首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Dissolved organic matter (DOM) plays an important role in transport, storage and cycling of carbon (C) and nitrogen (N) in forest soils where litter is one of the main sources. The aim was to study the amount and characteristics of DOM leached from freshly fallen litters of silver birch (Betula pendula Roth.), Norway spruce (Picea abies (L.) Karst.) and their mixture during decomposition. DOM was collected after irrigation on eight occasions during 252 days incubation in the laboratory at about 18°C, including one freeze‐thaw cycle. During the incubation about 33–35% of C from birch and spruce litter and 40% of C from their mixture was lost. The total cumulative flux of dissolved organic carbon (DOC) from the mixture of litters was approximately 40% larger than that from single litters. The flux of DOC, DON, phenolic compounds and proteins followed a two‐stage pattern during decomposition. In the first stage the initially large fluxes decreased gradually. In the second stage, after freezing and thawing, the fluxes tended to increase again. Mixing birch and spruce litters and a freeze‐thaw cycle seems to increase the decomposition of litter and result in the increased flux of DOC, DON and phenolic compounds. The flux of hemicelluloses and the degradability of DOM were large at the first leaching occasion and decreased during the incubation. Birch had a 40% larger total flux of easily degradable DOM than spruce, supporting the previous consistent signs of greater microbial biomass and activities related to C and N cycling in soil under birch than under spruce. It is known that recalcitrant DOM might be stabilized whereas labile DOM may promote microbial activity and nutrient cycling. We conclude that the storage and cycling of C and N is affected by both tree species and degradation stage of litter in forest soils.  相似文献   

2.
Litter is one of the main sources of dissolved organic carbon (DOC) in forest soils and litter decomposition is an important control of carbon storage and DOC dynamics. The aim of our study was to evaluate (i) effects of tree species on DOC production and (ii) relationships between litter decomposition and the amount and quality of DOC. Five different types of leaves and needles were exposed in litterbags at two neighboring forest sites. Within 12 months we sampled the litterbags five times and leached aliquots of field moist litter in the laboratory. In the collected litter percolates we measured DOC concentrations and recorded UV and fluorescence spectra in order to estimate the aromaticity and complexity of the organic molecules. Furthermore, we investigated the biodegradability of DOC from fresh and decomposed litter during 6 weeks incubations. Fresh sycamore maple litter released the largest amounts of DOC reaching about 6.2% of litter C after applying precipitation of 94 mm. We leached 3.9, 1.6, 1.0 and 3.3% carbon from fresh mountain ash, beech, spruce and pine litter, respectively. In the initial phase of litter decomposition significantly decreasing DOC amounts were released with increasing litter mass loss. However, after mass loss exceeds 20% DOC production from needle litter tended to increase. UV and fluorescence spectra of percolates from pine and spruce litter indicated an increasing degree of aromaticity and complexity with increasing mass loss as often described for decomposing litter. However, for deciduous litter the relationship was less obvious. We assume that during litter decomposition the source of produced DOC in coniferous litter tended toward a larger contribution from lignin-derived compounds. Biodegradability of DOC from fresh litter was very high, ranging from 30 to 95% mineralized C. DOC from degraded litter was on average 34% less mineralizable than DOC from fresh litter. Taking into account the large DOC production from decomposed needles we can assume there is an important role for DOC in the accumulation of organic matter in soils during litter decomposition particularly in coniferous forests.  相似文献   

