首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Shortleaf pine (Pinus echinata Mill.) seedlings in 24 open-top chambers were exposed to combinations of ozone (carbon-filtered (control), ambient, 1.7 x ambient, and 2.5 x ambient) and acidic precipitation (pH 5.3, 4.3 and 3.3) for 16 months (1989 harvest) or 28 months (1990 harvest). Although the effects of acid rain were generally not significant, there was a trend toward increased aboveground biomass and leaf area in seedlings subjected to the low pH treatments. Because N concentrations in the soils generally increased with decreasing pH, we concluded that the effects of acid rain on aboveground biomass and leaf area were a consequence of an increasing concentration of soil N. In the 1989 harvest, seedlings in the 2.5 x ambient ozone treatment had significantly less biomass in all aboveground plant components and significantly less total leaf area than seedlings in the 1.7 x ambient ozone treatment. In the 1990 harvest, there were no significant effects of ozone on total aboveground biomass, although there was a trend toward reduced biomass in seedlings in the 2.5 x ambient ozone treatment. Both total leaf area and leaf biomass were significantly less in seedlings exposed to 2.5 x ambient ozone for 28 months than in both control seedlings and seedlings in the 1.7 x ambient ozone treatment. The greater, but not always significant, aboveground biomass and leaf area of seedlings in the 1.7 x ambient ozone treatment compared with control seedlings may be associated with the observed increase in soil nitrate concentration as a result of increased rates of leaf senescence and litterfall.  相似文献   

2.
During summer 1994, sugar maple (Acer saccharum Marsh.) seedlings were grown in open-top chambers supplied with air containing near ambient ozone concentration (control, low O(3)) or three times the ambient ozone concentration (high O(3)). The rate of CO(2) assimilation was significantly reduced by chronic exposure to a high concentration of ozone during the summer. During fall, seedlings were removed from the open-top chambers and acclimated to cold under natural conditions. In both species during cold acclimation, the starch concentration decreased, whereas the sucrose concentration increased. There was no treatment effect on the freezing tolerance of roots, even though roots in the high-O(3) treatment accumulated higher concentrations of the cryoprotective oligosaccharides raffinose and stachyose than control roots. Cold acclimation occurred earlier and stachyose concentration of stems was higher in high-O(3)-treated seedlings than in low-O(3)-treated seedlings. Cold acclimation was associated with an earlier accumulation of ABA in the xylem sap of high-O(3)-treated seedlings compared with low-O(3)-treated seedlings.  相似文献   

3.
The primary objective of this study was to investigate if responses of pottedPinus densiflora Sieb. et Zucc. seedlings to ozone exposure could be altered by water deficit stress applied before or during ozone exposure. One-year-old seedlings grown from seeds in pots were used. Water deficit preconditioning was done for ten weeks from May 1, 1998, followed by ozone exposure and simultaneous water deficit for eight weeks. Water deficit was controlled by monitoring xylem water potentials with a pressure chamber. Ozone was fumigated in open top chambers with an eight-hour mean concentration of 0.1 ppm. A 23 factorial design was employed. Dry weights, carbohydrate concentrations, and leaf gas exchanges were measured. In response to the water deficit, growth and stomatal conductance were reduced, while soluble carbohydrate concentrations were enhanced. Interactions between ozone and simultaneous water deficit were significant. Dry weights were significantly decreased by ozone exposure only in well-watered seedlings, suggesting that simultaneous water deficit may alleviate the adverse effects of ozone. This protection from ozone stress observed in water-stressed seedlings resulted from: (1) reduced ozone uptake due to stomatal closure and (2) enhanced TNC (Total Nonstructural Carbohydrates) which acted as a buffer against ozone injury.  相似文献   

4.
Effects of ozone and soil water availability on partitioning and translocation of assimilates were studied in three-year-old Douglas-fir (Pseudotsuga menziesii [Mirb.] Franco) seedlings exposed, in separate experiments, to 0 and 106 or 0 and 514 micro g m(-3) ozone for 8 h day(-1) for 9 days. The dynamics of carbon from assimilated (14)CO(2) were followed. No interactions between ozone and soil water content were observed. Total net uptake of carbon was reduced by low soil water content, but was unaffected by ozone. Both ozone and low soil water content increased the amount of (14)C-photosynthates retained in the current-year needles. Total starch content in old and current-year needles was unaffected by ozone, but was reduced by low water availability. Translocation of carbon to the root-soil compartment was additively affected by ozone and low soil water content. The results suggest that dry periods in summer combined with high ozone concentrations cause the greatest reduction in the supply of carbon compounds to the root-soil compartment.  相似文献   

