首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 797 毫秒
1.
为探明间作作物根系分泌低分子量有机酸对土壤重金属生物有效性的影响,采用矿区周边农田土壤进行室内盆栽试验,研究了云南本土超累积植物续断菊(Sonchus asper L. Hill)和玉米(Zea mays L.)间作下,植物生长、根系低分子量有机酸分泌量、根际土壤Pb提取形态以及植物Pb积累特点。结果表明:与单作相比,间作续断菊地上部和根部生物量、根长、根内径和根系体积均显著增加(P0.05);间作玉米根部生物量、根长、根内径和根系体积显著增加(P0.05)。柠檬酸、草酸是续断菊和玉米根系分泌的主要低分子量有机酸,间作导致续断菊根系低分子量有机酸的分泌量增加,玉米根系低分子量有机酸的分泌量降低。续断菊根际土壤生物有效态Pb含量增加85.2%(P0.05),而玉米根际土壤生物有效态Pb含量降低26.1%(P0.05)。续断菊体内Pb含量显著增加18.0%~43.2%(P0.05),富集系数提高26.0%,而转运系数降低42.0%;玉米地上部Pb含量显著降低24.3%(P0.05),转运系数降低43.1%。续断菊根系分泌的柠檬酸和草酸数量,均与土壤生物有效态Pb含量呈显著正相关,且土壤有效态Pb含量分别与续断菊地上部和根部的Pb含量呈显著正相关。表明间作增加了续断菊对Pb的吸收积累量,与间作体系植物根系分泌的低分子有机酸介导下的土壤有效态Pb含量增加密切相关。  相似文献   

2.
Summary Inoculated and non-inoculated seedlings of Zea mays were grown in agricultural soils under aseptic and non-sterile conditions. Acetylene reduction activity and microbial counts were determined after 7 and 30 days of growth. Irrespective of the soil type Azotobacter spp. were commonly isolated under maize cultivation. Inoculation of agricultural soils with a suspension of A. chroococcum led to an increase in Azotobacter numbers, although this effect diminished with time. Nitrogenase activity was detected on maize roots and increased in response to the inoculation with A. chroococcum, showing that this associative growth could be of primary importance for the plant. The results of assays for acetylene reduction activity indicated that the nitrogenase activity was associated only with the root systems.  相似文献   

3.
Summary A nitrate-respiring strain, a denitrifying strain, and a non-nitrogen-fixing strain of Azospirillum brasilense were compared for their effect on the growth of pearl millet (Pennisetum americanum), wheat (Triticum aestivum) and maize (Zea mays) under temperate conditions in nitrogen-limited pot cultures. Increases in yield of Z. mays shoots occurred with all three strains when inoculation coincided with the addition of low levels of combined nitrogen. The inoculation of A. brasilense did not show any effect on the yield of P. americanum and T. aestivum. Increased numbers of A. brasilense became associated with Z. mays roots following the addition of low levels of combined nitrogen. Low and very variable rates of acetylene reduction activity were observed from excised roots of inoculated Z. mays plants without preincubation. Results indicate that inoculation of cereals with A. brasilense under temperate conditions has only a limited effect on plant growth.  相似文献   

4.
Fine root biomass can be estimated from the quantity of DNA of a target plant extracted from fine root samples using regression analysis. However, the application of this method to fine root samples mixed with soil particles (mixed samples) is difficult due to the high DNA adsorption capacity of some clay minerals. Our aim in this study was to clarify the enhancement level of the DNA extraction efficiency of an improved method, and to obtain a regression line between the amount of DNA and the root biomass from a mixed sample with similar reliability as for fine roots alone (pure root sample). We examined the amount of DNA extracted from a mixture of Zea mays L. fine roots and highly adsorbent Kanuma soil using various concentrations of a skim milk solution, which acts as an adsorption competitor for the soil particles during the DNA extraction process. The amount of DNA of Zea mays extracted from the mixed sample using 0% skim milk was lower than from the pure root sample. However, the amount of DNA extracted from the mixed sample increased with increasing concentrations of skim milk, reaching the same level as for the pure root samples and resulting in a regression line that was similar to the pure root samples. Optimal DNA extraction levels were obtained with the addition of 20?µL of a 20% skim milk solution to 30?mg of a mixed sample. We also discuss the applicability of this method to other plant species and soil types.  相似文献   

