首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
In August, eight 4-m tall citrus trees were pruned by removing the top third of their canopy. Eight unpruned trees served as controls. Root growth, which was examined nondestructively with minirhizotrons over a four-month period, tended to be less in the pruned than unpruned trees seven days after pruning and this difference was significant (P < 0.05) from 14 to 49 days after pruning. Total reducing and ketone sugars (includes free fructose, sucrose and fructans) in the fine roots were less in pruned than unpruned trees 20 days after pruning, but not thereafter. By 30 days after pruning, at least 20% of the roots of the pruned trees at a soil depth of 9 to 35 cm apparently died. By 63 days after pruning, root length density had recovered to that of the unpruned trees, although starch reserves were 18% less in the fine roots of pruned than unpruned trees at this time. Nine to eleven months after pruning (May to July), total biomass of leaves and fine roots to a depth of 1 m were similar in pruned and unpruned trees. However, fruit biomass harvested in April from pruned trees was only 24% of that in the unpruned trees. In May, nonstructural carbohydrates in the fine and coarse roots of pruned trees were generally greater than in unpruned trees, possibly reflecting previous differences in fruit production.  相似文献   

2.
In alley cropping systems, fast growing leguminous trees are pruned to reduce competition with crops for light and to provide organic inputs for crop nutrition. Tree regrowth depends on non-structural carbohydrate reserves in the remaining tree parts. In this study, the dynamics of starch and soluble carbohydrates in roots and stems of completely pruned (all shoots removed), partially pruned (one branch retained on the pruned stump) and unpruned Erythrina poeppigiana (Walp.) O.F. Cook and Gliricidia sepium (Jacq.) Kunth ex Walp. trees were studied under humid tropical conditions in Turrialba, Costa Rica. Measurements on starch and soluble carbohydrates in roots and stems were made at 0, 2, 6 and 12 weeks after pruning during both a “rainy” and a “dry” season. In general, the dynamics of non-structural carbohydrates in roots and stems of pruned E. poeppigiana and G. sepium trees were similar. Starch concentration was highest in unpruned trees and higher in roots than in stems of pruned trees. The effect of pruning intensity was first observed in stems, and starch reserves were more depleted in stems than in roots, an effect more evident during the “dry” season. The critical tree regrowth stage for starch mobilisation was that of vigorous sprout development at six or four weeks after pruning particularly in completely pruned trees. At this time, fine root biomass and length and nodule biomass in pruned trees decreased. Survival of fine roots and nodules was greater in partially pruned than in completely pruned trees. Starch accumulation in roots recommenced at 12 weeks after pruning in G. sepium, and later than 12 weeks after pruning in E. poeppigiana roots. This study showed that E. poeppigiana responded better to pruning regimes than G. sepium. Recovery of trees after pruning is better when trees are partially pruned than when completely pruned.  相似文献   

3.
We modeled tree responses to pruning on the basis of growth rules established on unpruned trees and a simple principle governing root-shoot interactions. The model, which integrates architectural and ecophysiological approaches, distinguishes four types of anatomical organs in a tree: rootstock, main axis, secondary axes and new roots. Tree structure is described by the position of secondary axes on the main axis. The main processes considered are plastochronal activity, branching, assimilate production, respiration and assimilate partitioning. Growth and development rules were based on measurements of two unpruned trees. The model was used to simulate growth of peach trees (Prunus persica (L.) Batsch) in their first growing season. Assuming that the equilibrium between roots and shoots tends to be restored after pruning, the response to removal of the main axis above the twentieth internode in mid-July was simulated and compared to the response measured in three pruned trees. The model fit the unpruned tree data reasonably well and predicted the main traits of tree behavior after pruning. Dry matter growth of the secondary axes of pruned trees was increased so that shoot seasonal carbon balance was hardly modified by pruning. Rhythmicity of growth was enhanced by pruning, and might result from variations induced in the root:shoot ratio. Variation in pruning severity had greater effects than variation in pruning date. A sensitivity analysis indicated that: (1) root-shoot partitioning was a critical process of the model; (2) tree growth was mainly dependent on assimilate availability; and (3) tree shape was highly dependent on the branching process.  相似文献   