5.
Individual ponderosa pine (Pinus ponderosa Dougl. ex Laws.) seedlings were grown in mesocosms with three densities of blue wild-rye grass (Elymus glaucus Buckl.) (equivalent to 0, 32 or 88 plants m-2) to determine if the presence of a natural competitor alters the response of ponderosa pine seedlings to ozone. After 3 years of ozone exposure, grass presence reduced total ponderosa pine dry mass by nearly 50%, whereas ozone alone had no significant effect on ponderosa pine growth. The combination of ozone and grass further reduced needle, stem and branch dry mass significantly below that induced by grass competition alone. Root:shoot ratios increased in response to the combined grass and ozone treatments. Grass competition significantly reduced soluble sugar concentrations in all ponderosa pine tissue components examined. Starch concentrations were highly variable but did not differ significantly between treatments. Ozone significantly reduced soluble sugar concentrations in fine roots and stems. In the absence of grass, ozone-treated seedlings tended to have higher tissue N concentrations than controls. In the presence of grass, ozone-treated seedlings had lower N concentrations than controls, resulting in a significant interaction between these two stresses in 1- and 2-year-old needles. Needle C:N ratios decreased in response to grass competition, as a result of increased N concentration and no change in C concentration. The opposite response was observed in ozone-treated seedlings as a result of decreased N concentrations, indicating that ozone-treated seedlings were unable to take up or retain as much nitrogen when grown in the presence of grass. We conclude that ponderosa pine seedlings are more susceptible to ozone when grown in competition with blue wild-rye grass.  相似文献   

6.
Ozone exposure decreases belowground carbon allocation and root growth of plants; however, the extent to which these effects persist and the cumulative impact of ozone stress on plant growth are poorly understood. To evaluate the potential for plant compensation, we followed the progression of ozone effects, with particular emphasis on the development of new roots. Ponderosa pine (Pinus ponderosa Dougl. ex Laws.) seedlings were exposed to ozone for 2 years. Following removal of the seedlings from ozone, root growth was assessed to characterize the carry-over effects on new root production, and carbohydrate concentrations were measured to determine if allocation strategies differed among ozone treatments. Four months after removal from ozone, dormant seedlings had significantly lower starch concentrations in stems, coarse roots and fine roots than control seedlings. Following root flushing, starch concentrations in all seedlings decreased, with ozone-treated seedlings containing significantly less starch, sucrose, fructose, glucose and total monosaccharides than control seedlings. There was some evidence that stem starch was mobilized to compensate partially for the lower concentrations of root starch in ozone-treated seedlings; however, there was significantly less new root production in seedlings previously exposed to ozone for 2 years than in control seedlings. Early senescence of older needle age classes, perhaps resulting in inadequate available photosynthate, may be responsible for the reduction in new root production during the year following exposure to ozone. Stored carbohydrate reserves, which were depleted in seedlings previously exposed to ozone, were insufficient to compensate for the ozone-induced reduction in canopy photosynthate. We conclude that there are carry-over effects of ozone exposure on ponderosa pine seedlings, including an enhanced potential for seedling susceptibility to other stresses even in respite years when ozone concentrations are low.  相似文献   

7.
Height and diameter growth, biomass accumulation and leaf pigment concentrations were measured in loblolly pine (Pinus taeda L.) seedlings grown in soil containing 12 or 35 microg Mg g(-1) and exposed from May to October to subambient, ambient, or twice-ambient ozone (O(3)), and to simulated acidic rain with a pH of either 4.0 or 5.3. At the end of one growing season, height and diameter growth of seedlings exposed to twice-ambient O(3) were not statistically different from those of seedlings exposed to subambient O(3). Biomass of all plant parts was reduced by 7 to 16% in response to increasing O(3) concentration. No statistically significant growth responses to rain chemistry or soil magnesium status were observed, and there were no statistically significant interactive treatment effects. Needle pigment concentrations were not significantly affected by rain chemistry or soil Mg status and there were no visible signs of injury to needles that could be attributed to O(3) stress or Mg deficiency. Concentrations of chlorophyll a and b, and carotenes were 23, 30 and 21% higher (P 相似文献   