5.
Collembola are abundant and ubiquitous soil decomposers, being particularly active in the rhizosphere of plants where they are assumed to be attracted by high microbial activity and biomass. While feeding on root associated microorganisms or organic matter they may also ingest plant roots, e.g. particularly root hairs and fine roots. Employing stable isotope analysis we investigated Collembola (Protaphorura fimata Gisin) feeding preferences and types of ingested resources. We offered Collembola two resources with distinct isotope signatures: a C4 plant (Zea mays L.) planted in soil mixed with 15N labelled litter of Lolium perenne L. (C3 plant). We hypothesised that Collembola obtain their nutrients (C and N) from different resources, with their carbon being mainly derived from resources that are closely associated to the plant root, e.g. root exudates, causing enrichment in 13C in Collembola tissue, while the incorporated nitrogen originating from litter resources. In contrast to our hypothesis, stable isotope analysis suggests that in absence of plant roots Collembola derived both the incorporated C and N predominantly from litter whereas in presence of plant roots they switched diet and obtained both C and N almost exclusively from plant roots.The results indicate that Collembola in the rhizosphere of plants, being assumed to be mainly decomposers, in fact predominately live on plant resources, presumably fine roots or root hairs, i.e. are herbivorous rather than detritivorous or fungivorous. These findings have major implications on the view how plants respond to decomposers in the rhizosphere.  相似文献   

6.
Summary Mature (flowering) tobacco (Nicotiana tabacum cv. PBD6, Nicotiana rustica cv. Brasilia) and maize (Zea mays cv. INRA 260) plants were grown in an acid sandy-clay soil, enriched to 5.4 mg Cd kg–1 dry weight soil with cadmium nitrate. The plants were grown in containers in the open air. No visible symptoms of Cd toxicity developed on plant shoots over the 2-month growing period. Dry-matter yields showed that while the Nicotiana spp. were unaffected by the Cd application the yield of Z. mays decreased by 21%. Cd accumulation and distribution in leaves, stems and roots were examined. In the control treatment (0.44 mg Cd kg–1 dry weight soil), plant Cd levels ranged from 0.4 to 6.8 mg kg–1 dry weight depending on plant species and plant parts. Soil Cd enrichment invariably increased the Cd concentrations in plant parts, which varied from 10.1 to 164 mg kg–1 dry weight. The maximum Cd concentrations occurred in the leaves of N. tabacum. In N. rustica 75% of the total Cd taken up by the plant was transported to the leaves, and 81% for N. tabacum irrespective of the Cd level in the soil. In contrast, the Cd concentrations in maize roots were almost five times higher than those in the leaves. More than 50% of the total Cd taken up by maize was retained in the roots at both soil Cd levels. The Cd level in N. tabacum leaves was 1.5 and 2 times higher at the low and high Cd soil level, respectively, than that in N. rustica leaves, but no significant difference was found in root Cd concentrations between the two Nicotiana spp.Cd bioavailability was calculated as the ratio of the Cd level in the control plants to that in the soil or as the ratio of the additional Cd taken up from cadmium nitrate to the amount of Cd applied. The results showed that the plant species used can be ranked in a decreasing order as follows: N. tabacum > N. rustica > Z. mays.  相似文献   

7.
在富营养土壤斑块中根增值对玉米养分吸收和生长的贡献   总被引:1,自引:0,他引:1  
Root proliferation can be stimulated in a heterogeneous nutrient patch; however, the functions of the root proliferation in the nutrient-rich soil patches are not fully understood. In the present study, a two-year field experiment was conducted to examine the comparative effects of localized application of ammonium and phosphorus (P) at early or late stages on root growth, nutrient uptake, and biomass of maize (Zea mays L.) on a calcareous soil in an intensive farming system. Localized supply of ammonium and P had a more evident effect on shoot and root growth, and especially stimulated fine root development at the early seedling stage, with most of the maize roots being allocated to the nutrient-rich patch in the topsoil. Although localized ammonium and P supply at the late stage also enhanced the fine root growth, the plant roots in the patch accounted for a low proportion of the whole maize roots in the topsoil at the flowering stage. Compared with the early stage, fine root length in the short-lived nutrient patch decreased by 44%-62% and the shoot dry weight was not different between heterogeneous and homogeneous nutrient supply at the late growth stage. Localized supply of ammonium and P significantly increased N and P accumulation by maize at 35 and 47 days after sowing (DAS); however, no significant difference was found among the treatments at 82 DAS and the later growth stages. The increased nutrient uptake and plant growth was related to the higher proportion of root length in the localized nutrient-enriched patch. The results indicated that root proliferation in nutrient patches contributed more to maize growth and nutrient uptake at the early than late stages.  相似文献   