3.
We investigated the importance of physico‐chemical mechanisms responsible for the release of dissolved organic matter (DOM) from a peaty soil. Columns containing peat aggregates (embedded within a sand matrix) provided an experimental system in which both convective and diffusive processes contributed to DOM leaching. The use of aggregated peat avoided the problems associated with traditional batch equilibration experiments in which soil structure is destroyed. Biotic and abiotic processes operating in the columns were manipulated by working with two unsterilized columns (at 5°C and 22°C) and one gamma irradiation‐sterilized column (5°C). Continuous solute flows (< 80 hours) and periods of flow interruption (five interruptions of 6 hours to 384 hours) were applied to the columns (using a 1‐mm NaCl electrolyte) to investigate mechanisms of diffusion‐controlled release of DOM. For all columns, dissolved organic carbon and nitrogen (DOC and DON) effluent concentrations increased after resumption of flow and the maximum concentrations increased with increased flow‐interruption duration. Measurements of effluent UV absorbance (λ= 285 nm) showed that the DOM leached immediately after the flow interruptions contained fewer aromatic moieties of lower molecular weight than the DOM leached after periods of steady flow. The sterilized column had larger DOC and DON effluent concentration spikes than those from the unsterilized column at 5°C (38 mg C dm−3 and 6.5 mg N dm−3 versus 13 mg C dm−3 and 6.5 mg N dm−3 after the 384 hours flow interruption). This result suggested that the concentrations of DOM resulting from physico‐chemical release mechanisms (sterilized column) were attenuated by biological activity (unsterilized columns). Our results indicate that the peat’s microporous structure provides reservoirs of DOM that interact with solute in transport pores via abiotic, rate‐controlled mass transport. Hence, diffusion can influence the quantity and composition of DOM leached from peat in the field depending on intensity and duration of rainfall.  相似文献   

4.
Dissolved organic matter (DOM) is a small but reactive pool of the soil organic matter (SOM) that contributes to soil dynamics including the intermediary pool spanning labile to resistant SOM fractions. The solubilization of SOM (DOM production) is commonly attributed to both microbially driven and physico-chemically mediated processes, yet the extent to which these processes control DOM production is highly debated. We conducted a series of experiments using 13C-ryegrass residue or its extract (13C-ryegrass-DOM) separately under sterile and non-sterile conditions to demonstrate the importance of DOM production from microbial and physico-chemical processes. Soils with similar properties but differing in parent material were used to test the influence of mineralogy on DOM production. To test the role of the source of C for DOM production, one set of soils was leached frequently with 13C-ryegrass-DOM and in the other set of soils 13C-ryegrass residue was incorporated at the beginning of the experiment into the soil and soils were leached frequently with 0.01 mol L−1 CaCl2 solution. Leaching events for both treatments occurred at 12-d intervals over a 90-day period. The amount of dissolved organic C and N (DOC and DON) leached from residue-amended soils were consistently more than 3 times higher in sterile than non-sterile soils, decreasing with the time. Despite changes in the concentration of DOC and DON and the production of CO2, the proportion of DOC derived from the 13C-ryegrass residue was largely constant during the experiment (regardless of microbial activity), with the majority (about 70%) of the DOM originating from native SOM. In 13C-residue-DOM treatments, after successive leaching events and regardless of the sterility conditions i) the native SOM consistently supplied at least 10% of the total leached DOM, and ii) the contribution of native SOM to DOM was 2–2.9 times greater in 13C-residue-DOM amended soils than control soils, suggesting the role of desorption and exchange reactions in DOM production in presence of fresh DOM input. The contribution of the native SOM to DOM resulted in higher aromaticity and humification index. Our results suggest that physico-chemical processes (e.g. exchange or dissolution reactions) can primarily control DOM production. However, microbial activity affects SOM solubilization indirectly through DOM turnover.  相似文献   

5.
Dissolved organic matter (DOM) plays a fundamental role for many soil processes. For instance, production, transport, and retention of DOM control properties and long-term storage of organic matter in mineral soils. Production of water-soluble compounds during the decomposition of plant litter is a major process providing DOM in soils. Herein, we examine processes causing the commonly observed increase in contribution of aromatic compounds to WSOM during litter decomposition, and unravel the relationship between lignin degradation and the production of aromatic WSOM. We analysed amounts and composition of water-soluble organic matter (WSOM) produced during 27 months of decomposition of leaves and needles (ash, beech, maple, spruce, pine). The contribution of aromatic compounds to WSOM, as indicated by the specific UV absorbance of WSOM, remained constant or increased during decomposition. However, the contribution of lignin-derived compounds to the total phenolic products of 13C-labelled tetramethylammonium hydroxide (13C-TMAH) thermochemolysis increased strongly (by >114%) within 27 months of decomposition. Simultaneous changes in contents of lignin phenols in solid litter residues (cupric oxide method as well as 13C-TMAH thermochemolysis) were comparably small (−39% to +21% within 27 months). This suggests that the increasing contribution of lignin-derived compounds to WSOM during decomposition does not reflect compositional changes of solid litter residues, but rather the course of decomposition processes. In the light of recently published findings, these processes include: (i) progressive oxidative alteration of lignin that results in increasing solubility of lignin, (ii) preferential degradation of soluble, non-lignin compounds that limits their contribution to WSOM during later phases of decomposition.  相似文献   