8.
This study presents the effects of short-term ozone exposure on the nano-scale growth behavior of the fine roots of Pinus densiflora (Japanese red pine) seedlings. Root elongation measurements were obtained in nanometers for very short (sub-second) time intervals by using the optical interference method called statistical interferometry, developed by the authors. Three categories of P. densiflora seedlings were investigated; two categories were infected with ectomycorrhiza of Pisolithus sp. (Ps) and Cenococcum geophilum (Cg), while the third was without any fungal infection. In experiments, two points on a root with a separation of 3 mm were illuminated by laser beams and the elongation was measured continuously by analyzing speckle patterns successively taken by a CCD camera. The ectomycorrhizal fungi-infected and uninfected seedlings were exposed to ozone at concentrations of 120 and 240 ppb for periods of 1, 3, or 5 h in separate treatments. The root elongations of P. densiflora seedlings were measured before and immediately after the each ozone treatment and then the root elongation rates (RER) were determined for growth-measurement periods of 5.5 s and 9.5 min. From the measurements obtained for 9.5 min, we found that the RERs of uninfected and Cg-infected seedlings were reduced by 42 and 18%, respectively, after 5 h of exposure to 120 ppb ozone compared with that before exposure, while the reduction in RER of Ps-infected seedlings was not significant. When the concentration of ozone was increased to 240 ppb, the RERs of Ps-infected and Cg-infected seedlings were reduced by 32 and 44%, respectively, after exposure for 5 h, while the reduction in RER of uninfected seedlings was 59%. These observations prove that the non-mycorrhizal seedling roots are more sensitive to ozone stress. From this study, we found that the RERs of both mycorrhizal and non-mycorrhizal seedlings apparently fluctuated throughout the measurements, even within a few minutes.  相似文献   

9.
Extrapolation of the effects of ozone on seedlings to large trees and forest stands is a common objective of current assessment activities, but few studies have examined whether seedlings are useful surrogates for understanding how mature trees respond to ozone. This two-year study utilized a replicated open-top chamber facility to test the effects of subambient, ambient and twice ambient ozone concentrations on light-saturated net photosynthesis (P(max)) and leaf conductance (g(l)) of leaves from mature trees and genetically related seedlings of northern red oak (Quercus rubra L.). Gas exchange measurements were collected four times during the 1992 and 1993 growing seasons. Both P(max) and g(l) of all foliage followed normal seasonal patterns of ontogeny, but mature tree foliage had greater P(max) and g(l) than seedling foliage at physiological maturity. At the end of the growing season, P(max) and g(l) of the mature tree foliage exposed to ambient ( approximately 80-100 ppm-h) and twice ambient ( approximately 150-190 ppm-h) exposures of ozone were reduced 25 and 50%, respectively, compared with the values for foliage in the subambient ozone treatment ( approximately 35 ppm-h). In seedling leaves, P(max) and g(l) were less affected by ozone exposure than in mature leaves. Extrapolations of the results of seedling exposure studies to foliar responses of mature forests without considering differences in foliar anatomy and stomatal response between juvenile and mature foliage may introduce large errors into projections of the response of mature trees to ozone.  相似文献   

10.
We assessed the effects of ambient tropospheric ozone on annual tree-ring growth, delta(13)C in the rings, leaf gas exchange and visible injury in three ozone-sensitive woody plant species in southern Switzerland. Seedlings of Populus nigra L., Viburnum lantana L. and Fraxinus excelsior L. were exposed to charcoal-filtered air (CF) and non-filtered air (NF) in open-top chambers, and to ambient air (AA) in open plots during the 2001 and 2002 growing seasons. Ambient ozone exposures in the region were sufficient to cause visible foliar injury, early leaf senescence and premature leaf loss in all species. Ozone had significant negative effects on net photosynthesis and stomatal conductance in all species in 2002 and in V. lantana and F. excelsior in 2001. Water-use efficiency decreased and intercellular CO(2) concentrations increased in all species in response to ozone in 2002 only. The width and delta(13)C of the 2001 and 2002 growth rings were measured for all species at the end of the 2002 growing season. Compared with CF seedlings, mean ring width in the AA and NF P. nigra seedlings was reduced by 52 and 46%, respectively, in 2002, whereas in V. lantana and F. excelsior, ring width showed no significant reductions in either year. Although delta(13)C was usually more negative in CF seedlings than in AA and NF seedlings, with the exception of F. excelsior in 2001, ozone effects on delta(13)C were significant only for V. lantana and P. nigra in 2001. Among species, P. nigra exhibited the greatest response to ozone for the measured parameters as well as the most severe foliar injury and was the only species to show a significant reduction in ring width in response to ozone exposure, despite significant negative ozone effects on leaf gas exchange and the development of visible foliar injury in V. lantana and F. excelsior. Thus, significant ozone-induced effects at the leaf level did not correspond to reduced tree-ring growth or increased delta(13)C in all species, indicating that the timing of ozone exposure and severity of leaf-level responses may be important in determining the sensitivity of tree productivity to ozone exposure.  相似文献   

