首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 62 毫秒
1.
无线传感器网络在农业中的应用   总被引:8,自引:0,他引:8  
无线传感器网络集传感器技术、微机电系统(MEMS)技术、无线通信技术、嵌入式计算技术和分布式信息处理技术于一体,是多学科高度交叉的、知识高度集中的热点研究领域,因其广阔的应用前景而备受关注.该文综述了无线传感器网络的节点构成、体系结构、研究热点,以及在农业中的应用研究现状,针对性地提出在温室、节水灌溉、畜牧等农业领域应用无线传感器网络的方案与思路,为无线传感器网络在农业中的应用拓宽思路,争取早日将无线传感器网络投入到农业应用领域.  相似文献   

2.
无线传感器网络是近年兴起的新兴技术。本文综述了无线传感器网络的节点构成、特点,以及当前在农业领域的应用,并提出了在农业领域应用的新思路。  相似文献   

3.
本文在现有成熟的无线网络技术介绍的基础上,结合精细农业生产中无线传感器网络技术的需求,介绍了现有-Z种成熟无限网络技术,在此基础上通过对比分析得出ZigBee无线网络技术适用于精细农业中的无线传感器设备,并对ZigBee组网技术进行了简要的介绍。  相似文献   

4.
农业环境信息无线传感器网络监测技术研究进展   总被引:3,自引:6,他引:3  
无线传感器网络是实现农业环境变量信息多方位、网络化远程监测的主要技术手段。无线地上传感器网络应用研究集中在作物不同生长期内节点布设距离和高度以及作物高度等对无线电信号传输损失的影响,从而合理选择节点布设参数。无线地下传感器网络应用研究集中在气象环境、土壤类型、土壤含水率、土壤结构与成分、节点埋藏深度、节点距离、频率与功率范围、网络拓扑结构、路由算法、组网方式等对电磁波多路径传输的路径损失、误码率、最大传输距离、含水量测试误差等方面的影响。研究指出,300~500 MHz的频率更适合土壤无线地下传感器网络,其最大传输距离为5 m,传输距离将是系统大面积推广应用的主要限制因素。今后重点应研究433 MHz电磁波在不同土壤和空气多层介质中的传输特性、信道模型及路径损失,优化节点和网络技术参数,确定不同农业应用环境条件下传感器网络节点合理位置和最优的网络拓扑结构方案。  相似文献   

5.
在大规模农田无线传感器网络WSN应用中,如何选择最优的网络架构和相应的自组织方式是一个急需研究的问题。在多跳、无线自组织网络Ad Hoc结构基础之上,针对规模农田面积大、作物生长周期长、传感器节点众多的特点,借鉴生物体内大量细胞生长发育和相互协作的组织机理,提出一种星状网和网状网相结合的分层无线传感器网络拓扑结构和簇首轮换机制,通过簇内控制减少节点与基站远距离的信令交互,降低网络建立的复杂度,减少网络路由和数据处理的开销。  相似文献   

6.
提出了一种基于无线传感器网络的农田自动节水灌溉的构建方案,详细介绍了传感器节点和灌溉控制器的设计。无线传感器网络实时采集、传输传感器数据,灌溉控制器控制灌溉管网,分区域实时灌溉并调节土壤湿度,实现精细农业所要求的时空差异性和水资源高效利用。  相似文献   

7.
基于无线传感器网络的精细农业智能节水灌溉系统(英)   总被引:2,自引:8,他引:2  
在精细农业相关应用和理论研究基础上,自行设计用于监测农田水分含量和水层高度的无线传感器,构建农田水分无线传感器网络体系结构,设计基于水分无线传感器网络的智能节水灌溉控制系统,通过实时农田水分数据和农作物水分需求专家数据形成灌溉决策,由灌溉控制系统实施定量灌溉。实际应用表明,该系统体现出可行性和高效性,有利于精细农业的发展和水资源的可持续利用。  相似文献   

8.
分析了无线传感器网络的发展情况,提出了一种适用于无线传感器网络的基于IEEE802.15.4协议的JN5139终端节点设计,对影响大田作物生长造成影响的诸多因素,如土壤温湿度、空气温湿度、光照强度、二氧化碳浓度、有害气体(二氧化硫)浓度等环境因子提取实时数据,并对这些数据进行存储、分析处理,以及转发。借助GPRS网络实现对数据的上传,并传入到Internet,通过TCP-IP传送到相关用户,及时了解所需信息,指导耕作方向。根据实际需求分析、设计、实现等方面叙述了开发过程,并通过实验测试数据,图片等形象手段体现作者的思路。  相似文献   

9.
农田土壤含水率监测的无线传感器网络系统设计   总被引:8,自引:11,他引:8  
为解决传统土壤含水率监测中所存在的监测区域面积小、采样率低等问题,设计和开发了基于无线传感器网络技术的土壤含水率监测系统,包括10个传感器节点,1个簇首和1个基站节点,可按任意时间间隔全自动地采集、处理、传输和存储地表以下4个不同土层土壤含水率变化状况;各类节点采用TinyOS操作系统,节点间通信遵循ZigBee协议;含水率测量采用EC-5传感器;太阳能供电模块的供电能力满足传感器节点及簇首的能耗需求;进行了数据包传输率试验,10个传感器节点中有7个的数据包正确传输率高于90%,1个节点的数据包正确传输率为89.2%,2个节点的传输率低于70%。造成2个节点数据包传输率较低的主要原因是太阳能供电电路制作,通过更换电路板解决了该问题。试验结果表明,系统能够实现稳定的数据传输,适合农田土壤含水率的实时监测。  相似文献   

