共查询到19条相似文献,搜索用时 68 毫秒
1.
2011-2015年对营养钵大苗在栽培中的成活率、抗再植障碍及早果丰产整形修剪等技术进行了试验研究。结果表明:营养钵大苗建园有效解决了普通苗木及裸根大苗建园成活率低、栽后树体生长慢,园貌不整齐、重茬再植症严重的问题,是目前新建园和老园更新行之有效的技术措施。 相似文献
2.
详细介绍了苹果营养钵大苗育苗技术,苗圃定植后第1、2年的管理和栽后管理、成园后管理等技术,为苹果苗的繁育提供参考。 相似文献
3.
营养钵大苗繁育是指将常规成品苹果苗木定植于营养钵内的繁育过程,使其达到一定粗度和分枝的幼树。该文针对营养钵大苗的繁育技术及效益进行试验研究,找到苗木整齐一致、侧根多、侧枝量大、规格高、生产效益好的营养钵大苗繁育技术。 相似文献
4.
通过四年的试验表明,苹果保护地营养钵快速育苗方法。在保证苗木质量的前提下,比对照提前一年出圃。使每株成品苗的成本由0.27元下降到0.19元,降低了29.6%。每年每亩圃地增加纯收入1193.75元,增加了74.9%。 相似文献
5.
随着我国苹果产业的快速发展,苹果栽植面积增加,老果园更新换代,果实品质不断提升,对优质苗木培育提出了新的要求.现通过容器大苗培育来缩短建园缓苗期,使老果园在更新换代中实现快速建园、早果丰产.介绍了陕西省白水县容器大苗培育技术,为培育优质苗木以及农户快速建园提供技术参考. 相似文献
6.
7.
河北省邯郸地区苹果大树优质增产技术研究课题组 《中国果树》1990,(3):35-36,42
<正> 我区苹果栽植面积8.98万亩,结果面积有5万亩,其中低产园面积占2万亩。长期以来,部分果园由于管理不善造成树势衰弱,树形紊乱,病虫害严重,果品质量差、产量低,是苹果生产中亟待解决的问题。为此,于1984~1986年,在石家庄果树所指导下,以临漳县东五岔口果园为一级试区,以广平、邱县、永年、馆陶、临漳33个果园,2408亩低产苹果大树为二级试区,进行了大面积的优质增产栽培技术试验。现将试验结果报告如下: 相似文献
8.
9.
10.
正苹果产区常规新建园存在保存率低、园貌不整齐、重茬再植障碍严重、幼树期长、土地利用率低、见效慢等问题,营养钵大苗则具有苗木整齐一致、侧根数多、侧枝量大、规格高等优点。为验证苹果营养钵大苗栽培能否解决上述问题,我们在2011—2015年对苹果营养钵大苗栽培中的成活率、抗再植障碍、整形修剪等栽培管理技术进行了试验调查。1材料与方法1.1试验材料试验分别设在陕西省铜川市印台区塬圪塔村和西村,起始时间2011年3 相似文献
11.
12.
13.
14.
J.A. Franco S. BaňÒ S. Ferná Ndez D.I. Leskovar 《The Journal of Horticultural Science and Biotechnology》2013,88(2):174-179
SummaryThe influence of irrigation and temperature regimes in the nursery on the dynamics of root development after being transplanted with minimum management conditions was investigated in Lotus creticus. In the nursery period (three months), plants were pot-grown in greenhouses, heated and unheated, located on the Southeast Mediterranean coast of Spain. Drip irrigation was used, with three irrigation treatments: T-6, plants watered 6.d a week at the water-holding capacity; T-3, plants watered 3.d a week; and T-2, plants watered twice a week. The total water applied over the whole nursery period was (in litres per plant): T-6, 7; T-3, 3.5; and T-2, 2.3. After the nursery period, plants were transplanted in a growth chamber into transparent containers (round acrylic tubes 8.cm diameter and 100.cm tall) and just one establishment irrigation was applied. Three treatments were applied, using three different amounts of water in the establishment irrigation: 10, 30 and 60.mm. The containers were kept in the growth chamber for one month, until the end of experiment. The harsher the conditions after transplanting (less water in the establishment irrigation) the more evident was the positive effect of hardening in the nursery. The regime involving least water and lowest temperature in the nursery period produced plants best adapted to stress at transplanting: a greater root length:shoot length ratio, higher percentage of brown roots and lower fresh weight:length ratio in shoots. All the plants survived transplanting. The most stressed plants in the nursery (least water and no heating) showed greater and more rapid root growth than the less stressed plants, especially when soil moisture was low. 相似文献
15.
