首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Bostad PV  Reich P  Lee T 《Tree physiology》2003,23(14):969-976
We conducted controlled (chamber) and natural (field) environment experiments on the acclimation of respiration in Quercus alba L. and Quercus rubra L. Three-year-old Louisiana, Indiana and Wisconsin populations of Q. alba were placed in growth chambers and exposed to alternating 5-week periods of cool (20 degrees C mean) and warm (26 degrees C mean) temperatures. We measured respiration rates on fully expanded leaves immediately before and approximately every 2 days after a switch in mean temperature. In a second chamber experiment, 3-year-old potted Q. alba seedlings were exposed to alternating warm (26 degrees C mean) and cool (16 degrees C mean) temperatures at 4-day intervals. Leaf dark respiration rates were measured on days 2, 3 and 4 after each change in temperature. In a third, field-based study, we measured leaf respiration rates in the same three sources of Q. alba and in Arkansas, Indiana and Minnesota sources of Q. rubra before and after a natural 16 degrees C change in mean daily ambient temperature. We observed rapid, significant and similar acclimation of leaf respiration rates in all populations of Q. alba and Q. rubra. Cold-origin populations were no more plastic in their acclimation responses than populations from warmer sites. All geographic sources showed lower respiration rates when measured at 24 degrees C after exposure to higher mean temperatures. Respiration rates decreased 13% with a 6 degrees C increase in mean temperature in the first chamber study, and almost 40% with a 10 degrees C increase in temperature in the second chamber study. Acclimation was rapid in all three studies, occurring after 2 days of exposure to changed temperature regimes. Acclimation was reversible when changes in ambient temperature occurred at 4-day intervals. Respiration response functions, ln(R) = ln(beta0) + beta1T, were statistically different among treatments (cool versus warm, first chamber study) and among sources in a pooled comparison. Pair-wise comparisons indicated statistically significant (P<0.05) differences in cool- versus warm-measured temperature/respiration response functions for Indiana and Wisconsin sources of Q. alba. Log-transformed base respiration rates were significantly lower during periods of higher mean temperatures. Indiana Q. alba showed a significantly higher beta1 when plants were grown at 16 degrees C than when grown at 26 degrees C. Acclimation in Q. alba was unaccompanied by changes in leaf nitrogen concentration, but was associated with a change in leaf total nonstructural carbohydrate concentration. Total nonstructural carbohydrate concentration was slightly, but statistically, lower (13.6 versus 12%, P<0.05) after a 10 degrees C increase in temperature.  相似文献   

2.
Coarse and fine root respiration rates of aspen (Populus tremuloides Michx.) were measured at 5, 15 and 25 degrees C. Coarse roots ranged from 0.65 to 4.45 cm in diameter, whereas fine roots were less than 5 mm in diameter. To discriminate between maintenance and growth respiration, root respiration rates were measured during aboveground growing periods and dormant periods. An additional measurement of coarse root respiration was made during spring leaf flush, to evaluate the effect of mobilization of resources for leaf expansion on root respiration. Fine roots respired at much higher rates than coarse roots, with a mean rate at 15 degrees C of 1290 micromol CO2 m-3 s-1 during the growing period, and 660 micromol CO2 m-3 s-1 during the dormant period. The temperature response of fine root respiration rate was nonlinear: mean Q10 was 3.90 for measurements made at 5-15 degrees C and 2.19 for measurements made at 15-25 degrees C. Coarse root respiration rates measured at 15 degrees C in late fall (dormant season) were higher (370 micromol CO2 m-3 s-1) than rates from roots collected at leaf flush and early summer (200 micromol CO2 m-3 s-1). The higher respiration rates in late fall, which were accompanied by decreased total nonstructural carbohydrate (TNC) concentrations, suggest that respiration rates in late fall included growth expenditures, reflecting recent radial growth. Neither bud flush nor shoot growth of the trees caused an increase in coarse root respiration or a decrease in TNC concentrations, suggesting a limited role of coarse roots as reserve storage organs for spring shoot growth, and a lack of synchronization between above- and belowground growth. Pooling the data from the coarse and fine roots showed a positive correlation between nitrogen concentration and respiration rate.  相似文献   