10.
安全是一个好的传感网络设计中的关键问题,本文将深入分析无线传感器网络特点以及其所可能面临的安全威胁,并对其相应的安全对策进行了分析和探讨。  相似文献   

11.
为减少因节点失效和外界干扰带来的数据完整性问题,在无线水分传感器节点软硬件配置、网络周期性工作机制以及方向性网络拓扑的基础上,讨论适用于土壤水分周期性实时监测应用的无线水分传感器网络路由协议。传感器节点在农田中呈二维矩阵结构的网格分布,以两字节行列编号对节点进行二维行列地址编码。将网络按照不同数量的列划分为分路,数据在分路内部定点传输,分路之间顺序传输。对单路、双路和三路路由策略进行了描述,从网络传输数据量、节点超时时间以及数据完整性等方面对分路定点路由策略进行分析和仿真。结果显示,分路定点路由比AODV协议有更好的能耗和数据完整性表现,满足土壤水分周期性监测需要。  相似文献   

12.
作物精量灌溉系统的无线传感网络应用开发   总被引:2,自引:5,他引:2  
为准确提供作物水分亏缺程度并为精量灌溉提供科学依据,基于作物水分胁迫声发射原理,研究无线传感器网络技术在精量灌溉系统中的应用。采用自适应加权数据融合算法来提高声发射信号精度,提出基于簇的多跳路由算法以减少结点数据传输能耗,利用NB100网关实现无线网和有线网之间的桥接。系统分布式运行,具有鲁棒性强、易于扩充和伸缩性良好等优点。仿真试验表明该系统组网正确、无线传输能耗占总能耗的60%以上,可以使人们远程、精确获取作物需水信息,并实施精量灌溉,能够应用到农田、苗圃、温室等节水农业领域中。  相似文献   

13.
针对大棚基地作物状态及环境信息的无线采集的需求,设计了改进的分簇Tree-Mesh混合拓扑结构无线传感器网络,并利用ZigBee实现了组网和多跳通信,以CC2530为核心设计了多传感器无线节点硬件系统,基于Z-Stack协议栈设计了有限状态机节点程序。同时,针对无线节点低功耗和网络信息低冗余的要求,设计了基于接收信号强度指示的最佳发射功率自适应机制,和基于感知数据差值的最小传输数据冗余自适应机制。试验结果表明,节点单跳和多跳通信速率典型值分别为20与0.3kb/s,采用干电池供电和直流供电的节点通信距离分别可达30和90m。仿真结果证明采用低功耗自适应机制的节点功耗降低了38.44%,可用作大棚基地的环境监测。  相似文献   

14.
农田无线传感器网络的节点部署仿真与实现   总被引:3,自引:6,他引:3  
应用无线传感器网络进行农田信息采集时,针对农田面积大、传感器节点众多的特点,如何有效地部署节点成为研究的热点之一。利用NS2软件从丢包率、平均延时、剩余能量和接收信号强度等网络性能角度对随机部署、正六边形部署及正四边形部署方式进行了仿真比较,最终确定正六边形部署方案,并在农田中进行实地试验。结果表明系统能够实现无缝覆盖,稳定可靠的采集农田信息,为无线传感器网络在农田环境中的进一步应用提供了参考。  相似文献   

15.
温室环境控制无线传感器网络的服务质量管理   总被引:6,自引:2,他引:6  
针对基于无线传感器网络构建的温室环境控制系统,为了减少无线网络固有的时变传输延时、丢包、网络拥塞等现象对控制性能的影响,该文从提高网络服务质量(quality of service,QoS)的角度出发,提出一种基于Takagi-Sugeno模糊控制器的QoS管理策略。该QoS管理策略以截止期错失率作为QoS性能评价指标,针对传感器节点和执行器节点之间的数据传输,通过动态调整传感器节点的采样周期,使截止期错失率维持在设定水平,从而提高网络QoS。初步试验表明了该QoS管理策略的合理性、有效性和实用性。该QoS管理策略可以广泛应用于温室、农田、苗圃等区域。该研究为提高无线传感器网络在设施农业中的应用水平做出了有益探索。  相似文献   

16.
传感器网络技术为大范围稻田水分信息采集提供了一种新技术手段。利用测量稻田水分含量和水层深度测量的无线传感器WFDMS,探讨了构建稻田水分传感器网络PMSN的关键技术:设计了大面积、大范围应用体系结构模型;提出了一种满足稻田水分采样频率和数据业务需求的低功耗传输控制协议LPTP-PMSN;开发了水分信息监测信息管理系统,实现了完整运行的稻田水分传感器网络整套系统。试验表明,PMSN网络在稻田中的可靠通信距离达60 m,在 3.6 V/2 100 mAh电池供电下,4 h周期采样试验中,在传输协议LPTP-PMSN控制下,传感器、簇首、基站、短信网关、计算机间能够协同工作,整个稻田水分传感器网络可以较可靠运行,节点生命期超过190 d。该研究可为农用信息监控无线传输网络的其他应用提供参考。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号