首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 187 毫秒
1.
现有的目标检测算法检测茶叶嫩芽的精度较低,为提高茶叶嫩芽的检测精度,该研究提出一种基于改进YOLOv5s网络模型的茶叶嫩芽检测算法。该算法将骨干特征提取网络中的空间金字塔池化结构(spatial pyramid pooling-fast,SPPF)替换为空洞空间卷积池化金字塔结构(atrous spatial pyramid pooling,ASPP),增强模型对不同分辨率下目标的识别能力;针对茶叶嫩芽的小目标特征,在颈部网络中引入可加权重的双向特征金字塔网络(bidirectional feature pyramid network,BiFPN),提高特征融合的效率,同时在颈部网络中的每个集中综合卷积模块(concentrated-comprehensive convolution block,C3)后添加卷积注意力模块(convolutional block attention module,CBAM)来提高模型关注小目标特征的能力。试验结果表明,改进后获得的Tea-YOLOv5s比原模型的准确率(precision,P)、召回率(recall,R)和平均精度值(mean average precision,mAP)分别高出4.4、0.5和4个百分点,且模型鲁棒性强,在多个场景下茶叶嫩芽的检测中具有更高的置信度分数。改进后的模型可为茶叶的产量估计和茶叶采摘机器人的嫩芽识别奠定基础。  相似文献   

2.
针对非结构化环境下香梨识别准确率低,检测速度慢的问题,该研究提出了一种基于改进YOLOv8n的香梨目标检测方法。使用Min-Max归一化方法,对YOLOv3-tiny、YOLOv5n、YOLO6n、YOLOv7-tiny和YOLOv8n评估选优;以YOLOv8n为基线,进行以下改进:1)使用简化的残差与卷积模块优化部分C2f(CSP bottleneck with 2 convolutions)进行特征融合。2)利用simSPPF(simple spatial pyramid pooling fast)对SPPF(spatial pyramid pooling fast)进行优化。3)引入了PConv(partial convolution)卷积,并提出权重参数共享以实现检测头的轻量化。4)使用Inner-CIoU(inner complete intersection over union)优化预测框的损失计算。在自建的香梨数据集上,指标F0.5分数(F0.5-score)和平均精度均值(mean average precision, mAP)比原模型分别提升0.4和0.5个百分点,达到94.7%和88.3%。在GPU和CPU设备上,检测速度分别提升了34.0%和24.4%,达到了每秒99.4和15.3帧。该模型具有较高的识别准确率和检测速度,为香梨自动化采摘提供了一种精确的实时检测方法。  相似文献   

3.
基于多模态图像的自然环境下油茶果识别   总被引:1,自引:1,他引:0  
针对自然条件下油茶果生长条件复杂,存在大量遮挡、重叠的问题,提出了一种基于RGB-D(red green blue-depth)多模态图像的双主干网络模型YOLO-DBM(YOLO-dual backbone model),用来进行油茶果的识别定位。首先,在YOLOv5s模型主干网络CSP-Darknet53的基础上设计了一种轻量化的特征提取网络。其次,使用两个轻量化的特征提取网络分别提取彩色和深度特征,接着使用基于注意力机制的特征融合模块将彩色特征与深度特征进行分级融合,再将融合后的特征层送入特征金字塔网络(feature pyramid network,FPN),最后进行预测。试验结果表明,使用RGB-D图像的YOLO-DBM模型在测试集上的精确率P、召回率R和平均精度AP分别为94.8%、94.6%和98.4%,单幅图像平均检测耗时0.016 s。对比YOLOv3、YOLOv5s和YOLO-IR(YOLO-InceptionRes)模型,平均精度AP分别提升2.9、0.1和0.3个百分点,而模型大小仅为6.21MB,只有YOLOv5s大小的46%。另外,使用注意力融合机制的YOLO-DBM模型与只使用拼接融合的YOLO-DBM相比,精确率P、召回率R和平均精度AP分别提高了0.2、1.6和0.1个百分点,进一步验证该研究所提方法的可靠性与有效性,研究结果可为油茶果自动采收机的研制提供参考。  相似文献   