11.
Under experimental conditions, the growth of loblolly pine (Pinus taeda L.) is often responsive to ozone at near-ambient concentrations. However, little is known of the biochemical changes associated with this or other pollutants. Loblolly pine seedlings in open-top chambers were exposed to combinations of ozone (sub-ambient, ambient, or twice-ambient), acidic precipitation (pH 3.8 or pH 5.2) and soil magnesium (0.15 or 0.32 microg g(-1) exchangeable Mg) for three growing seasons. The effects of these treatments were greater in foliage than in stems or roots. The largest treatment effect was a 50% decrease in the starch concentration of current-year foliage from the twice-ambient ozone treatment compared with current-year foliage from the sub-ambient ozone treatment. Responses to ozone were consistent with the hypothesis that ozone-induced growth reductions are associated with depletion of carbohydrate reserves resulting from injury compensation and repair processes or reduced carbon fixation or both. Addition of acidic precipitation, and to a small extent Mg, decreased sugar concentrations of tissues; however, this effect appeared to be mediated by nutrient addition rather than by acidity per se. Given the role of carbohydrates in plant resistance to environmental stress, the sensitivity of carbohydrates to experimental treatments demonstrates the potential for indirect effects of ozone, acidic precipitation, and soil properties on stress resistance. Noncarbohydrate constituents were largely unresponsive to the experimental treatments. These findings imply that tissue carbohydrate analysis may be useful for assessing the impacts of pollutants in forest ecosystems.  相似文献   

12.
土壤温度和水分变化对川西云杉幼苗氮和磷含量的影响   总被引:1,自引:0,他引:1  
【目的】研究不同梯度的土壤温度和水分对川西云杉幼苗生长性状和各器官氮和磷含量的影响,以期为全球气候变暖背景下解释川西云杉树线形成的原因提供参考和数据积累。【方法】以5年生川西云杉幼苗为试验材料,采用人工气候室结合嵌套设计,设置5个土壤温度梯度(2、7、12、17、22℃)和3个土壤水分梯度(干旱处理、正常水分含量处理、饱和水分含量处理)。每处理9株幼苗,共135株幼苗。实验处理4个月后,测定并比较分析不同梯度的土壤温度和水分对幼苗的生长性状、各器官干物质含量、各器官全氮、全磷浓度和含量以及土壤全氮和全磷浓度的影响。【结果】土壤温度处理对幼苗基径和株高生长量均无显著影响,而土壤水分处理对幼苗株高生长量有显著影响;在2℃和7℃土壤温度干旱处理下显著降低了幼苗的株高生长量,但随着土壤温度的升高其影响效应不显著。土壤温度处理对土壤氮和磷浓度无显著影响,而干旱处理显著升高了土壤氮和磷浓度。川西云杉幼苗各器官的氮和磷浓度以及当年生叶氮含量随土壤温度降低显著降低;干旱和饱和水分处理显著降低了当年生叶和当年生枝的氮浓度,饱和水分处理显著降低了当年生叶的磷浓度,干旱处理显著降低了当年生枝、茎和根的磷浓度,干旱和饱和水分处理显著降低了当年生叶和根的氮和磷含量,且随着土壤温度升高影响效应更显著。【结论】在短期内,土壤低温对川西云杉幼苗的生长性状没有明显的制约作用,但对川西云杉幼苗各器官的氮和磷浓度及含量影响显著,尤其是当年生叶和根的氮和磷浓度及含量。在川西地区,低温、干旱等极端气候胁迫导致的云杉幼苗氮、磷含量的不足很可能是限制川西云杉垂直分布的重要因素。此外,土壤温度和水分处理存在显著的交互作用,随着土壤温度的降低,水分胁迫对幼苗各器官氮和磷含量的影响由显著变得不再显著,说明随着海拔升高,与水分因子相比,土壤低温成为造成云杉各器官营养元素亏缺的主导因子。  相似文献   