4.
Producing high value veneer wood requires that the tree bole be branch-free. This can be accomplished by natural or artificial pruning. Since wild cherry does not self prune well, pruning artificially is the only practical option. The study analysed the effect of conventional whorl-wise pruning and selective pruning, on height growth, diameter growth and secondary shoot development of wild cherry. Four pruning treatments were applied on cherry trees in summer 2007, one group of cherries was left unpruned to serve as a control: treatment C1 (upper 5 whorls left), C2 (upper 3 whorls left), S1 (removal of branches larger than 3 cm or with an angle to the stem < 40°), S2 (removal of branches larger than 2 cm or with an angle to the stem < 40°), N (unpruned). Data showed that height growth was not affected by pruning. In contrast, diameter growth at breast height of the C2 pruned cherry was reduced by approximately 5% (SE = 2.7%) in the year of pruning (trees were pruned in July). This pruning treatment produced significant (p = 0.028) nine percent less diameter growth than the control in the second year following pruning. The diameter increment of the C1 pruned trees with five whorls left after pruning and the selective pruned cherries were only about 4% (SE = 4.0%) smaller than the control after two years. This loss was statistically not significant. Analyses showed that on selective pruned trees the survival rate of secondary shoots was significantly reduced compared to those on whorl-wise pruned trees. Significant differences in the size of the secondary shoots were only found between the C1 and S1 (p < 0.05) pruned trees. We did not find differences in the total number of secondary shoots per tree among pruning treatments. Solely from a tree growth perspective, the moderate whorl-wise pruning treatment C1 and the selective prunings were equally effective in minimizing the reduction of diameter growth and are recommended in practice. However it was found that the survival of secondary shoots was reduced on selective pruned trees although the amount of pruning work needed in selective pruning was slightly greater than conventional moderate pruning.  相似文献   

5.
Tree root pruning is a potential tool for managing belowground competition when trees and crops are grown together in agroforestry systems. We investigated the effects of tree root pruning on shoot growth and root distribution of Alnus acuminata (H.B. & K.), Casuarina equisetifolia L., Grevillea robusta A. Cunn. ex R. Br., Maesopsis eminii Engl. and Markhamia lutea (Benth.) K. Schum. and on yield of adjacent crops in sub-humid Uganda. The trees were 3 years old at the commencement of the study, and most species were competing strongly with crops. Tree roots were pruned 41 months after planting by cutting and back-filling a trench to a depth of 0.3 m, at a distance of 0.3 m from the trees, on one side of the tree row. The trench was reopened and roots recut at 50 and 62 months after planting. We assessed the effects on tree growth and root distribution over a 3 year period, and crop yield after the third root pruning at 62 months. Overall, root pruning had only a slight effect on aboveground tree growth: height growth was unaffected and diameter growth was reduced by only 4%. A substantial amount of root regrowth was observed by 11 months after pruning. Tree species varied in the number and distribution of roots, and C. equisetifolia and M. lutea had considerably more roots per unit of trunk volume than the other species, especially in the surface soil layers. Casuarina equisetifolia and M. eminii were the tree species most competitive with crops and G. robusta and M. lutea the least competitive. Crop yield data provided strong evidence of the redistribution of root activity following root pruning, with competition increasing on the unpruned side of tree rows. Thus, one-sided root pruning will be useful in only a few circumstances.  相似文献   

6.
Hammatt  Neil 《New Forests》1998,15(3):261-269
The growth potential of micropropagated wild cherry cv. F12/1 under field conditions was assessed. Relatively short trees (19–22 cm tall) were planted in the field just seven months after transfer from tissue culture to soil. Irrigation and shelters promoted shoot heights in the first (establishment) year. If planting techniques can be developed which reduce branch production, then the cost of corrective pruning to achieve clean stems is also reduced. Shelters, but not irrigation almost totally inhibited outgrowth of branches produced in spring. Outgrowth of spring branches by unsheltered trees was strongly influenced by tree height at planting, with shorter trees producing fewer branches. In the second and third years of the trial, pruning branches from trees that had been planted in shelters, resulted in taller trees. By the end of the third year, pruned trees had smaller stem diameters than unpruned trees. These results are discussed with respect to using cv. F12/1 as a productive timber tree.  相似文献   