4.
为了快速检测和统计杨梅树的数量,该研究提出了一种基于改进YOLOv7的杨梅树单木检测模型:YOLOv7-ACGDmix。首先,对YOLOv7的可扩展高效长程注意力网络(extended-efficient long-range attention networks, E-ELAN)进行改进,通过融合兼具卷积和注意力机制优势的ACmix(a mixed model that enjoys the benefit of both self-attention and convolution)结构得到AC-E-ELAN模块,提升模型的学习和推理能力,引入可变形卷积(deformable convolutional networks version 2, DCNv2)结构得到DCNv2-E-ELAN模块,增强模型对不同尺寸目标的提取能力;其次,采用内容感知特征重组(content-aware reassembly of features, CARAFE)上采样模块,提高模型对重要特征的提取能力;然后,在主干和头部网络部分添加全局注意力机制(global-attention mechanism, GAM),强化特征中的语义信息和位置信息,提高模型特征融合能力;最后,采用WIoU(wise intersection over union)损失函数减少因正负样本数据不平衡造成的干扰,增强模型的泛化性。在公开数据集上的试验结果表明,YOLOv7-ACGDmix模型的精确率达到89.1%,召回率达到89.0%,平均精度均值(mean average precision, mAP)达到95.1%,F1-score达到89.0%,相比于原YOLOv7模型分别提高1.8、4.0、2.3和3.0个百分点。与Faster R-CNN、SSD、YOLOv8模型相比,改进模型的平均精度均值(mAP0.5)分别提高了9.8、2.2、0.7个百分点。实地采集杨梅树样本数据的检测精确率87.3%、召回率85.7%。试验表明,改进模型为基于无人机影像的杨梅树单木检测提供了一种有效的解决方案,对果园精准管理的发展具有重要意义。  相似文献   

5.
针对目前三七检测算法在复杂田间收获工况下检测精度低、模型复杂度大、移动端部署难等问题,该研究提出一种基于YOLOv5s的轻量化三七目标检测方法。首先,采用GSConv卷积方法替换原始颈部网络的传统卷积,引入Slim-neck轻量级颈部网络,降低了模型复杂度,同时提升了模型精度;其次,使用ShuffleNetv2轻量型特征提取网络对主干网络进行轻量化改进,提升了模型实时检测性能,并采用角度惩罚度量的损失(SIoU)优化边界框损失函数,提升了轻量化后的模型精度和泛化能力。试验结果表明,改进后的PN-YOLOv5s模型参数量、计算量、模型大小分别为原YOLOv5s模型的46.65%、34.18%和48.75%,检测速度提升了1.2倍,F1值较原始模型提升了0.22个百分点,平均精度均值达到了94.20%,较原始模型低0.6个百分点,与SSD、Faster R-CNN、YOLOv4-tiny、YOLOv7-tiny和YOLOv8s模型相比能够更好地平衡检测精度与速度,检测效果更好。台架试验测试结果表明,4种输送分离作业工况下三七目标检测的准确率达90%以上,F1值达86%以上,平均精度均值达87%以上,最低检测速度为105帧/s,实际收获工况下模型的检测性能良好,可为后续三七收获作业质量实时监测与精准分级输送提供技术支撑。  相似文献   

6.
为解决智能化采收中红花识别性能易受田间复杂环境、设备计算资源等限制的问题,该研究提出一种基于改进YOLOv8n的轻量化红花识别方法,以便将模型部署在移动端上进行目标检测。该研究应用Vanillanet轻量化网络结构代替YOLOv8n的骨干特征提取网络,降低了模型的复杂程度;将大型可分离核注意力模块(large separable kernel attention, LSKA)引入特征融合网络,以降低存储量和计算资源消耗;将YOLOv8n的损失函数从中心点与边界框的重叠联合(center intersection of union, CIoU)替换为动态非单调的聚焦机制(wise intersection of union, WIoU)提升检测器的总体性能;并选用随机梯度下降算法(stochastic gradient descent, SGD)进行模型训练,以提高模型鲁棒性。试验结果表明,改进后的轻量化模型每秒传输帧数(frames per second, FPS)为123.46帧/s,与原YOLOv8n模型相比提高了7.41%,而模型大小为3.00MB,仅为原来的50.17%,并且精确度(precision, P)和平均精度值(mean average precision, mAP)达到了93.10%和96.40%,与YOLOv5s与YOLOv7-tiny检测模型相比,FPS分别提高了25.93%和19.76%,模型大小为原模型的21.90%和25.86%,研究结果为后续红花的智能化采收装备研发提供技术支持。  相似文献   