8.
Wheat (Triticum aestivum L.), rice (Oryza sativa) and maize (Zea mays L.) are the most important cereals worldwide. However, in the last few years, soil has been submitted to both use and handling pressures due to the increase in agricultural practices, which are leading to its degradation. The use of plant growth-promoting rhizobacteria (PGPR) as inoculants constitutes a biological alternative for sustainable production. Pseudomonas aurantiaca SR1 was formulated as an inoculant in order to evaluate its growth promotion effect in the field when applied on maize and wheat seeds at the sowing time. P and N fertilization treatments were also included in the assays. P. aurantiaca SR1 colonized the root system of both crops and it persisted at appropriate population densities. It also showed a significant plant growth-promoting effect that was reflected in the yield. Another relevant finding was that both crops, when inoculated with P. aurantiaca SR1, presented higher yields with fertilization doses lower than those conventionally applied. This indicated its potential use as a reasonable alternative for crop production, with a minimization of the ecological impact.  相似文献   

9.
A greenhouse experiment was conducted in a red sandy loam soil (Alfisol) to study the responses of arbuscular mycorrhizal (AM) fungus Glomus intraradices Schenck & Smith inoculated (M+) and uninoculated (M−) maize (Zea mays L) plants exposed to various levels of P (15 and 30 mg kg−1) and Zn (0, 1.25, and 2.5 mg kg−1). Roots and shoots were sampled at 55 and 75 days after sowing and assessed for their nutritional status, root morphology, and root cation exchange capacity (CEC) besides grain quality. Mycorrhizal plants had longer and more extensive root systems than nonmycorrhizal plants, indicating that M+ plants are nutritionally rich, especially with P, which directly assisted in the proliferation of roots. Further, root CEC of M+ plants were consistently higher than those of M− plants, suggesting that mycorrhizal colonization assists in the acquisition of nutrients from soil solution. Mycorrhizal inoculated plants had significantly (P ≤ 0.01) higher P and Zn concentrations in roots, shoots, and grains, regardless of P or Zn levels. The available Zn and P status of AM fungus-inoculated soils were higher than unioculated soils. The data suggest that mycorrhizal symbiosis improves root morphology and CEC and nutritional status of maize plants by orchestrating the synergistic interaction between Zn and P besides enhancing soil available nutrient status that enables the host plant to sustain zinc-deficient conditions.  相似文献   

10.
Nutrient‐rich biochar produced from animal wastes, such as poultry litter, may increase plant growth and nutrient uptake although the role of direct and indirect mechanisms, such as stimulation of the activity of mycorrhizal fungi and plant infection, remains unclear. The effects of poultry litter biochar in combination with fertilizer on mycorrhizal infection, soil nutrient availability and corn (Zea mays L.) growth were investigated by growing corn in a loam soil in a greenhouse with biochar (0, 5 and 10 Mg/ha) and nitrogen (N) and phosphorus (P) fertilizer (0, half and full rates). Biochar did not affect microbial biomass C or N, mycorrhizal infection, or alkaline phosphomonoesterase activities, but acid phosphomonoesterase activities, water‐soluble P, Mehlich‐3 Mg, plant height, aboveground and root biomass, and root diameter were greater with 10 Mg/ha than with no biochar. Root length, volume, root tips and surface area were greatest in the fully fertilized soil receiving 10 Mg/ha biochar compared to all other treatments. The 10 Mg/ha biochar application may have improved plant access to soil nutrients by promoting plant growth and root structural features, rather than by enhancing mycorrhizal infection rates.  相似文献   