7.
Pruning of agroforestry trees, while reducing shade of the crops, usually reduces both biomass production and nitrogen fixation. Short pruning cycles are often not sustainable on the long run, because tree production declines over subsequent pruning cycles. We compared biomass and labile carbohydrate dynamics of Erythrina lanceolata Standley (Papilionaceae) shade trees under total and partial pruning regimes in a vanilla (Vanilla planifolia L.) plantation in South-western Costa Rica. The highest biomass production was measured in the unpruned control, followed by trees with 50% of the leaf pruned every three months, while total pruning every six months resulted in the lowest biomass pruduction. In the more productive treatments, a higher proportion of the production was in branches. Because, the N content of woody branches was high, they were important for nitrogen cycling. In the partial pruning treatment more nitrogen was returned to the soil from litter and woody branches than from pruned leaf. Sugar concentrations were not different between treatments and the dynamics of non-structural carbohydrates (sugar and starch) seems to depend more on plant phenology than pruning treatment. However, the starch concentrations in the total pruning were lower than in the other treatments.This revised version was published online in November 2005 with corrections to the Cover Date.  相似文献   

8.
Pruning loblolly pine trees is sometimes practiced to improve wood quality even though reduced growth following treatment may occur. Two experiments were established in February 2000 in the Piedmont region of Virginia, USA, to examine the impact of timing and intensity of pruning on subsequent growth of young loblolly pine trees. Results of one study indicated that there is a window of opportunity during the early portion of stand development where up to 50% of the live crown length can be removed without a significant loss of long-term height or diameter growth. Within a year following pruning at ages 3, 6 and 9 (all pruning treatments occurred prior to crown closure), crown mass had been restored and growth comparable to an unpruned control resumed. By age 11 there were no significant differences in cumulative height or dbh of any of the one-lift pruning treatments and the control. Findings from a second study planted at closer spacings where pruning treatments occurred at crown closure (age 6) showed that pruning some of the trees in a loblolly pine plantation does not result in a loss of long-term height or diameter growth or crown dominance for the pruned trees as compared to their unpruned neighbors. For both studies, growth reductions following pruning were small and transitory.  相似文献   

9.
Fifteen, 1-year-old Populus maximowiczii Henry x P. nigra L. 'MN9' trees were decapitated and allowed to sprout. After 8 weeks, all had 6 to 10 coppice shoots. All shoots, except the tallest (dominant) shoot, were removed from five of the trees (pruned treatment), and shoot growth, gas exchange and carbohydrate status were compared in the pruned and unpruned trees. Although photosynthetic rate of recently mature leaves of pruned trees was approximately 50% greater than that of leaves on the dominant shoot of unpruned trees, and the dry weight of leaves of pruned trees was 37% greater than that of the leaves on the dominant shoot of unpruned trees, the shoot dry matter relative growth rate did not differ between treatments. Concentrations of water-soluble carbohydrates and starch in the uppper stem and leaves of the dominant shoot were similar in pruned and unpruned trees. However, relative to that of the dominant shoot in unpruned trees, the lower stem in pruned trees was depleted in both soluble carbohydrates and starch. Starch deposition, assessed as the quantity of (14)C-starch in tissues 24 h after a fully expanded source leaf was labeled with (14)CO(2), was 3.9 times greater in roots of pruned trees than in roots of unpruned trees. We conclude that early removal of all but the dominant shoot reduces the carbohydrate status of the roots and the lower portion of the stem by eliminating the excised shoots as a source of photosynthate.  相似文献   

10.
修枝对杉木幼林土壤肥力的影响初报   总被引:2,自引:0,他引:2  
梁元瑞 《福建林业科技》2007,34(4):63-66,70
在福建洋口林场4年生的杉木人工林建立无节材培育试验地。选择修枝木,每年对其进行1次修枝,修枝强度为4种规定树干直径(6 cm、8 cm1、0 cm和12 cm)以下的所有枝条。试验3 a后研究不同修枝强度对7年生杉木林土壤肥力的影响,结果表明,试验后3 a,所有修枝试验林地的土壤0~10 cm和10~20 cm层次有机质、全N、水解性N和pH值的平均值均高于不修枝的对照,但差异未达到统计显著水平(P>0.05)。不同修枝强度及对照林地大多数土壤性质之间的差异未达到显著水平(P>0.05)。修枝后土壤性质有所改善,这可能与修枝后林下植被得到恢复有一定关系。修枝对杉木林地土壤性质的长期影响有待于今后进一步观测。  相似文献   