7.
针对复杂环境下柑橘果实大量重叠、枝叶遮挡且现有模型参数量大、计算复杂度高等问题,提出了一种基于改进YOLOv8n的柑橘识别模型YOLOv8-MEIN。首先,该研究设计了ME卷积模块并使用它改进YOLOv8n的C2f模块。其次,为了弥补CIoU损失函数在检测任务中泛化性弱和收敛速度慢的问题,使用Inner-CIoU损失函数加速边界框回归,提高模型检测性能。最后,在自建数据集上进行模型试验对比,试验结果表明,YOLOv8-MEIN模型交并比阈值为0.5的平均精度均值mAP0.5值为96.9%,召回率为91.7%,交并比阈值为0.5~0.95的平均精度均值mAP0.5~0.95值为85.8%,模型大小为5.8MB,参数量为2.87M。与原模型YOLOv8n相比,mAP0.5值、召回率、mAP0.5~0.95值分别提高了0.4、1.0、0.6个百分点,模型大小和参数量相比于原模型分别降低了3.3%和4.3%,为柑橘的自动化采摘提供技术参考。  相似文献   

8.
为解决自然环境中番茄叶片病虫害检测场景复杂、检测精度较低,计算复杂度高等问题,提出一种SLP-YOLOv7-tiny的深度学习算法。首先,将主干特征提取网络中部分3×3的卷积Conv2D(2D convolution)改为分布偏移卷积DSConv2D(2D Depthwise Separable Convolution),以减少网络的计算量,并且使计算速度更快,占用内存更少;其次,将无参数注意力机制(parameter-free attention module, SimAM)融合到骨干特征提取网络中,加强模型对病虫害特征的有效提取能力和特征整合能力;最后,将原始YOLOv7-tiny的CIOU损失函数,更替为Focal-EIOU损失函数,加快模型收敛并降低损失值。试验结果表明,SLP-YOLOv7-tiny模型整体识别精准度、召回率、平均精度均值mAP0.5(IOU阈值为0.5时的平均精度)、mAP0.5~0.95(IOU阈值从0.5到0.95之间的所有值进行平均计算的平均精度)分别为95.9%、94.6%、98.0%、91.4%,与改进前YOLOv7-tiny相比,分别提升14.7、29.2、20.2、30个百分点,同时,计算量降低了62.6%,检测速度提升了13.2%。与YOLOv5n、YOLOv5s、YOLOv5m、YOLOv7、YOLOv7-tiny、Faster-RCNN、SSD目标检测模型相比,mAP0.5分别提升了2.0、1.6、2.0、2.2、20.2、6.1和5.3个百分点,而计算量大小仅为YOLOv5s、YOLOv5m、YOLOv7、Faster-RCNN、SSD的31.5%、10.6%、4.9%、4.3%、3.8%。结果表明SLP-YOLOv7-tiny可以准确快速地实现番茄叶片病虫害的检测,且模型较小,可为番茄叶片病虫害的快速精准检测的发展提供一定的技术支持。  相似文献   

9.
为解决自然环境中苹果叶片病害检测场景复杂、小目标病害检测难度高以及模型参数大无法在移动端和嵌入式设备部署等问题,提出一种基于YOLOv5s的苹果叶片小目标病害轻量化检测方法。该方法将YOLOv5s的骨干网络更改为ShuffleNet v2轻量化网络,引入CBAM(convolutional block attention module)注意力模块使模型关注苹果叶片小目标病害,添加改进RFB-s(receptive field block-s)支路获取多尺度特征,提高苹果叶片病害检测精度,并更改边界框回归损失函数为SIoU(scylla-intersection over union),增强病斑定位能力。试验表明改进后的YOLOv5s模型在IoU大于0.5时的平均精度均值(mean average precision,mAP0.5)和每秒传输帧数(frame per second,FPS)分别达到90.6%和175帧/s,对小目标的平均检测准确率为38.2%,与基准模型YOLOv5s相比,其mAP0.5提升了0.8个百分点,参数量减少了6.17 MB,计算量减少了13.8 G,对小目标的检测准确率提高了3个百分点。改进后的YOLOv5s目标检测模型与Faster R-CNN、SSD、YOLOv5m、YOLOv7、YOLOv8和YOLOv5s目标检测模型相比,具有最小的参数量和计算量,对小目标病害叶斑病和锈病的检测准确率分别提高了1.4、4.1、0.5、5.7、3.5、3.9和1.5、4.3、1.2、2.1、4、2.6个百分点,该方法为真实自然环境下苹果叶片病害尤其是小目标病害的轻量化检测提供参考依据。  相似文献   