16.
柱型苹果和矮生型梨组培苗叶片表皮结构研究 总被引:1,自引:0,他引:1
以柱型和普通型苹果各3个品种,矮生型和普通型梨各3个杂种实生苗的组培苗为试材,用扫描电镜观察其叶片表皮结构。结果表明,供试苹果和梨组培苗叶片上表皮细胞均为不规则的多边形,排列无方向性,上表皮无气孔分布。柱型和普通型苹果的上表皮细胞平均密度分别为2986个·mm-2和2087个·mm-2;矮生型和普通型梨的上表皮细胞平均密度分别为2633个·mm-2和1635个·mm-2。柱型苹果和矮生型梨的上表皮细胞密度分别显著高于其普通型。苹果和梨组培苗叶片下表皮气孔分布密集,气孔类型均为无规则型。柱型和普通型苹果的气孔平均长×宽分别为23.21μm×19.58μm和24.17μm×22.96μm,气孔密度平均分别为401.17个·mm-2和262.50个·mm-2;而矮生型和普通型梨气孔平均长×宽分别为29.57μm×20.30μm和26.93μm×24.51μm,气孔密度平均分别为265.67个·mm-2和158.00个·mm-2。柱型苹果、矮生型梨和其普通型之间的气孔长度差异不明显,而气孔宽度均显著小于其普通型,气孔密度均显著高于其普通型。 相似文献
17.
18.
《果树学报》2017,(12)
【目的】通过铁肥管道输液滴干,探索防止苹果缺铁失绿症和提高果实铁含量的途径。【方法】将Fe-N通过管道、滴头直接插入苹果树干,测定不同器官的全铁、活性铁含量,叶片叶绿素相对含量(SPAD值),百叶重、百叶厚、叶绿素荧光、SPAD与活性铁的相关性。【结果】16.4×10-3mol·L-1N-Fe处理的叶片SPAD值(57.43)、百叶重(66.57 g)、百叶厚(5.90 cm)、全铁(788.9 mg·kg-1)及活性铁(526.5 mg·kg-1)含量显著高于对照,光能转化率和不同器官的活性铁含量也以16.4×10-3mol·L-1处理最高,所有铁处理果实中的铁含量都显著高于对照。叶片SPAD值与活性铁含量显著正相关(相关系数0.899)。【结论】铁肥管道输液滴干可以防止苹果缺铁失绿症,并显著提高果实铁含量,提高叶片光合性能,可以通过SPAD值折算叶片活性铁含量。 相似文献
19.
N was applied at 50, 100 or 150 mg l?1 in factorial combination with P at 7.5, 15 or 22.5 mg l?1 to asparagus seedlings. There were 6 successional harvests. N and P increased shoot dry weight by increasing mean dry weight and number of shoots. Increasing P had no effect on shoot growth at 50 mg l?1 N. N increased root dry weight (crown and roots) by increasing root number, whereas P decreased root dry weight due to a decrease in mean root dry weight. N increased total plant dry weight, but P had no effect. N and P increased the partitioning of dry weight to the shoots, while partitioning to the roots increased with time. Plant analysis revealed that 2.6–2.7% N and 0.29–0.36% P, on a dry-weight basis, were present in the shoots at the later harvests with the higher concentrations of N and P. 100–150 mg 1?1 N in combination with 15 mg l?1 P produced a seedling suitable for transplanting into commercial fields at 6 weeks from emergence. 相似文献