11.
Summary Potential denitrifying activity and population dynamics of Azospirillum lipoferum (137C) and Bradyrhizobium japonicum (G2sp) inoculated into a -sterilized soil were studied for a period of 3 weeks. The denitrifying enzyme potential of soil inoculated independently with each bacterial species was strongly stimulated by the presence of a plant (Zea mays L.). Simultaneous inoculation of both bacteria also produced a higher denitrifying enzyme potential than simple inoculation. Even with double inoculation, the presence of a plant did not modify the evolution of the activity. The response of the population dynamics to these treatments followed a different pattern. The population dynamics of A. lipoferum was not affected by the presence of the plant or by the presence of B. japonicum. In contrast, the presence of both a plant and of A. lipoferum seemed to promote the growth of B. japonicum.  相似文献   

12.
The effect of salinity on the efficacy of two arbuscular mycorrhizal fungi, Glomus fasciculatum and G. macrocarpum, alone and in combination was investigated on growth, development and nutrition of Acacia auriculiformis. Plants were grown under different salinity levels imposed by 0.3, 0.5 and 1.0 S m-1 solutions of 1 M NaCl. Both mycorrhizal fungi protected the host plant against the detrimental effect of salinity. The extent of AM response on growth as well as root colonization varied with fungal species, and with the level of salinity. Maximum root colonization and spore production was observed with combined inoculation, which resulted in greater plant growth at all salinity levels. AM fungal inoculated plants showed significantly higher root and shoot weights. Greater nutrient acquisition, changes in root morphology, and electrical conductivity of soil in response to AM colonization was observed, and may be possible mechanisms to protect plants from salt stress.  相似文献   

13.
菌根对紫色土上间作玉米生长及磷素累积的影响   总被引:4,自引:2,他引:4  
丛枝菌根真菌(arbuscular mycorrhizal fungi,AMF)在土壤与植物系统的磷素循环中发挥着关键的作用。本文通过盆栽模拟试验研究了不同AMF接种状况[不接种(NM)、接种Glomus mosseae(GM)、接种G.etunicatum(GE)]和玉米/大豆间作体系不同根系分隔方式(不分隔、尼龙网分隔、塑料膜分隔)对间作玉米植株生长及磷素吸收累积的影响。研究结果表明:GM处理下的间作玉米根系侵染率在不同根系分隔方式之间的差异不显著,而GE处理则在塑料膜分隔处理下对玉米的侵染率最高。接种不同AMF对间作玉米促生效果不同,GM和GE处理在不同根系分隔情况下表现出各自的优势,与未接种处理相比,GM处理能使玉米生物量、株高有一定程度增加并在根系不分隔处理下玉米磷吸收较多、生长较好;GE处理能使植株生物量有一定程度增加并在尼龙网分隔处理下的玉米磷吸收较多、生长较好。间作体系不同根系分隔方式对玉米的影响也不同,其中玉米地上部生物量在根系分隔处理下普遍小于不分隔处理,但根系生物量的大小情况则刚好相反。另外,无论何种接种状况,玉米根系磷含量及吸收量均以尼龙网分隔处理显著较高。而根系磷吸收效率则以接种G.mosseae且不分隔根系处理显著高于分隔处理。所有复合处理中,以接种G.etunicatum与尼龙网分隔根系组合处理对间作玉米的生长及磷素累积的促进作用最好,若应用于滇池流域,可望有效控制坡耕地土壤磷素的迁移。  相似文献   

14.
A greenhouse study was conducted to evaluate the effects of plant growth-promoting rhizobacteria (PGPR) on root establishment and biomass production of corn (Zea mays L.) using three fertility sources (poultry litter (PL), biosolids, and urea). Applying PL significantly improved root morphological parameters and increased plant biomass at the V4, V6, and VT growth stages when compared to the other fertility sources. At the V4 stage, PGPR stimulated root growth and enhanced aboveground biomass with urea and PL, while no differences were observed with biosolids. At the V6 stage, PL, biosolids, and urea with PGPR significantly increased some growth parameters (e.g., plant height, leaf area, and root morphology). However, at the VT stage, PGPR’s influence on plant growth was minimal regardless of fertility source. Applying the fertility sources at 135 kg N ha?1 may have masked PGPR’s influence on corn growth as the plants reached their later vegetative growth stages.  相似文献   