11.
Pinkard  E. A.  Beadle  C. L. 《New Forests》1998,15(2):107-126
An experiment was established in two high quality Eucalyptus nitens Deane and Maiden (Maiden) plantations in Tasmania. At the start of the experiment the trees were three years old and the plantations were on the point of canopy closure. Selected trees were pruned to remove 0, 50% or 70% of the lower green crown length, and each was surrounded by eight unpruned trees. The 50% treatment had no impact on height or diameter increment in the two years following treatment, but removal of 70% of the lower crown length resulted in significant decreases in both height and diameter increment. There were no changes in the height of 50%-pruned trees relative to the height of surrounding unpruned trees (relative height), and it was concluded that dominance would not be affected by this treatment. The relative height of 70%-pruned trees was less at one site, and this treatment may result in loss of dominance. Stem taper was generally unaffected by either pruning treatment. Changes in stem form were restricted to trees in the 70% pruning treatment and were only transient. It was concluded that removal of 50% of the lower green crown length is an appropriate level of pruning for the species provided that growth rates are rapid and pruning is timed to coincide with canopy closure. Since dominance was unaffected by this level of pruning, thinning at the time of pruning is unnecessary. It may be possible to minimise the impact on growth of higher levels of pruning by thinning at the time of pruning.  相似文献   

12.
Tropical tree fodder is harvested by frequent prunings, and resprouting depends on nonstructural carbohydrate reserves in the remaining tree parts. We studied the effects of three pruning intensities (removal of all leaves and branches leaving 1 m of stem once a year (T-12), or every 6 months (T-6), and about 50% pruning every 2 months (P-2)) on regrowth and the dynamics of soluble sugars and starch in the legume tree Gliricidia sepium (Jacq.) Walp. growing under humid tropical conditions in Guadeloupe, Lesser Antilles. Carbohydrates were sampled in roots, stems and branches. Among pruned trees, trees in the T-6 harvest regime had the highest leaf fodder yield (0.73 kg tree(-1) year(-1)). High litter loss reduced leaf yield of T-12 trees, but compared with the other treatments, T-12 trees produced the most branch biomass (3.43 kg tree(-1)). Among treatments, P-2 trees had an intermediate leaf fodder yield and the lowest branch production. Sucrose, glucose and fructose were the most common sugars in all biomass compartments. Mannose, pinitol and an unidentified cyclitol were relatively abundant in branches. Root sugar and starch concentrations were unaffected by harvest regime. There was a significant interactive effect of harvest intensity and regrowth time on stem sugar concentration. Stem starch concentration was highest in T-12 trees. After a year of fodder harvesting, whole-tree reserves of nonstructural carbohydrates were highest in T-12 trees; however, a larger proportion of reserves were located in roots and stems of T-6 and P-2 trees. These reserves, which were not lost in pruning and contributed to regrowth of G. sepium after pruning, may explain the relatively small effects of harvesting regime on soluble sugar and starch concentrations.  相似文献   

13.
白于山区仁用杏生长状况与评价   总被引:7,自引:0,他引:7  
In Baiyushan hilly area, the roots system of almond-apricot mainly distributes vertically in the subsoil from 30 cm to 80 cm and horizontally distributes from 50 cm to 180 cm around the trunk. There are three growing peaks of the roots in a year and July-peak is the tallest one. From March to July is water losing period in subsoil of almond-apricot orchard, water losing is mainly from the aubsoil above 200 cm. There are three growing peaks for extending shoots and only one peak for fruit shoots in a vear. Fruit set percentage of almond-apricot is 15.61 %, of which short fruit branches are 22.62%, long fruit branches are 8.56%. Although there are differences in the growth of almond-apricot trees gown in slope lands with different elevation,aspects, and slopes, all trees grow well. Except frostbite harming, Baiyushan hilly area could be a better commodity production base of almond-apricot.  相似文献   

