首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到15条相似文献,搜索用时 156 毫秒
1.
针对现有单边制动履带车辆跟踪控制算法同周期内并行控制难、跟踪精度低、转向控制次数较多等问题,该研究以电控化改装后江苏筑水农机 3B55 型履带运输车为试验平台,开展单边制动履带车辆路径跟踪控制算法研究。通过单边制动履带车辆运动学分析,构建车辆预瞄跟踪模型,提出一种预瞄跟踪模糊控制算法,将横向偏差与航向偏差作为多输入输出模糊控制器输入参数,实现车辆同一控制周期内转向与直线行驶的并行控制。为了优化车辆路径跟踪精度与转向控制次数,提出改进麻雀搜索算法(sparrow search algorithm, SSA)的自适应前视距求解算法,考虑车辆的横向偏差和转向路径角度约束,解析较优前视距离,通过仿真和田间试验对算法进行跟踪精度与转向控制次数综合评价。仿真结果表明:基于自适应预瞄跟踪模糊控制算法跟踪多角度规划路径时,车辆转向控制次数为89次,误差面积为1.74 m2。田间作业路况下,由于试验路面起伏不平,并且随速度增加车辆跟踪精度下降,但跟踪精度及转向控制次数随前视距离的变化规律与仿真结果一致,当车辆分别以0.14、0.47和0.83 m/s跟踪路径时,自适应预瞄跟踪模糊控制算法相对于固定前视距离预瞄跟踪模糊控制算法车辆转向控制次数分别减少13.59%、9.87%和11.25%,误差面积分别减少19.93%、48.48%和54.59%,验证了算法的有效性。研究结果可为单边制动履带车辆的农机自动导航技术提供创新思路与技术支撑。  相似文献   

2.
履带式联合收获机水田作业转向运动学分析与试验   总被引:5,自引:5,他引:0  
为设计适于水田土壤环境的履带式联合收获机导航控制器,需准确分析履带联合收获机在水田中的运动规律。该研究在建立履带联合收获机转向运动学模型的基础上,推导了低速侧履带转向滑移率和高速侧履带转向滑转率与转向半径、转向角速度、履带卷绕速度的关系,搭建了履带联合收获机转向运动参数测试系统,采用限幅平均滤波处理转速信号,滤波窗口宽度为10个采样值时,转速信号方差减小了60.8%;采用扩展Kalman滤波器融合定位数据和IMU传感器数据记录履带式联合收获机行进轨迹和航向角,航向监测标准差比滤波前减小53.6%。田间试验表明,水田中履带式联合收获机的转向半径和转向角速度主要与前进速度和滑转率、滑移率相关,高速度侧履带滑转率随前进速度的增加而增大,变化范围为0.066~0.378,低速侧履带滑移率接近1,由于履带转向时的滑移滑转,实际转向半径大于理论转向半径,转向半径修正系数的变化范围为1.737~2.947,与前进速度呈二次函数关系;实际转向角速度小于理论转向角速度,转向角速度修正系数的变化范围为0.315~0.677,与前进速度呈幂函数关系。研究结果可为水田作业的履带式联合收获机导航控制器设计提供理论依据和参考。  相似文献   

3.
为了提高农机路径跟踪系统控制性能对作业速度变化的适应性,该研究提出一种基于预瞄运动学模型的快速预测控制方法。采用预瞄跟随理论建立预瞄航向误差模型,并将其作为输出方程与路径跟踪误差常规状态方程联立,构建预瞄运动学状态空间误差模型,进而运用模型预测控制算法与输入参数化衰减策略设计路径跟踪控制律。仿真试验结果表明,在不同作业速度下,预瞄模型预测控制器的直线路径跟踪横向误差均渐近趋于0,行驶曲线均无超调;当作业速度为1、3与5 m/s时,预瞄模型预测控制器的圆形路径跟踪横向最大绝对误差分别为8.52、10.42和10.82 cm,标准差分别为3.96、5.83和6.17 cm;当控制时域为10、30与60时,预瞄模型预测控制器的运算周期相对常规模型预测控制器分别减小7.5%、43.0%和48.5%;与常规模型预测控制相比,预瞄模型预测控制能够在确保路径跟踪系统控制精度的同时有效改善系统的动态性能和提高系统的实时性,使不同作业速度下的跟踪效果更加均衡。田间测试结果表明,在0.5~5 m/s作业速度范围内,预瞄模型预测控制器对作业速度变化具有较强的适应性,能够使农机快速平稳地跟踪参考路径并具有较高的控制精度,其直线路径跟踪的横向最大绝对误差均值小于5.5 cm、标准差均值小于2.5 cm,圆形路径跟踪的横向最大绝对误差均值小于15.5 cm、标准差均值小于8.5 cm,跟踪效果满足农机实际作业要求,适于复杂作业环境或高速作业场合。  相似文献   