10.
在高架栽培环境下,精准识别草莓果实并分割果梗对提升草莓采摘机器人的作业精度和效率至关重要。该研究在原YOLOv5s模型中引入自注意力机制,提出了一种改进的YOLOv5s模型(ATCSP-YOLOv5s)用于高架草莓的果实识别,并通过YOLOv5s-seg模型实现了果梗的有效分割。试验结果显示,ATCSP-YOLOv5s模型的精确率、召回率和平均精度值分别为97.24%、94.07%、95.59%,较原始网络分别提升了4.96、7.13、4.53个百分点;检测速度为17.3帧/s。此外,YOLOv5s-seg果梗分割模型的精确率、召回率和平均精度值分别为82.74%、82.01%和80.67%。使用ATCSP-YOLOv5s模型和YOLOv5s-seg模型分别对晴天顺光、晴天逆光和阴天条件下的草莓图像进行检测,结果表明,ATCSP-YOLOv5s模型在3种条件下识别草莓果实的平均精度值为95.71%、95.34%、95.56%,较原始网络提升4.48、4.60、4.50个百分点。YOLOv5s-seg模型在3种条件下分割草莓果梗的平均精度值为82.31%、81.53%、82.04%。该研究为草莓采摘机器人的自动化作业提供了理论和技术支持。  相似文献   

11.
基于优选YOLOv7模型的采摘机器人多姿态火龙果检测系统   总被引:3,自引:3,他引:0  
为了检测复杂自然环境下多种生长姿态的火龙果,该研究基于优选YOLOv7模型提出一种多姿态火龙果检测方法,构建了能区分不同姿态火龙果的视觉系统。首先比较了不同模型的检测效果,并给出不同设备的建议模型。经测试,YOLOv7系列模型优于YOLOv4、YOLOv5和YOLOX的同量级模型。适用于移动设备的YOLOv7-tiny模型的检测准确率为83.6%,召回率为79.9%,平均精度均值(mean average precision,mAP)为88.3%,正视角和侧视角火龙果的分类准确率为80.4%,推理一张图像仅需1.8 ms,与YOLOv3-tiny、YOLOv4-tiny和YOLOX-tiny相比准确率分别提高了16.8、4.3和4.8个百分点,mAP分别提高了7.3、21和3.9个百分点,与EfficientDet、SSD、Faster-RCNN和CenterNet相比mAP分别提高了8.2、5.8、4.0和42.4个百分点。然后,该研究对不同光照条件下的火龙果进行检测,结果表明在强光、弱光、人工补光条件下均保持着较高的精度。最后将基于YOLOv7-tiny的火龙果检测模型部署到Jetson Xavier NX上并针对正视角火龙果进行了验证性采摘试验,结果表明检测系统的推理分类时间占完整采摘动作总时间的比例约为22.6%,正视角火龙果采摘成功率为90%,验证了基于优选YOLOv7的火龙果多姿态检测系统的性能。  相似文献   

12.
为实现自然环境下的板栗果实目标快速识别,该研究以湖北省种植板栗为研究对象,提出了一种基于改进YOLOv8模型的栗果识别方法YOLOv8-PBi。首先,将部分卷积(partial convolution,PConv)引入C2f模块中,缩减卷积过程中的浮点数和计算量;其次,引入加权双向特征金字塔网络(bidirectional feature pyramid network,BiFPN),增强多尺度特征融合性能,最后,更改边界框损失函数为动态非单调聚焦机制WIoU(wise intersection over union,WIoU),提高模型收敛速度,进一步提升模型检测性能。试验结果表明,改进YOLOv8-PBi模型准确率、召回率和平均精度分别为89.4%、74.9%、84.2%;相比原始基础网络YOLOv8s,模型权重减小46.22%,准确率、召回率和平均精度分别提升1.3、1.5、1.8个百分点。部署模型至边缘嵌入式设备上,经过TensorRT加速后,检测帧率达到43 帧/s。该方法可为板栗智能化收获过程中的栗果识别提供技术基础。  相似文献   

13.
基于迁移学习与YOLOv8n的田间油茶果分类识别   总被引:1,自引:1,他引:0  
为降低视觉引导式油茶果采摘机器人采摘被遮挡油茶果时造成的果树和抓取装置损伤,该研究提出了一种基于迁移学习和YOLOv8n算法的油茶果分类识别方法,将油茶果分成无遮挡和遮挡两类。首先,采用COCO128目标检测数据集作为源域,苹果数据集为辅助域的迁移学习方法训练模型。其次,将学习方法、训练数据量、学习率和训练轮数这4种因素组合,共进行了52组YOLOv8n检测性能的消融试验。最后,将YOLOv8n模型与YOLOv3-tiny、YOLOv5n和YOLOv7-tiny等模型进行比较。试验结果表明,随机权重初始化方式受训练数据量和学习率影响较大,学习率为0.01时模型检测效果最好;而迁移学习方法仅用随机权重初始化1/2的数据量即可达到与其相当的平均精度均值;迁移学习方式下,YOLOv8n模型的平均精度均值最高达到92.7%,比随机权重初始化方式提升1.4个百分点。与YOLOv3-tiny、YOLOv5n和YOLOv7-tiny等模型相比,YOLOv8n模型的平均精度均值分别提高24.0、1.7和0.4个百分点,研究结果可为YOLOv8n模型训练参数优化和油茶果分类识别提供参考。  相似文献   