13.
We tested the hypothesis that transfer conductance (gi) of Douglas-fir (Pseudotsuga menziesii (Mirb.) Franco) seedlings is reduced by water stress. Seedlings were irrigated with a solution of 25% polyethylene glycol so as to impose water stress rapidly, thereby limiting acclimatory responses. Transfer conductance was measured pre-treatment and post-treatment by two methods. Water stress reduced net photosynthesis by 20-50%. The initial slope of the rate of photosynthesis (A) over the intercellular carbon dioxide (CO2) concentration (Ci) response was reduced by water stress, indicating that reduced photosynthesis was not wholly accounted for by reduced stomatal conductance. The carbon isotope and chlorophyll fluorescence methods both indicated that water stress decreased gi. From isotopic measurements with 1% O2, gi was 0.076 +/- 0.009 (mean +/- SE) mol m(-2) s(-1) in well-watered seedlings and 0.044 +/- 0.004 mol m(-2) s(-1) in water-stressed seedlings. Fluorescence estimates of gi were 0.08 +/- 0.01 mol m(-2) s(-1) in well-watered seedlings and 0.044 +/- 0.004 mol m(-2) s(-1) in water-stressed seedlings. The drought-induced reduction in gi was responsible for the reduction in slope of the A/Ci response, and thus there was no difference in the slope of the A over the chloroplastic CO2 concentration (Cc) response between treatments and no indication of impaired mesophyll metabolism. These data illustrate that impairments of mesophyll metabolism can be revealed only from analysis of the A/Cc response.  相似文献   

14.
The effects of nutrient loading (NLOAD) on the frost hardening and dehardening of Picea abies (L.) Karst. seedlings were investigated under nursery conditions. Before NLOAD, second-year container seedlings were either short-day (SD) treated for 3 weeks in July or left for the natural photoperiod (CO). By mid-September, after 5 weeks of NLOAD, the fertilization of three foliar nutrient concentration levels (low = L-SD, medium = M-SD, and high = H-SD) for the SD-treated seedlings and one (medium = M-CO) for the CO-seedlings was completed. The NLOAD resulted in foliar nitrogen concentration 10.6, 16.1, 22.3, and 17.5 g kg−1 for L-SD, M-SD, H-SD and M-CO seedlings, respectively. The NLOAD had no effects on the morphology or dry mass variables of the seedlings, while SD-treatment reduced the dry mass of shoots, but not that of roots. The frost hardiness (FH) of different batches of the seedlings was assessed by the visual scoring of damage in their needles, stems and buds after their controlled exposure to freezing during frost hardening and dehardening. The low nutrient concentration in the SD-treated seedlings (L-SD seedlings) resulted in poor FH, to an even lower extent than that of the M-CO seedlings. The NLOAD did not affect the dehardening of the seedlings at the end of the freezer storage in the following spring.  相似文献   

15.
Low water availability reduces the establishment of the invasive shrub Prosopis on some grasslands. Water deficit survival and traits that may contribute to the postponement or tolerance of plant dehydration were measured on seedlings of P. glandulosa Torr. var. glandulosa (honey mesquite) grown at CO(2) concentrations of 370 (ambient), 710, and 1050 micro mol mol(-1). Because elevated CO(2) decreases stomatal conductance, the number of seedlings per container in the elevated CO(2) treatments was increased to ensure that soil water content was depleted at similar rates in all treatments. Seedlings grown at elevated CO(2) had a greater root biomass and a higher ratio of lateral root to total root biomass than those grown at ambient CO(2) concentration; however, these seedlings also shed more leaves and retained smaller leaves. These changes, together with a reduced transpiration/leaf area ratio at elevated CO(2), may have contributed to a slight increase in xylem pressure potentials of seedlings in the 1050 micro mol mol(-1) CO(2) treatment during the first 37 days of growth (0.26 to 0.40 MPa). Osmotic potential was not affected by CO(2) treatment. Increasing the CO(2) concentration to 710 and 1050 micro mol mol(-1) more than doubled the percentage survival of seedlings from which water was withheld for 65 days. Carbon dioxide enrichment significantly increased survival from 0% to about 40% among seedlings that experienced the lowest soil water content. By increasing seedling survival of drought, rising atmospheric CO(2) concentration may increase abundance of P. glandulosa on grasslands where low water availability limits its establishment.  相似文献   