4.
油动履带底盘由于具有成本低、技术成熟、动力充足、续航能力强、维修便捷等特点而被广泛应用于农业生产,但其操控精度低、振动严重等问题对其应用造成挑战。该研究以农用油动履带底盘为对象,根据共性传动结构提出离合制动式履带底盘,并以STM32F303作为主控器搭建基于实时动态差分全球导航卫星系统(real-time kinematic global navigation satellite system,RTK-GNSS)的自动导航系统,建立其运动学模型,提出一种改进模糊式预瞄控制算法—虚拟探照灯寻径跟踪(virtual searchlight pathfinding tracking,VSPT)算法。针对横向偏差和速度变化引起的跟踪振荡问题,提出基于横向偏差指数的视域角动态调整方法和基于行驶速度的虚拟目标点判断方法,并通过仿真和试验验证算法的有效性。仿真结果表明,在底盘前进速度0.4 m/s时,横向偏差指数λ,视域增益k1和目标增益k2取值为1/4,0.005 rad·m和6 s-1时可获得较好的导航效果。现场试验结果表明,在水泥路面下, 6种不同初始位姿下,直线导航平均上线距离为1.64 m,平均横向偏差和航向偏差为0.44 cm和1.57°;行驶速度提高会导致导航精度降低,适当修正k1k2可维持较好的导航效果,3种行驶速度下获得的平均横向和航向偏差分别为0.75 cm和1.05°,平均纠偏次数为4.7次;田间路况下,由于土路附着系数增加,转向相对平稳,纠偏次数降低至2.7次,相同参数时2种路况下的导航效果接近。研究表明,VSPT算法针对离合制动式履带底盘具有良好的跟踪效果和路况适应性,该研究可为离合制动履带平台提供一种高效、稳定的导航控制方案。  相似文献   

5.
基于GNSS的农机自动导航路径搜索及转向控制   总被引:8,自引:8,他引:0  
为提高农机自动导航系统性能,提出了一种基于全球导航卫星系统(global navigation satellite system,GNSS)的农机自动导航路径搜索方法和基于预瞄点搜索的纯追踪模型。根据农机不同作业需求,导航系统可选择直线路径搜索或曲线路径搜索,实现农机直线和曲线自动导航作业;建立基于预瞄点搜索的纯追踪模型,并将其用于农机转向控制,该模型不涉及复杂的控制理论,适用性较强。为验证路径搜索方法和纯追踪模型性能,以John Deere拖拉机为试验平台,进行了农机直线跟踪和转向控制导航试验。结果表明:直线路径跟踪导航试验,车速为0.8、1.0和1.2 m/s时,导航均方根误差分别为3.79、4.28和5.39 cm;转向导航试验,车速为0.6 m/s时,在弓形转弯和梨形转弯导航方式下,导航均方根误差分别为25.23和14.42 cm;与模糊控制方法对比试验,直线路径导航方式下,应用该文方法和模糊控制方法的导航均方根误差分别为4.30和5.95 cm,在曲线路径导航方式下,应用该文方法和模糊控制方法的导航均方根误差分别为13.73和21.40 cm;基于GNSS的农机自动导航路径搜索方法和预瞄点搜索的纯追踪模型可以得到较好的定位控制精度,可满足田间实际作业的要求。  相似文献   