3.
The light screen hypothesis states that foliar anthocyanins shade the photosynthetic apparatus from excess light. In this paper we extend the light screen hypothesis, postulating that plant species at risk of photoinhibitory conditions during autumnal leaf senescence often utilize anthocyanins to protect the photosynthetic apparatus during the period of nutrient resorption. When senescence-related photosynthetic instabilities are compounded by other environmental stresses, particularly low temperature, severe photoinhibition may result in reduced resorption of critical foliar nutrients, which can significantly affect plant fitness. There is evidence that environments where low and often freezing temperatures are common in autumn selectively favor the production of anthocyanins in senescing foliage. The stimuli for, and the timing and location of, autumnal anthocyanin production are all consistent with a photoprotective role for these pigments in senescing leaves. Furthermore, differences in nitrogen allocation strategies between early and late successional species appear to affect photosynthetic stability during leaf senescence, resulting in a reduced need for foliar autumnal anthocyanins in many early successional plants. The ecological and physiological evidence presented in this paper suggest that, for many deciduous species, the production of anthocyanins provides effective photoprotection during the critical period of foliar nutrient resorption.  相似文献   

4.
Despite many studies of the percent loss of hydraulic conductivity in excised branches, there is doubt as to whether cutting stems in air introduces unnatural embolism into the xylem at the cut surface. To address this question, hydraulic conductivity was measured in seedlings of northern red oak (Quercus rubra L.) and rooted scions of eastern cottonwood (Populus deltoides Bartr. ex Marsh.) that had been droughted in pots. Results indicate that in situ dehydration produced a very similar vulnerability curve (% loss of conductivity versus water potential) to those previously obtained by bench-top dehydration of excised branches of eastern cottonwood and red oak. In eastern cottonwood cuttings, conductivity loss increased sharply below water potentials of -1.0 MPa, with 100% loss of conductivity occurring by -2.0 MPa, whereas conductivity loss in red oak seedlings was more gradual, i.e., increasing below -1.5 MPa and sustaining 100% loss of conductivity by about -4.0 MPa.  相似文献   

5.
Xu CY  Griffin KL 《Tree physiology》2008,28(4):637-646
Stand-level, canopy foliar carbon loss (R(can)) was modeled for a virtual Quercus rubra L. monoculture at two sites differing in soil water availability in a northeastern deciduous forest (USA) throughout the 2003 growing season. Previously reported foliar respiratory temperature responses of Q. rubra were used to parameterize a full distributed physiology model that estimates R(can) by integrating the effects of season, site and canopy position, and represents the best estimation of R(can). Model sensitivity to five simplified parameterization scenarios was tested, and a reasonable procedure of simplification was established. Neglecting effects of season, site or canopy position on respiration causes considerable relative error in R(can) estimation. By contrast, assuming a constant E(0) (a temperature response variable of the respiration model), or a constant night temperature (mean nighttime temperature) caused only a small relative error (< 10%) compared with the full model. From June 8 to October 28, 2003, modeled R(can) of the virtual Q. rubra monoculture was, on average, 45.3 mmol CO(2) m(-2) night(-1) on a ground-area basis (or 334 mmol CO(2) kg(-1) night(-1) on a biomass basis) and 101 mmol CO(2) m(-2) night(-1) (or 361 mmol CO(2) kg(-1) night(-1)) at the drier site and the more mesic site, respectively. To model R(can) of Q. rubra (or other Quercus species with similar respiratory properties), variations in the base respiration rate across season, site and canopy position need to be fully accounted for, but E(0) may be assumed constant. Modeling R(can) at the mean nighttime temperature would not strongly affect estimated canopy carbon loss.  相似文献   

6.
Because the rate of isoprene (2-methyl-1,3-butadiene) emission from plants is highly temperature-dependent, we investigated natural fluctuations in leaf temperature and effects of rapid temperature change on isoprene emission of red oak (Quercus rubra L.) leaves at the top of the canopy at Harvard Forest. Throughout the day, leaves often reached temperatures as much as 15 degrees C above air temperature. The highest temperatures were reached for only a few seconds at a time. We compared isoprene emission rates measured when leaf temperature was changed rapidly with those measured when temperature was changed slowly. In all cases, isoprene emission rate increased with increasing leaf temperature up to about 32 degrees C and then decreased with higher temperatures. The temperature at which isoprene emission rates began to decrease depended on how quickly measurements were made. Isoprene emission rates peaked at 32.5 degrees C when measured hourly, whereas rates peaked at 39 degrees C when measurements were made every four minutes. This behavior reflected the rapid increase in isoprene emission rate that occurred immediately after an increase in leaf temperature, and the subsequent decrease in isoprene emission rate when leaf temperature was held steady for longer than 20 minutes. We concluded that the observed temperature response of isoprene emission rate is a function of measurement protocol. Omitting this parameter from isoprene emission models will not affect simulated isoprene emission rates at mild temperatures, but can increase isoprene emission rates at high temperatures.  相似文献   