16.
The effects of pre-storage CO(2) enrichment on growth, non-structural carbohydrates and post-storage root growth potential of Engelmann spruce (Picea engelmannii Parry) seedlings were studied. Seedlings were grown from seed for 202 days in growth chambers with ambient (340 micro l l(-1)) or CO(2) enriched (1000 micro l l(-1)) air. Some seedlings were transferred between CO(2) treatments at 60 and 120 days. Photoperiod was reduced at 100 days to induce bud set and temperature was reduced at 180 days to promote frost hardiness development for storage at -5 degrees C for 2 or 4 months. Stored seedlings were planted in a growth chamber after thawing for one week at +5 degrees C. At 80, 120, 140 and 202 days, and at each planting time after storage, seedlings were harvested for growth measurements and analysis of starch and soluble sugar concentrations. Planted seedlings were assessed for bud break every two days and new roots > 5 mm long were counted after four weeks. Carbon dioxide enrichment increased root collar diameter and almost doubled seedling biomass, with the most obvious effects occurring after bud set. Stem height was affected only slightly and shoot/root ratios were not affected at all. Carbon dioxide enrichment increased the rate of reserve carbohydrate accumulation, but did not influence the final concentration attained before storage (accounting for 32% of seedling dry weight). Needles were the major storage organ for soluble sugars, whereas roots were the major storage organ for starch. Soluble sugars were not strongly affected by two or four months of storage, but starch was reduced by more than 50% in all plant parts. None of the CO(2) treatments had an impact on bud break or root growth potential.  相似文献   

17.
Northern red oak (Quercus rubra L.) seedlings and trees differ in their response to ozone. Previous work reported reductions in net photosynthesis, carboxylation efficiency and quantum yield of mature tree leaves, whereas seedling processes were unaffected by the same ozone exposure. To further characterize differences in ozone response between seedlings and mature trees, we examined carbon partitioning and allocation in 32-year-old trees and 4-year-old seedlings of northern red oak after exposure to subambient (seasonal SUM00 dose (sum of all hourly ozone exposures) = 31 ppm-h), ambient (SUM00 dose = 85 ppm-h) and twice ambient (SUM00 dose = 151 ppm-h) ozone concentrations for three growing seasons. For mature trees, ozone exposure decreased foliar starch partitioning, increased starch partitioning in branches and increased (14)C retention in leaves. In contrast, starch partitioning in leaves and branches, and foliar (14)C retention in seedlings were unaffected by ozone exposure, but soluble carbohydrate concentrations in coarse and fine roots of seedlings were reduced. Differences in carbohydrate demand between seedlings and mature trees may underlie the higher leaf ozone uptake rates and greater physiological response to ozone in mature northern red oak trees compared with seedlings.  相似文献   

18.
A physiologically based, single-tree simulation model, TREGRO, was parameterized with existing phenological, allometric, and growth data and used to predict effects of ozone and drought on growth of a 53-year-old white fir (Abies concolor (Gord. & Glend.) Lindl. ex Hildebr.) tree following a 3-year model simulation. Multiple experimental simulations were conducted to assess the individual and interactive effects of ozone (O(3)) exposure and drought on growth of white fir. The effects of O(3) were imposed as reductions in carbon (C) assimilation of 0, 2.5, 5, 10, and 20%. Drought was imposed as 0, 10, 25, and 50% reductions in total annual precipitation. The results of the simulations were compared with the effects of O(3) on white fir seedlings grown in the presence and absence of ozone in open-top chambers and with a field survey of white fir trees subjected to a gradient of O(3). In the O(3) simulations, an O(3)-induced reduction in C assimilation of 2.5% reduced total tree biomass and branch total nonstructural carbohydrate (TNC) content by < 7%. Although quantifiable in simulation experiments, such small reductions would probably not be detectable in the field. Results from both an open-top chamber experiment and a field survey indicated that reductions in C assimilation of white fir growing in elevated O(3) were much greater than 2.5%, but were not statistically different from control values. A simulated O(3) reduction in C assimilation of >/= 10% reduced total tree biomass by 7% and branch TNC by 55%. Results from the field survey indicated that branch elongation was reduced in response to increased O(3) concentration, corroborating the simulated response of reduced C allocation to the branches of white fir. Although simulated reductions in total annual precipitation of >/= 25% reduced final tree biomass, the simulated reductions also reduced O(3) uptake and therefore reduced the O(3) response of white fir. However, a combination of low amounts of O(3) (2.5% reduction in C assimilation) and drought (25% reduction in annual precipitation) synergistically reduced C gain of white fir more than either stress individually. Our simulations predict that moderate drought (no more than a 25% reduction in total annual precipitation) may not ameliorate the response of white fir to O(3) and that moderate amounts of atmospheric O(3) and drought could be more detrimental to white fir than either stress singly.  相似文献   

19.