6.
水稻田土壤松软,收割机作业后会出现残留秸秆凸起、地表坑洼等现象,导致秸秆旋埋还田作业易出现重耕、漏耕和自动驾驶路径跟踪精度差等问题。该研究基于滑移估计模型推导了拖拉机路径跟踪的前轮转角控制率,并设计了一种变增益单神经元PID导航控制器。在自主设计的电控比例液压转向系统基础上开发了秸秆旋埋还田导航系统,采用双天线RTK-GNSS获取拖拉机的实时位置和航向角信息,由变增益单神经元PID控制器根据理论转角和航向角偏差变化输出实际执行转角,实现旋埋作业自主路径跟踪。田间试验表明,作业速度为1.15m/s时,变增益单神经元PID控制器的自适应直线跟踪最大横向偏差不超过0.071 m,平均绝对偏差不超过0.031 m。与常规PID控制器相比,变增益单神经元PID控制器的最大横向偏差和平均绝对偏差控制精度分别提高了53.08%和51.72%;与单神经元PID控制器相比,最大横向偏差和平均绝对偏差控制精度分别提高了39.00%和28.21%。该研究设计的变增益单神经元PID控制器可以增强导航系统的适应性和鲁棒性,提高路径跟踪精度,适用于未来无人驾驶下的秸秆旋埋还田作业。  相似文献   

7.
联合收获机单神经元PID导航控制器设计与试验   总被引:5,自引:4,他引:1  
针对联合收获机在田间直线跟踪作业中在维持高割幅率条件下易产生漏割的问题,设计了一种基于单神经元PID(Proportion Integration Differentiation)的联合收获机导航控制器。以轮式联合收获机为平台,通过对原有液压转向机构进行电控液压改装,搭载相关传感器构建了导航硬件系统。开展了常规PID控制和单神经元PID控制的仿真以及实地对比试验,仿真结果表明单神经元PID控制具有超调小和进入稳态快等特点;路面试验表明,当收获机速度为0.7 m/s时,单神经元PID控制最大跟踪偏差为6.10 cm,平均绝对偏差为1.21 cm;田间试验表明,收获机速度为0.7 m/s时,单神经元PID控制田间收获最大跟踪偏差为8.14 cm,平均绝对偏差为3.20 cm。试验表明所设计的联合收获机导航控制器能够满足自动导航收获作业要求,为收获作业自动导航提供了技术参考。  相似文献   

8.
小型履带式油菜播种机导航免疫PID控制器设计   总被引:9,自引:7,他引:2  
针对适应于长江中下游地区稻茬田土壤黏湿、小田块的轻简化播种机智能化问题,设计了一种基于免疫PID的小型履带式油菜播种机导航控制器。以小型履带式油菜播种机为基础,利用电磁铁对其转向系统进行电控改装,采用高精度北斗定位模块和电子罗盘进行组合导航,获取履带式播种机的位置和航向信息作为导航控制器的输入,设计了小型履带式油菜播种机自动导航控制系统。建立了履带式油菜播种机运动学模型和转向角传递函数,利用Matlab仿真和实地导航试验对常规PID控制和免疫PID控制进行了对比试验。仿真表明:在相同参数条件下,与常规PID相比,免疫PID控制具有响应快、超调量小、平均跟踪误差小等特点;路面试验表明:当播种机速度为0.50m/s时,免疫PID控制器直线跟踪的平均绝对偏差为4.2 cm,最大跟踪偏差为11.9 cm。田间试验表明:当播种机速度为0.50 m/s时,免疫PID控制器直线跟踪平均绝对偏差为5.8 cm,最大偏差不超过15.2 cm,能够较好地满足播种机导航作业要求,该研究可为履带式播种机的自主导航提供了技术参考。  相似文献   