6.
During the processes of primary succession and soil development, large stocks of organic C with very long residence times accumulate in many soils. Soluble organic C adsorbed by soils may contribute to the stock of organic C accumulating during soil development. We determined whether the mineralization rate of water-soluble organic C and the insoluble residue from 14C-labelled leaf litter added to soils from a weathering chronosequence decrease as soil age and adsorption capacity increase. The soils were formed on mudflows of andesitic material deposited about 75, 255, 616 y ago, and another older but undetermined time before this study. The percentage of the DOC adsorbed by the soils increased with age. After 1 year of incubation there were no significant differences in the mineralization rates of DOC added to soils of different ages. The DOC appeared to be comprised of two fractions, one that comprises about 32% of the total that mineralized with a half decay time of 0.02 y (7 d) and a second fraction comprising 68% with a half decay time of about 1.6 y. Consequently, the slowly mineralized fraction of the soluble C contributed to the accumulation of slowly mineralized C in the soil. Both the slowly and rapidly mineralized fractions of the insoluble residue decomposed more slowly than the corresponding fractions in DOC. We found no support for the idea that increased adsorption capacity due to weathering resulted in protection of soluble organic C from microbial mineralization.  相似文献   

7.
Dissolved organic matter has been recognized as mobile, thus crucial to translocation of metals, pollutants but also of nutrients in soil. We present a conceptual model of the vertical movement of dissolved organic matter with soil water, which deviates from the view of a chromatographic stripping along the flow path. It assumes temporal immobilization (sorptive or by co-precipitation), followed by microbial processing, and re-release (by desorption or dissolution) into soil water of altered compounds. The proposed scheme explains well depth trends in age and composition of dissolved organic matter as well as of solid-phase organic matter in soil. It resolves the paradox of soil organic matter being oldest in the youngest part of the soil profile – the deep mineral subsoil.  相似文献   

8.
Analytical fractionation conditions on the resin XAD-7H of organic substances from gravitational soil moisture influence the proportion and the yield of the extracted fractions. Increasing the column capacity factor k’ is accompanied by a decreased yield of hydrophobic fraction and the change in its composition. The sorption column capacity factor of k’ = 30 is sufficient for the extraction of all hydrophobic components from a soil solution with a concentration of CDOM of ~25 mg/L.  相似文献   

9.
The main agrochemical treatment applied in agriculture to lower harmful soil acidity is liming. Long term studies showed that application of calcium carbonate fertilizer brought about higher leaching of dissolved organic matter (DOM) in pot, lysdmetric and field experiments. Outflows obtained from limed soils contained 44.8% more DOM in comparison with nonlimed soils. During four years of lysimetric experiments it was found that the amounts of DOM from limed soils were increased by 52.7%. In the field experiments the amounts leached from one hectare of limed and nonlimed soil ranged 25.6 kg and 19.2 kg per year, respectively. DOM leached from limed soils was characterized by higher (45.4%) contents of carboxylic groups and humic substances (19.7%). Dissolved organic substances particularly humus rich in functional groups, due their complexing properties bound plant nutrients leached from soils and modify geochemical mobility of metals and anions. Therefore, DOM can play a significant role in the migration of chemical substances in agriculture landscape.  相似文献   