Scots pine ( Pinus sylvestris L.) and Norway spruce [ Picea abies (L.) Karst.] seedlings were exposed to high phosphorus (HP) or low phosphorus (LP) availability for one growing season in the open field, and to combined P availability and elevated ozone (O 3 ) concentrations (0, 55, 110 and 210 ppb for Scots pine and 0, 40, 75 and 150 ppb for Norway spruce, respectively) for 28 days in controlled laboratory chambers. Compared with HP, the LP treatment reduced Scots pine current-year (C) shoot and root dry masses and Norway spruce total dry mass, whereas the highest O 3 concentrations increased the magnesium concentration of Scots pine C needles and P concentrations of the C needles of both tree species. Chlorophyll a, a+b and carotenoid concentrations of Scots pine C needles were significantly higher in the LP treatment compared with HP under the highest O 3 concentration (210 ppb). In the mesophyll tissue of C needles of both tree species, LP treatment increased the size of mitochondria and elevated O 3 -induced granulation of chloroplast stroma and disintegration of cytoplasm. Exposure to elevated O 3 concentrations increased swelling of chloroplast thylakoids and reduced the amount of vacuolar tannin in the LP Scots pine C needles. The results suggest disturbances in needle photosynthetic machinery due to acute exposure to the combination of elevated O 3 and low P availability. However, clear additive effects were found only in needle P concentrations < 1 mg g -1 in short-term O 3 exposure.  相似文献   

20.
We studied the effects of O(3) uptake on conductance (g(wv)) and photosynthesis (A) in needles of ponderosa pine (Pinus ponderosa Laws.) seedlings exposed for 70 days to one of three O(3) regimes-Low-O(3) (0.1 micro mol mol(-1) daily peak), High-O(3) (0.2 micro mol mol(-1) daily peak), and Low/High-O(3) (alternating 2 days Low-O(3) and 2 days High-O(3)). Seedlings exposed to charcoal-filtered air served as controls. Total O(3) exposures, expressed as ppm-h (the sum of the average hourly concentration in ppm ( micro mol mol(-1)) over the exposure period), were 77, 135, 105 and 4 for the Low-O(3), High-O(3), Low/High-O(3) and control treatments, respectively. Conductance (g(wv)) declined to about 60% of the value in control seedlings by Day 6 in seedlings in the High-O(3) treatment and by Day 37 in seedlings in the Low/High-O(3) treatment, but g(wv) did not decline at all in seedlings in the Low-O(3) treatment. At the end of the 70-day experiment, cumulative O(3) uptake, calculated from measured g(wv) values and assuming an internal O(3) concentration of zero, was 12.2, 13.5, and 14.7 mmol m(-2) for seedlings in the Low-O(3), Low/High-O(3), and High-O(3) treatments, respectively; however, O(3) uptake was reduced by 0, 24, and 36%, respectively, from that expected if there had been no decline in g(wv). With increasing total O(3) exposure, A declined, but the reduction was not strictly cumulative, i.e., A measured on Days 49 and 70 was similar for a given treatment even though both total O(3) exposure and uptake had increased. At the end of the experiment, A at near saturating CO(2) (1000 micro mol mol(-1)) and saturating photosynthetic photon flux density was reduced by about 25, 40 and 50% in seedlings in the Low-O(3), Low/High-O(3) and High-O(3) treatments, respectively, compared to the control seedlings. The ratio of internal to external CO(2) concentrations, an indicator of relative change in stomatal limitation of A, did not change over time and did not differ among treatments, suggesting that A and g(wv) decreased in parallel. After 40-60 days without O(3), A of seedlings in all O(3) treatments was not significantly different. Our data indicate that O(3)-induced stomatal closure was a result of reduced A and that decreased g(wv) reduced O(3) uptake to a rate that needles of ponderosa pine could tolerate without exhibiting further reductions in gas exchange capacity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号