15.
The bioavailability of heavy metals (Cd, Zn, Pb, Cu) and the abundance of arbuscular mycorrhiza (AM) were studied in two agricultural fields close to a Pb-Zn smelter and three fields outside the pollution zone all cultivated with maize (Zea mays L.). Metal extractability with ethylenediaminetetraacetic acid (EDTA)-NH4OAc and Ca(NO3)2, plant metal uptake, and mycorrhizal parameters (spore number, root colonization) were assessed at two growth stages (six-leaf and maturity). Despite regular liming, the availability of Cd, Zn, and Pb was markedly higher in the two metal-polluted fields than in the three uncontaminated fields. However, the AM abundance was not correlated with metal availability. Root colonization and spore numbers in the metal polluted fields were relatively high, though at plant maturity the former was significantly lower than in one of the uncontaminated fields. The very low AM abundance in the two other unpolluted fields was related to other factors, particular soil and plant P status and soil pH. AM root colonization did not substantially prevent plant metal accumulation, since the metal concentrations in maize grown on the polluted fields strongly exceeded normal values, and for Cd and Pb reached the limits of toxicity for animal feed.  相似文献   

16.
Summary Vesicular-arbuscular mycorrhizal (VAM) fungi affect diverse aspects of plant form and function. Since mycorrhiza-mediated changes in host-plant responses to root colonization by different VAM fungi vary widely, it is important to assess each endophyte for each specific effect it can elicit from its host as part of the screening process for effectiveness. Three species of VAM fungi and a mixture of species were compared with non-VAM controls for their effects on soil organic matter contents and on nutrition and morphology in two varieties (native and hybrid) of corn (Zea mays L.) and one of sunflower (Helianthus annuus L.) in P-sufficient and N-deficient soil in pot cultures. Differences in soil organic matter due to the fungal applications were highly significant with all host plants. Native corn responded more to VAM colonization than the hybrid did; differences in treatments were significant in leaf area, plant biomass, and root: shoot ratio in the former, but not in the latter. Responses in the sunflower were similar to those in the native corn. Significant VAM treatment-related differences in shoot N and P contents were not reflected in shoot biomass, which was invariant. Correlations between plant or soil parameters and the intensity of VAM colonization were found only in soil organic matter with the native corn, in specific leaf area in the hybrid corn, and in plant biomass in the sunflower. The presence of the different endophytes and not the intensity of colonization apparently elicited different host responses.  相似文献   

17.
黄河三角洲盐碱地人工刺槐混交林细根分布研究   总被引:1,自引:0,他引:1  
为研究黄河三角洲盐碱地人工刺槐混交林及纯林细根空间分布格局,选取绒毛白蜡刺槐混交林、臭椿刺槐混交林、刺槐纯林,采用土柱法取样,从细根生物量密度、表面积密度、体积密度、根长密度等方面研究盐碱地中不同林分中树木细根的垂直分布情况,从细根生物量分析不同林木细根垂直分布情况,研究不同人工林细根分布差异及土壤影响因子。结果表明:绒毛白蜡刺槐混交林在细根的生物量、表面积、体积、根长等方面都显著高于臭椿刺槐混交林和刺槐纯林;绒毛白蜡刺槐混交林95.77%细根生物量分布在0~60 cm土层,臭椿刺槐混交林85.37%细根生物量分布在0~40 cm土层,而刺槐纯林的细根在土壤中分布则比较均匀,0~40 cm土层细根占生物量总量的66.38%。绒毛白蜡细根生物量最高,显著高于其他林木。绒毛白蜡刺槐混交林细根表面积密度、体积密度、根长密度显著高于刺槐纯林;臭椿刺槐混交林高于刺槐纯林,差异不显著。绒毛白蜡刺槐混交林、臭椿刺槐混交林细根总根尖数分别是刺槐纯林的2.34倍、1.23倍,总分叉数分别为刺槐纯林的6.15倍、1.66倍。绒毛白蜡刺槐混交林、臭椿刺槐混交林、刺槐纯林树木细根生物量与土壤有效磷、速效钾含量呈显著正相关关系;绒毛白蜡刺槐混交林细根生物量碱解氮、有机质含量呈极显著正相关关系。适当的混交模式在一定程度上提高了人工林细根生物量,增强植物吸收土壤营养物质的能力,混交使人工林在盐碱立地条件下适应能力提高。  相似文献   