14.
The effect of root and shoot pruning on early growth of hybrid poplars   总被引:1,自引:0,他引:1  
Planting stock type and quality can have an important impact on early growth rates of plantations. The goal of this study was to evaluate early growth and root/shoot development of different planting materials in typical heavy clay soils of northwestern Quebec. Using one-year-old bareroot hybrid poplar dormant stock, four planting materials were compared: (1) regular bareroot stock, (2) rootstock (stem pruned before planting), (3) whips (roots pruned before planting), and (4) cuttings (30 cm stem sections taken from the basal portion of bareroot trees, i.e. roots and shoot pruned). Rooted stock types (bareroot and rootstock) produced, on average, 1.2 times larger trees than unrooted stock types (cuttings and whips). However, shoot-pruned stock types (rootstocks and cuttings) reached similar heights and basal diameters as unpruned stock types (bareroots and whips), during the first growing season. Shoot pruning reduced leaf carbon isotopic ratios, suggesting that unpruned stock types were water-stressed during the first growing season. The stress was most likely caused by early leaf development while root growth occurred later in the summer. We conclude that shoot pruning bareroot stock is a useful management option to reduce planting stress without compromising early growth rates of hybrid poplars.  相似文献   

15.
  • ? Young coast redwood (Sequoia sempervirens (D. Don.) Endl.) trees were pruned to various heights to examine the effect of pruning severity on epicormic sprouting. Seven separate stands were used with as many as six treatments per stand in coastal Humboldt County, California, USA.
  • ? Epicormic sprout development was affected by pruning severity but primarily at the most severe pruning treatments that removed all but the branches in the top 15% of tree height. Less severe treatments produced sprouts but the number and size of these sprouts were comparable to unpruned trees.
  • ? Natural clonal patterns were also used to explore patterns of sprouting between genotypes. Linear mixed-effects models were developed to predict sprouting frequency as a function of pruning severity while accounting for the nested data structure (i.e., stem sections sampled nested within genotypes within treatments within sites).
  • ? Comparing variances attributed to each of these random effects indicated that at any level of pruning severity, differences in epicormic sprouting between genotypes and sites expressed soon after pruning had disappeared after six growing seasons. Epicormic branches were more common two years after pruning than six years indicating many branches were dying. Branches were more common in the middle of the pruned bole, possibly because of competition from basal sprouts and the expanding tree crown.
  •   相似文献   

    16.
    Two-year seedlings of Quercus robur (pedunculateoak) were root-pruned before transplanting in order toevaluate the importance of coarse versus fine roots onregrowth. Root systems were pruned by leaving c. 19,13 or 7 cm root from the root collar. Alternatively,coarse roots (>2 mm in diameter) were removed, leaving only the taproot and the fine roots (<2 mm)attached, or fine roots were removed from coarse rootsand taproot. Growth of shoots and roots after onegrowing season was compared to an unpruned controlunder standard nursery conditions. Seedlings rootpruned to 19, 13 or 7 cm were further tested undercompetition achieved by transplanting into a mixtureof clover and grass. Pruning of the root systemsignificantly reduced regrowth in terms of total plantDW in accordance with the severity of pruning, shootDW being more affected than root DW. Removal of coarseroots depressed final root DW whereas removal of fineroots reduced shoot DW and hence root:shoot ratioincreased. The study suggests that fine and coarseroots have different roles in root:shoot allocation.The competition test increased root:shoot ratioindicating that competition induced seedlings toallocate more of their resources into growth of theroot system.  相似文献   

    17.

    Faidherbia albida is one of the scattered trees commonly intercropped with most cereals in Ethiopia due to its positive impacts. The tree is pruned for various purposes including for fencing and fuelwood. In this study, the impact of pruning on water relations of F. albida and on understorey wheat productivity was investigated. The on-farm study was conducted in Ejerssa Joro, semi-arid Ethiopia. Six mature trees were selected; three were fully pruned and three were left unpruned. Sap flow and leaf water potential were measured on these trees. Crop gas exchange, aboveground biomass and grain yield were measured under and outside tree canopies. The highest and the lowest sap volumes, recorded from unpruned F. albida, during the dry period, were 153 L day?1 and 20 L day?1, respectively. The highest and the lowest sap volumes were 13.4 L day?1 and 0.04 L day?1 recorded during the wet period. Wheat CO2 assimilation was highest (7.8 µmolm?2 s?1) at 1 m distance and declined away from the tree trunk under unpruned trees. Aboveground biomass and grain yield under unpruned treatments were significantly (P?<?0.05) higher than outside of canopy of same tree and outside canopies of pruned trees. Pruning reduced aboveground biomass and grain yield by 30% and 27%, respectively; despite the higher water uptake by unpruned trees. We recommend that intensive pruning of F. albida be discouraged and propose further studies on optimal pruning for increased food production and provision of tree products to meet farmers’ needs.