9.
针对速度因素对拖拉机自动导航系统稳定性的影响,提出了基于横向位置偏差和航向角偏差的双目标联合滑模控制方法,在建立两轮拖拉机-路径动力学模型和直线路径跟踪偏差模型的基础上,应用Matlab/Simulink进行整体系统仿真,验证了控制方法的可靠性;以雷沃TG1254拖拉机为载体搭建了自动导航控制系统田间试验平台,分别在定速和变速条件下,进行了拖拉机直线路径跟踪控制的田间试验;分析了不同速度条件下的动态跟踪控制效果,验证了设计的自动导航控制系统的稳定性和控制精度。试验结果表明:在拖拉机田间作业常见的定速直线行驶工况下,采用基于速度自适应的双目标联合滑模控制方法,拖拉机直线路径跟踪控制的横向位置偏差最大值为10.60 cm,平均绝对偏差在3.50 cm以内;航向角偏差最大值为3.87°,平均绝对偏差在1.70°以内;在进入稳态以后,前轮转向角最大摆动幅度为3°,摆动标准差为0.80°。结论表明,该文提出的基于速度自适应的拖拉机自动导航控制系统,能基本实现不同速度下的直线路径自动跟踪控制。  相似文献   

10.
为了解决小型水田底盘因路径偏差导致的稻苗碾压损伤问题,该研究提出一种基于触感引导的自动对行方法。采用自制的感测器获取稻株定位历程触感数据,通过数据的分割阈值设定、区域谷值提取、横向距离标定获得感测器与稻株的横向距离。根据水稻机械化移栽行距规整性,利用行距与定位数据几何关系校验稻株定位数据,解算获得稻列方向相邻稻株中点位置,实现对行目标点坐标提取。基于时变坐标系跟踪方法,控制转向电机实时校正路径偏差,实现小型水田底盘自动对行。田间性能试验表明:当行进速度为0.5m/s时,自动对行绝对误差平均值为3.11cm、绝对误差标准差为1.10 cm、绝对误差最大值为4.75 cm,研究成果为水田环境作业底盘自动导航提供了新思路和借鉴。  相似文献   

11.
为实现节能、节水,提高灌溉和土地利用效率,在对太阳能技术、节水灌溉技术、全球定位系统(global positioning system,GPS)导航技术等进行研究的基础上,研制一种基于 GPS 导航的太阳能驱动平移式喷灌机,并在此基础上设计开发导航控制系统。整个机组以太阳能光伏组件和蓄电池为电源,直流电动机作为动力,采用四轮差速转向。以喷灌机横向偏差和航向偏差作为控制输入变量,直流电机脉冲调制(pulse width modulation,PWM)转速调节电压增量作为输出变量,构建基于线性比例控制的导航控制器,实现了对喷灌机两侧车轮转速的调节控制。导航控制系统以32位先进精简指令集机器(advanced RISC machine,ARM)微控制器 STM32F103芯片为核心,集成导航控制器、转速操纵控制器、GPS、电子罗盘和转速传感器,采用控制器局域网(controller area network,CAN)总线结构进行通讯,实现喷灌机的自主导航控制。路径跟踪试验结果表明:喷灌机自动导航控制系统能基本满足喷灌作业要求,并能较好地实现路线跟踪,在以0.4、0.8 m/min 速度行驶30 m 过程中直线跟踪最大横向偏差不超过20 cm,系统可靠性较高。研究可为实现农业机械与太阳能技术相结合提供参考,对类似自走式喷灌机的发展提供依据。  相似文献   

12.
基于超宽带无线定位的农业设施内移动平台路径跟踪研究   总被引:5,自引:4,他引:1  
为实现农业设施内车辆自动导航,提出了一种基于超宽带(ultrawideband,UWB)无线定位的路径跟踪方法。运用4个基站组建UWB无线定位系统,采用加权最小二乘法(weighted least squares, WLS)法解超静定方程组,提高了移动标签的定位精度。重新定义前视距离,根据车体航向与前视直线的夹角界定车体偏差程度,并提出基于动态前视距离的改进型纯追踪模型。在MATLAB 2016a软件环境下的仿真说明该文算法优于采用固定视距的传统纯追踪算法,并进行实车试验。结果显示,在UWB定位系统的引导下,车体在不同初始状态下均能很好地收敛到期望直线,当速度为0.5 m/s时,在4种初始状态下进行直线跟踪,稳态偏差为5.4~8.4 cm,稳态偏差均值为6.3 cm。在矩形路径跟踪时,当横向偏差和航向偏差均为0的初始状态下,全程平均偏差为20.6 cm,跟踪偏差主要出现在90°转向处,最大偏差为85.5 cm,说明改进后的纯追踪算法的路径追踪质量均优于采用固定视距的传统纯追踪模型,能满足农业设施内移动平台自动导航的需求。该方法可为农业设施内车辆导航提供新思路。  相似文献   