18.
为定量评价西宁盆地黄土区优势灌木柠条锦鸡儿根系固土护坡效果,该研究以区内生长期为幼龄期(<6 a)、中龄期(6~14 a)和老龄期(>14 a)3个龄期的柠条锦鸡儿为研究对象,通过原位挖掘法与原位拉拔试验相结合的方式,调查不同龄期柠条锦鸡儿根系形态学指标和根系分布特征,并通过单根拉伸试验获得单根抗拉强度。以此为基础,利用WWM模型对不同龄期柠条锦鸡儿根系附加黏聚力进行计算,评价不同龄期柠条锦鸡儿根系对土体抗剪强度的增强效果。结合有限元数值模拟分析,定量评价不同龄期柠条锦鸡儿根系加筋和锚固作用对黄土边坡稳定性的贡献。结果表明:随着龄期的增加,柠条锦鸡儿根系埋深、根系总根长、主根根径和主根根长均逐渐增加;各龄期柠条锦鸡儿根系主要分布在0~0.6 m土层深度范围内,随着土层深度增加,幼龄期和老龄期根系根长和根数呈逐渐减少趋势;中龄期根系则呈先增大后减小趋势,根长和根数的最大值出现在0.3~0.6 m的土层深度内。幼龄期和老龄期柠条锦鸡儿根面积比和根系附加黏聚力均随着土层深度增加而逐渐减少,中龄期柠条锦鸡儿则呈先增大后减小变化趋势,且该龄期根系增强土体抗剪强度的效果相对最为显著。不...  相似文献   

19.
An understanding of the phosphorus, P, uptake characteristics of plant roots is important for developing practices that improve P fertilizer efficiency. Phosphorus uptake by plant roots is influenced by plant root properties and solution P level. Since little information about the nutrient uptake characteristics of spring wheat (Triticum vulgare L.) roots is available, this research was undertaken with wheat to determine the relation between the proportion of the roots supplied with P on P influx and root growth characteristics. An experiment was conducted with wheat plants grown in solution culture in a controlled climate chamber.

Phosphorus uptake kinetics were measured on 30‐day‐old wheat using split‐root experiments. Supplying P to only part of the root system resulted in lower plant P concentration and higher Imax(maximum influx) by the roots. The Imax value of wheat roots was much lower than corn (Zea mays L.) and soybeans (Glycine max L.), but the values of Km (the solution P concentration where influx, In is 1/2 Imax) and Cmin (the solution P concentration where influx, In is 1/2 Imax) were greater than those of both corn and soybean crops grown in similar experiments. Phosphorus concentrations in wheat plant's shoots and roots were higher than those for corn and soybean with the same proportions of roots in P solution. Decreasing the proportion of the roots supplied with P had no statistically significant (p = 0.05) effect on shoot dry weight. This differs from the results for corn and soybeans where it decreased significantly as the proportion of the roots exposed to P decreased. These results indicate that the effect of P placement on P uptake and on plant root growth varied among species.  相似文献   


20.
We investigated the root growth of native Schizachyrium scoparium, little bluestem grass, and the seasonal abundance of rhizoplane and root zone soil microorganisms on burned and unburned sand prairies. Root growth and abundances of rhizoplane and root zone microorganisms were greater in burned than unburned sites. Microbe populations were nearly always higher on the rhizoplane than in the root zone soils, although they were not always significantly different. The seasonal dynamics of total bacteria, total fungi, fluorescent pseudomonads, and microorganisms that decompose chitin, cellulose, and protein varied between burned and unburned sites. Some microbial populations showed significant, though weak, relationships with root growth. Populations of most microorganisms were usually highest from June through August, when roots were being shed following the peak standing crop of root mass in May. The production of fine roots on burned sites early in the growing season and the consequent shedding of fine roots probably have an important effect on microbe population dynamics.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号