥方式对绿豆芽多酚抗氧化活性及物理特性的影响,以绿豆芽为原料,利用热风干燥、组合干燥和冷冻干燥对绿豆芽进行干燥处理,比较不同干燥条件下绿豆芽多酚含量、抗氧化活性及物理特性的变化.结果表明:冷冻干燥处理后,绿豆芽粉物质特性最好,但多酚含量及DPPH和ABTS·+清除能力均较差;热风45℃干燥后的绿豆芽多酚含量为...  相似文献   

15.
在低pH值、低离子强度、长时间高温加热条件下乳清蛋白可以自组装形成纳米纤维聚合物。纤维的形成主要有自发和核诱导2种方式,对改善乳清蛋白的功能性质具有重要作用。通过界面性质与纤维结构的关系探究CaCl2对核形成、核诱导以及成熟纤维的影响。结果表明:核诱导方式比自发方式对CaCl2的耐受性更强,CaCl2浓度为50mmol/L时,均相核诱导、二次核诱导乳清蛋白形成的纤维聚合物较自发方式样品乳化稳定性指数分别降低了30.92%、34.09%,泡沫稳定性指数分别降低了68.18%、78.59%。加入20~50mmol/L CaCl2能提高蛋白质的聚合速率,同时降低反应的活化能,但这种快速聚合破坏了纤维有序组装的过程,核诱导方式由于加快了纤维聚合物的形成速度,与自发方式相比,核诱导对CaCl2的耐受程度更高。  相似文献   

16.
大豆亲脂蛋白(SLP)是解决大豆分离蛋白水合特性和界面特性等功能特性问题的关键。采用多光谱、热分析和凝胶电泳等技术研究了大豆亲脂蛋白热诱导解离缔合行为,并对其自组装纳米颗粒进行表征。结果显示,80~90℃是SLP热处理过渡带,在热处理温度低于80℃时,SLP能基本保持天然构象而无显著性变化,在热处理温度高于90℃时,SLP二级构象发生显著性改变。在90℃处理20 min时,SLP蛋白分子结构解聚,且伸展至最大程度,表面疏水性增加,随后自组装形成粒径约为110 nm的稳定单分布纳米颗粒体系。电泳分析结果显示,解离的亚基通过二硫键和疏水相互作用重新聚集成中间聚集体,导致分子间聚集程度增大、构象稳定性增强。本研究可为SLP专用大豆蛋白粉及其在食品领域的开发应用提供理论支撑。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号