13.
雷沃ZP9500高地隙喷雾机的GNSS自动导航作业系统设计   总被引:2,自引:14,他引:2  
为减少农药喷雾作业对人体造成的化学损害,该研究以雷沃高地隙喷杆喷雾机为平台,基于GNSS开发了自动导航作业系统,实现喷雾机在极少人工干预情况下的自动导航作业。通过对平台的机-电-液改造,实现了喷雾机作业系统的电气化控制。基于简化的二自由度车辆转向模型设计了以位置偏差和航向偏差为状态变量的直线路径跟踪控制算法,基于纯追踪模型设计了曲线路径跟踪控制算法。根据喷雾机田间作业需要设计了喷雾机一体化自动导航作业控制方法,使系统能够自动控制喷雾机完成直线、地头转弯行驶和喷雾作业,油门调节以及车辆启停控制。在1.3 m/s左右的前进速度条件下,分别在水泥路面、旱田、水田环境中进行了试验,测试结果表明:水泥路面车身横滚在–1.6?~1.5?范围,直线路径跟踪误差最大值为3.9 cm,平均值为-0.15 cm,标准差为1.0 cm;旱田地块车身横滚在–1.4?~3.3?范围,跟踪误差最大值为9.8 cm,平均值为1.3 cm,标准差为3.3 cm;水田环境车身横滚在–2.4?~5.2?范围,跟踪误差最大值为17.5 cm,平均值为2.2 cm,标准差为4.4 cm。试验数据表明,所设计的自动导航作业系统初始上线快速、地头转弯对行平顺、各设计功能执行可靠;导航系统具有良好的稳定性和控制精度,能够满足水田、旱田环境下的喷雾作业要求。  相似文献   

14.
拖拉机自动导航变曲度路径跟踪控制   总被引:2,自引:2,他引:0  
针对当前拖拉机自动导航曲线跟踪控制精度不能满足生产需要的问题,该研究提出一种基于前轮转角前馈补偿策略的变曲度路径跟踪控制方法。综合考虑农机作业速度和目标路径曲度对前视距离的影响,通过调整前视区域和计算预瞄点,动态调整前视距离和前轮转角前馈量,在追踪预瞄点的过程中,利用农机与目标路径偏差设计变曲度路径跟踪模糊控制器,通过实时调整拖拉机前轮转角补偿量减小稳态误差。以DF2204无级变速拖拉机为试验平台,设计并研发了自动导航系统,开展21组变曲度路径跟踪控制试验。试验结果表明,拖拉机以1、1.5、2和3 m/s速度行驶时的平均绝对误差的平均值分别为2.7、2.7、3.3和4.0 cm,均方根误差的平均值分别为3.4、3.7、4.6和5.0 cm,满足农业生产需求。所提方法可有效提高农机曲线路径跟踪精度,减少漏耕,提高农田利用率。  相似文献   

15.
针对因田间土壤质地不均匀或表面高低不平,无沟铺管机出现行驶偏摆而导致管道铺设弯曲的问题,设计了基于载波相位差分技术的北斗定位系统(Real Time Kinematic-BeiDou Navigation Satellite System, RTK-BDS)的导航控制系统。采用多模态控制策略,通过传感器检测无沟铺管机工作时的左、右行走马达速度,车辆实际平均车速,发动机功率和两侧行走泵的压力等状态参数,并输入到后向反馈(BackPropagation,BP)神经网络,预测铺管机当前状态分类,使用选择器选择模态控制参数,采用自适应比例-积分-微分(Proportion-Integral-Differential,PID)控制算法进行导航控制。经过田间试验,获取铺管机的模态控制参数和BP神经网络训练样本。导航控制系统上线试验结果表明,导航控制横向超调量为4.58 cm,最大横向误差在±4 cm范围内,平均横向误差在±1.5 cm范围内,能够满足铺管机直线性作业要求。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号