10.
A mono-protic multi-site model is developed to obtain a pK(acid) — concentration distribution. Dense and equal interval pH data are required for an accurate characterization. A computer driven titrimetric system is used to obtain the data. The technique is applied to dissolved organic carbon (> 15 mg C L-1) samples from the Kejimkujik region, Nova Scotia. A calculation shows that the acidic (pH=4.6) dystrophic waters can result from mixing 15 mg C L-1 of the organic acids with an initial inorganic system of about 75 peq L-1 alkalinity.  相似文献   

11.
Clear‐cutting of forest provides a unique opportunity to study the response of dynamic controls on dissolved organic matter. We examined differences in concentrations, fluxes and properties of dissolved organic matter from a control and a clear‐cut stand to reveal controlling factors on its dynamics. We measured dissolved organic C and N concentrations and fluxes in the Oi, Oe and Oa horizons of a Norway spruce stand and an adjacent clear‐cutting over 3 years. Aromaticity and complexity of organic molecules were determined by UV and fluorescence spectroscopy, and we measured δ13C ratios over 1 year. Annual fluxes of dissolved organic C and N remained unchanged in the thin Oi horizon (~ 260 kg C ha?1, ~ 8.5 kg N ha?1), despite the large reduction in fresh organic matter inputs after clear‐cutting. We conclude that production of dissolved organic matter is not limited by lack of resource. Gross fluxes of dissolved organic C and N increased by about 60% in the Oe and 40% in the Oa horizon upon clear‐cutting. Increasing organic C and N concentrations and increasing water fluxes resulted in 380 kg C ha?1 year?1 and 10.5 kg N ha?1 year?1 entering the mineral soil of the clear‐cut plots. We found numerous indications that the greater microbial activity induced by an increased temperature of 1.5°C in the forest floor is the major factor controlling the enhanced production of dissolved organic matter. Increasing aromaticity and complexity of organic molecules and depletion of 13C pointed to an accelerated processing of more strongly decomposed parts of the forest floor resulting in increased release of lignin‐derived molecules after clear‐cutting. The largest net fluxes of dissolved organic C and N were in the Oi horizon, yet dissolved organic matter sampled in the Oa horizon did not originate mainly from the Oi horizon. Largest gross fluxes in the Oa horizon (control 282 kg C ha?1) and increased aromaticity and complexity of the molecules with increasing depth suggested that dissolved organic matter was derived mainly from decomposition, transformation and leaching of more decomposed material of the forest floor. Our results imply that clear‐cutting releases additional dissolved organic matter which is sequestered in the mineral soil where it has greater resistance to microbial decay.  相似文献   

12.
Complexed organic matter controls soil physical properties   总被引:1,自引:0,他引:1  
It is shown that, for mineral soils, it is not the total amount of organic carbon (or organic matter) that controls soil physical behaviour but the amount of complexed organic carbon (COC). We assume that this complex is formed by the association of unit mass (i.e. 1 g) of organic carbon with n grams of clay. Analysis of data from two French and two Polish databases shows that, for these soils, n = 10. A consequence of this is that in soils with small contents of organic carbon (OC), such as arable soils, COC is proportional to OC. However, in soils with large contents of organic carbon, such as pasture soils, COC is proportional to the clay content. This explains why we find that soil bulk density is significantly correlated with OC in French arable soils but with the clay content in French pasture soils. The use of COC instead of OC enables the arable and pasture soils to be considered on the same scale.

Water retention data were fitted to a double-exponential equation which allows both the matrix and structural porosities to be estimated. It is shown that in soils with low contents of organic carbon, the carbon content is positively correlated with the matrix porosity. In contrast, in soils with high contents of organic carbon, the matrix porosity is constant at its maximum value and the structural porosity is not significantly correlated with either the total organic carbon or the non-complexed organic carbon (NCOC). It is suggested that the complexed organic carbon can be considered as being sequestered. The soil clay content can similarly be partitioned between clay that is complexed with organic carbon and clay that is not complexed. It is shown that non-complexed clay is more easily dispersed in water than clay that is complexed with organic carbon. These findings indicate how improved pedo-transfer functions for the prediction of soil physical properties may be produced. Such functions need to use the values of complexed and non-complexed organic carbon and clay which must be determined by algorithms. The values produced by the algorithms may then be used in the improved pedo-transfer functions.  相似文献   


13.