      相似文献   

    18.
    Rufat J  DeJong TM 《Tree physiology》2001,21(15):1133-1140
    The PEACH computer simulation model of reproductive and vegetative growth of peach trees (Grossman and DeJong 1994) was adapted to estimate seasonal nitrogen (N) dynamics in organs of mature peach (Prunus persica (L.) Batsch cv. O'Henry) trees grown with high and low soil N availability. Seasonal N accumulation patterns of fruits, leaves, stems, branches, trunk and roots of mature, cropping peach trees were modeled by combining model predictions of organ dry mass accumulation from the PEACH model with measured seasonal organ N concentrations of trees that had been fertilized with either zero or 200 kg N ha(-1) in April. The results provided a comparison of the N use of perennial and annual organs during the growing season for trees growing under both low and high N availability. Nitrogen fertilization increased tree N content by increasing organ dry masses and N concentrations during the fruit growing season. Dry mass of current-year vegetative growth was most affected by N fertilization. Whole-tree N content of fertilized trees was almost twice that of non-fertilized trees. Although N use was higher in fertilized trees, calculated seasonal N accumulation patterns were similar for trees in both treatments. Annual organs exhibited greater responses to N fertilization than perennial organs. Estimated mean daily N use per tree remained nearly constant from 40 days after anthesis to harvest. The calculations indicated that fertilized trees accumulated about 1 g N tree(-1) day(-1), twice that accumulated by non-fertilized trees. Daily N use by the fertilized orchard was calculated to be approximately 1 kg N ha(-1), whereas it was approximately 0.5 kg N ha(-1) for the non-fertilized trees. During the first 25-30 days of the growing season, all N use by growing tissues was apparently supplied by storage organs. Nitrogen release from storage organs for current growth continued until about 75 days after anthesis in both N treatments.  相似文献   

    19.
    为了实现快速修枝,结合桉树的通直度较其他林木高的特点,设计一种以两个对置分布的驱动轮作为攀爬驱动机构,从而使自身可以沿着树干直接往上爬升的爬树修枝机.该爬树修枝机主要由攀爬装置和修枝装置组成.对攀爬装置进行动力学分析,确定了驱动轮与树干之间的摩擦系数和攀爬装置夹紧力所要满足的关系式;根据滑切切割可降低切割阻力的原理,对...  相似文献   

    20.
    Tree pruning is a common management practice in agroforestry for mulching and reducing competition between the annual and perennial crop. The below-ground effects of pruning, however, are poorly understood. Therefore, nutrient dynamics and root distribution were assessed in hedgerow plantings of Acacia saligna (Labill.) H.L. Wendl. after tree pruning. Pruning to a height of 1.5 m was carried out in March and September 1996. In July and October 1996, the fine root distribution (< 2 mm) and their carbohydrate contents were determined at three distances to the tree row by soil coring. At the same time, foliar nutrient contents were assessed, whereas nutrient leaching was measured continuously. The highest root length density (RLD) was always found in the topsoil (0–0.15 m) directly under the hedgerow (0–0.25 m distance to trees). Pruning diminished the RLD in the acacia plots at all depths and positions. The relative vertical distribution of total roots did not differ between trees with or without pruning, but live root abundance in the subsoil was comparatively lower when trees were pruned than without pruning. In the dry season, the proportion of dead roots of pruned acacias was higher than of unpruned ones, while the fine roots of unpruned trees contained more glucose than those of pruned trees. Pruning effectively reduced root development and may decrease potential below-ground competition with intercropped plants, but the reduction in subsoil roots also increased the danger of nutrient losses by leaching. Leaching losses of such mobile nutrients as NO3 were likely to occur especially in the alley between pruned hedgerows and tended to be higher after pruning. The reduced size of the root system of pruned acacias negatively affected their P and Mn nutrition. Pruning also reduced the function of the trees as a safety net against the leaching of nutrients for both NO3 and Mn, though not for other studied elements. If nutrient capture is an important aim of an agroforestry system, the concept of alley cropping with pruning should be revised for a more efficient nutrient recycling in the system described here.This revised version was published online in November 2005 with corrections to the Cover Date.  相似文献   

    设为首页 | 免责声明 | 关于勤云 | 加入收藏

    Copyright©北京勤云科技发展有限公司  京ICP备09084417号