14.
目标检测与分割是实现黄花菜智能化采摘的关键技术,原始目标检测算法容易出现漏检、误检等问题,无法满足自然环境下生长的黄花菜采摘要求。该研究提出一种基于改进YOLOv7-seg的黄花菜目标检测与实例分割识别算法模型(YOLO-Daylily)。通过在YOLOv7-seg骨干网络(backbone)中引入CBAM(convolutional block attention module)注意力机制模块,降低背景等干扰因素的影响;在ELAN(efficient layer aggregation networks)模块中采用PConv(partial convolution)替换原有的3×3卷积层,减少冗余计算和内存访问,提升对目标黄花菜特征提取的能力。颈部网络(neck)采用坐标卷积(CoordConv)替换PA-FPN(path aggregation-feature pyramid networks)中1×1卷积层,增强模型对位置的感知,提高掩膜(mask)鲁棒性。在改进的PA-FPN结构中采用残差连接方法将浅层特征图几何信息与深层特征图语义信息特征相结合,提高模型对目标黄花菜的检测分割性能。消融试验表明:改进后的算法检测准确率、召回率和平均精度分别达到92%、86.5%、93%,相比YOLOv7-seg基线算法分别提升2.5、2.3、2.7个百分点;分割准确率、召回率和平均精度分别达到92%、86.7%、93.5%,比基线算法分别提升0.2、3.5、3个百分点。与Mask R-CNN、SOLOv2、YOLOV5-seg、YOLOv5x-seg算法相比,平均精度分别提升8.4、12.7、4.8、5.4个百分点。改进后的模型减少了漏检、误检等情况,对目标定位更加精准,为后续黄花菜智能化采摘实际应用提供理论支持。  相似文献   

15.
为确保油茶果实处于最佳成熟度进行采摘,提高油茶果实的出油率及茶油品质,该研究针对自然环境下油茶果实多被遮挡的问题,以原始YOLOv7模型为基础进行改进,提出一种油茶果实成熟度检测方法。首先,在主干网络中引入十字交叉注意力机制(criss-cross attention,CCA)加强对被枝叶遮挡果实成熟度特征的提取能力;其次,使用基于距离和交并比的非极大值抑制(distance-iou non-maximum suppression,DIoU-NMS)算法代替传统非极大值抑制(nonmaximum suppression,NMS)算法,从而加强模型对相互遮挡果实的检测能力;最后,以训练集中3 098张油茶果实图像训练改进的YOLOv7模型,验证集中442张图像用于在训练过程中评估模型,并对测试集中885张图像进行测试。改进后的YOLOv7模型在测试集下的精确率P为93.52%,召回率R为90.25%,F1分数为91.86%,平均精度均值mAP为94.60%,平均检测时间为0.77 s,模型权重大小为82.6 M。与Faster R-CNN、EfficientDet、YOLOv3、YOLO...  相似文献   

16.
疏果期苹果目标检测是实现疏果机械化、自动化需要解决的关键问题。为实现疏果期苹果目标准确检测,该研究以YOLOv7为基础网络,融合窗口多头自注意力机制(Swin Transformer Block),设计了一种适用于近景色小目标检测的深度学习网络。首先在YOLOv7模型的小目标检测层中添加Swin Transformer Block,保留更多小尺度目标特征信息,将预测框与真实框方向之间的差异考虑到模型训练中,提高模型检测精度,将YOLOv7中的损失函数CIoU替换为SIoU。最后利用Grad-CAM方法产生目标检测热力图,进行有效特征可视化,理解模型关注区域。经测试,该文模型的检测均值平均精度为95.2%,检测准确率为92.7%,召回率为91.0%,模型所占内存为81 MB,与原始模型相比,均值平均精度、准确率、召回率分别提高了2.3、0.9、1.3个百分点。该文模型对疏果期苹果具有更好的检测效果和鲁棒性,可为苹果幼果生长监测、机械疏果等研究提供技术支持。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号