Purpose

The aim of this paper has been to determine the seasonal changes in the content of dissolved organic matter (DOM) in the soils under agricultural use based on assaying changes in dissolved organic carbon (DOC) and dissolved nitrogen (DNt) as well as determining the factors which can define the DOM in soils.

Materials and methods

The research has involved the soils under agricultural use sampled in the Kujawsko-Pomorskie province (Poland). Phaeozems and Luvisols were sampled from the depth of 0–30, 30–60, and 60–100 cm, November 2011 through September 2013, in November, March, May, July, and September. The soil samples were assayed for the grain size composition, pH, dry weight content, content of total organic carbon, and total nitrogen. Dissolved organic matter was extracted with 0.004 mol dm3 CaCl2; in the DOM extracts, the content of dissolved organic carbon (DOC) and dissolved nitrogen (DNt) were assayed. The research results were statistically verified.

Results and discussion

It has been demonstrated that in the first year of research, the content of dissolved organic carbon in the soils was changing throughout the year. The highest differences in the content of that carbon fraction occurred across the soil sampled in autumn and the soil sampled in spring. In the second year of research, an inverse dependence was noted. DOC was migrating to deeper layers of the soil profile; yet, the migration got more intensive in summer. The content of dissolved nitrogen was not changing significantly throughout the year. Higher DNt content in the surface layer, in general, resulted in a higher content of dissolved nitrogen in deeper profile layer, which could have been due to leaching of the nutrient deep down the soil profile.

Conclusions

The content of dissolved organic carbon was significantly related to the content of total organic carbon and total nitrogen. Significant changes in the content of dissolved forms of nitrogen were reported in the profile of Phaeozems due to mineral fertilization and irrigation. The soils where irrigation and higher nitrogen rates had been applied demonstrated a higher content and share of soluble forms of nitrogen, as compared with the soils non-irrigated and the soils where lower nitrogen rates had been supplied.
  相似文献   

14.
Field and laboratory studies combined with destructive and nondestructive analytical methods were used to characterize dissolved organic matter (DOM) in acid forest soils. DOM is produced in significant amounts in the forest canopy and in the forest floor. A major part of the organic solutes are lignocellulose-degradation products being strongly microbially altered in the course of ligninolysis. The release of lignin-derived moieties into the soil solution is controlled by their degree of biooxidation. Microorganisms contribute also directly to the organic solutes through the release of microbial metabolites. DOM released from the forest floor passes the upper mineral soil almost conservatively, whereas in the subsoil most DOM is removed from solution. Immobilization of DOM is mainly due to sorption on Fe and Al oxides. The highly oxidized lignin-derived moieties are preferentially removed from the soil solution whereas the saccharides are relatively enriched. We conclude that DOM in the forest soil output to the hydrosphere is a result of (1) the release of microbially degraded lignocellulose compounds and of microbial metabolites into the forest floor solution and (2) selective sorptive removal of the lignin-derived constituents in the subsoil.  相似文献   

15.
Using polyacrylamide (PAM) to reduce soil erosion in irrigated land has increased rapidly in recent years. A simple and reliable method to measure the PAM concentration in waters containing dissolved organic matter (DOM) is of great importance in assessing the fate and efficiency of PAM application. In this research, an analytical method to determine the PAM concentration of waters with correction for DOM interference was developed and tested. The method is based on a combination of determining the total concentration of amide groups by the N-bromination method (NBM) and determining the DOM content spectrophotometrically. The total concentration of amide groups of both PAM and DOM was determined by NBM at 570 nm. The DOM moiety, which is proportional to DOM concentration, was determined by spectrophotometry using a UV 254-nm wavelength. The actual PAM concentration of a water sample (soil extract containing PAM in this study) was obtained from NBM readings subtracted by the interferential DOM contribution using a correction curve. Analysis of PAM in two soil-water samples showed that the recoveries ranged from 94 to 100.3% for the 2 mg/L PAM sample and from 98.4 to 101.4% for the 10 mg/L PAM sample with various DOM concentrations. The coefficients of variation were <6% in all cases.  相似文献   

16.
水溶性有机物在土壤中的化学行为及其对环境的影响   总被引:1,自引:0,他引:1  
水溶性有机物(Dissolved organic matter,DOM)是能够溶解于水的有机化合物的统称。尽管目前对于陆地生态系统中DOM的研究尚不完善,对其性质、组成和分类方法等问题的看法还没有达成一致,但现有研究结果已经表明DOM是一种十分活跃的重要化学组分。DOM进入土壤后将发生吸附、解吸、迁移、转化等一系列化学过程,进而对土壤及环境产生一系列重要影响:一方面,DOM可以与土壤胶体结合,形成有机无机结合体,从而改善土壤性质,DOM还可以通过其自身的分解产生养分离子,从而提高土壤肥力;另一方面,DOM也可能亲合土壤中原来与土壤胶体结合的养分,使之与DOM一起进入土壤溶液,从而增加土壤中养分离子被淋失的风险,并造成土壤养分的损失以及水体的富营养化,DOM还有可能活化土壤中重金属离子,增加土壤中重金属离子的毒性,并使土壤中的重金属离子向地下水迁移。由于其对土壤和环境的多种效应,水溶性有机物近年来已经逐渐成为土壤学、环境科学、生态学等学科的研究热点之一。  相似文献   

17.
The main process by which dissolved organic matter (DOM) is retained in forest soils is likely to be sorption in the mineral horizons that adds to stabilized organic matter (OM) pools. The objectives of this study were to determine the extent of degradation of sorbed OM and to investigate changes in its composition during degradation. DOM of different origins was sorbed to a subsoil and incubated for 1 year. We quantified mineralized C by frequent CO2 measurements in the headspace of the incubation vessels and calculated mean residence times by a double exponential model. Mineralization of C of the corresponding DOM in solution was used as a control to estimate the extent of DOM stabilization by sorption. Changes in the composition of sorbed OM during the incubation were studied by spectroscopic (UV, fluorescence) and isotope (13C, 14C) measurements after hot-water extraction of OM.The fraction of sorbed organic C mineralized during the incubation was only one-third to one-sixth of that mineralized in solution. The mean residence time of the most stable OM sample was estimated to increase from 28 years in solution to 91 years after sorption. For highly degradable DOM samples, the portion of stable C calculated by a double exponential model nearly doubled upon sorption. With less degradable DOM the stability increased by only 20% after sorption. Therefore, the increase in stability due to sorption is large for labile DOM high in carbohydrates and relatively small for stable DOM high in aromatic and complex molecules. Nevertheless, in terms of stability the rank order of OM types after sorption was the same as in solution. Furthermore, the extent of sorption of recalcitrant compounds was much larger than sorption of labile compounds. Thus, sorptive stabilization of this stable DOM sample was four times larger than for the labile ones. We conclude that stabilization of OM by sorption depends on the intrinsic stability of organic compounds sorbed. We propose that the main stabilization processes are selective sorption of intrinsically stable compounds and strong chemical bonds to the mineral soil and/or a physical inaccessibility of OM to microorganisms. The UV, fluorescence and 13C measurements indicated that aromatic and complex compounds, probably derived from lignin, were preferentially stabilized by sorption of DOM. The 13C and 14C data showed that degradation of the indigenous OM in the mineral soil decreased after sorption of DOM. We estimated DOM sorption stabilizes about 24 Mg C ha−1 highlighting the importance of sorption for accumulation and preservation of OM in soil.  相似文献   

18.
Retention and release of dissolved organic matter in Podzol B horizons   总被引:1,自引:0,他引:1  
The main objectives were to study the effects of pH on the retention and release of organic matter in acid soil, and to determine the main differences in results obtained from batch experiments and experiments in columns. We took soil material from the B horizons of a Podzol at Skånes Värsjö (southern Sweden). In batch experiments, soil was equilibrated with solutions varying in pH and concentration of dissolved organic C. In Bh samples, the release of dissolved C gradually increased with increase in pH. In the Bs1 material there was a minimum at pH 4.1, and in the Bs2 soil the minimum occurred at pH 4.6. The ability to retain added dissolved C increased in the order Bh < Bs1 < Bs2. The column experiment was run for 160 days under unsaturated flow conditions. Columns were packed with Bh, Bh + Bs1 or Bh + Bs1 + Bs2 samples to calculate mass balances for each horizon. Solutions either without any dissolved organic C or ones containing 49 mg C dm?3 with pH of 4.0 or 3.6 were used to leach columns. The pH of input solutions only little affected the concentration of dissolved C in the effluent. Relative proportions of hydrophobic substances decreased with increasing column length and decreasing pH. For input solutions containing dissolved C, near steady state was achieved for both the Bs1 and Bs2 horizons with approximately 25% dissolved organic matter retention. Thus, no maximum sorption capacity for dissolved C could be defined for these horizons. This behaviour could not have been predicted by batch data, showing that column experiments provide useful additional information on interactions between organic compounds and solid soil material.  相似文献   

19.
Properties of dissolved organic matter (DOM) determine its biodegradation. In turn, biodegradation changes the properties of the remaining DOM, which may be decisive for the formation of stable organic carbon in soil. To gain information on both mechanisms and controlling factors of DOM biodegradation and the properties of biodegraded DOM, we investigated changes in the composition of 13 different DOM samples extracted from maize straw, forest floors, peats, and agricultural soils during a 90-day incubation using UV absorbance, fluorescence emission spectroscopy, FTIR-spectroscopy, 1H-NMR spectroscopy, pyrolysis-field ionization mass spectroscopy (Py-FIMS), and 13C natural abundance before and after incubation. Changes in the DOM properties were related to the extent of biodegradation determined by the release of CO2. Increasing UV absorption and humification indices deduced from fluorescence emission spectra, and increasing portions of aromatic H indicated relative enrichment of aromatic compounds during biodegradation. This enrichment significantly correlated with the amount of DOC mineralized suggesting that aromatic compounds were relatively stable and slowly mineralized. 13C depletion during the incubation of highly degradable DOM solutions indicated an enrichment of lignin-derived aromatic compounds. Py-FI mass spectra indicated increasing contents of phenols and lignin monomers at the expense of lignin dimers and alkylaromatics during incubation. This partial degradation of higher-molecular, lignin-derived DOM compounds was accompanied by relative increases in the proportions of lower-molecular degradation products and microbial metabolites. Carbohydrates, especially when abundant at high initial contents, seem to be the preferred substrate for microorganisms. However, four independent methods suggested also some microbial production of carbohydrates and peptides during DOM degradation. After incubation, the composition of highly degradable DOM samples became similar to relatively stable DOM samples with respect to aromaticity, carbohydrate content, and thermal stability. We conclude that DOM biodegradation seems to result in organic matter properties being a precondition for the formation of stable carbon. These structural changes induced by DOM biodegradation should also result in stronger DOM sorption to the soil matrix additionally affecting DOM stabilization.  相似文献   

20.
秸秆施用后土壤溶解性有机质的动态变化   总被引:11,自引:2,他引:11  
采用室内培养方法研究了水稻秸秆腐解对土壤溶解性有机质(Dissolved Organic Matter,DOM)含量及其化学组成的动态影响。结果表明,秸秆腐解的前7 d显著增加了土壤溶解性有机碳(DOC)含量,7 d后则无明显影响;同时,秸秆腐解增加了土壤中溶解性糖(DS)、溶解性酚酸(DP)以及芳香族化合物含量。随着腐解时间的延长,溶解性糖在DOC中所占比例下降,而芳香族化合物逐渐上升,表明秸秆腐解不同阶段DOM的化学组成发生了变化。溶解性总氮(TDN)的变化表明,秸秆腐解增加土壤氮素的固定。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号