7.
8.
Summary Tyloses form in red oak (Quercus rubra L.) sapwood in a period of hours if the wood is cut during the active growth season and stored in green condition in the laboratory. If the wood is cut during dormancy and stored in green condition, tyloses form in a period of months. Electron microscopic examination reveals that the wall of a tylosis forms from a promonths. Electron microscopic examination reveals that the wall of a tylosis forms from a protective layer that develops inside the secondary wall of the ray cell in the vessel-ray pit-pair. Protective layers are also present in fiber-parenchyma pit-pairs. Protective layers may exhibit variable thicknesses, with light and dark layers alternating. A young tylosis wall consists of two layers: An electron-dense outer layer and an electron-transparent inner layer. Tyloses walls may attach to each other and form multilamellate tyloses. Sometimes the individual layers of tyloses walls appear lamellated. Because of the type of formation and structure, the tylosis wall in red oak apparently is a primary wall rather than a secondary. Tyloses walls have simple pits. The findings of this study enable felled hardwoods with potential for forming tyloses to be used without the destructive influence of tyloses.  相似文献   

9.
The life span of leaves in Bruguiera gymnorrhiza, non-secretor of salt, can be divided into a leaf developing stage, a leaf functioning stage and a leaf senescing stage. The concentrations (mg/g) and the contents (mg/leaf) of Na and Cl increased at the leaf developing stage and remained almost constant at the leaf functioning stage. At the leaf senescing stage, the concentrations of Na and Cl increased markedly by 45 and 31% respectively, while their contents only increased by 16 and 4% respectively. The K/Na ratio remained constant at the leaf functioning stage, and decreased at the leaf senescing stage. During leaf senescence, there was a marked decline in leaf mass (20%) and in leaf area (15%). During senescence, 60% of its N, 48% of its P and 46% of its K was transferred out of the senescing leaf.  相似文献   

10.
The fate of chloroplast DNA (cpDNA) during plastid development and conversion between various plastid types is still not very well understood. This is especially true for the cpDNA found in plastids of naturally senescing leaves. Here, we describe changes in plastid nucleoid structure accompanied with cpDNA degradation occurring during natural senescence of the free-growing deciduous woody species Acer pseudoplatanus L. Natural senescence was investigated using three types of senescing leaves: green (G), yellow-green (YG) and yellow (Y). The extent of senescence was evaluated at the level of photosynthetic pigment degradation, accumulation of starch and plastid ultrastructure. Determination of cpDNA amount was carried out by in planta visualization with 4,6-diamidino-2-phenylindole, by Southern hybridization, and by dot-blot using an rbcL gene probe. During natural senescence, plastid nucleoids undergo structural rearrangements accompanied by an almost complete loss of cpDNA. Furthermore, senescence-associated protein components exhibiting strong binding to an ~10kbp rbcL-containg cpDNA fragment were identified. This interaction might be important for rbcL expression and Rubisco degradation during the course of natural senescence in trees.  相似文献   

11.
用混交度、大小比数、角尺度3个参数研究山杨次生林的空间结构,得出山杨次生林树种间隔离程度较大,林分稳定性较高;山杨处于明显的优势地位,枫桦、椴树、云杉的优势和被压的林木在数量上基本相同,而杂木、水曲柳和榆树处于劣势;林地的平均角尺度为0.515,林木个体的水平空间格局为随机分布.  相似文献   

12.
We determined the effects of removal of leaves, stem axillary buds, or the entire shoot on root suckering (adventitious shoot formation by roots) and basal stem sprouts in 3- and 4-year-old potted seedlings of aspen (Populus tremuloides Michx.). The greatest number of root suckers (67.9 +/- 8.5 per plant) emerged after excision of the entire shoot. Defoliated and debudded stems were the major source of inhibitory agents for root suckering, although axillary buds and developing new leaves also exerted a significant inhibitory effect. Removal of mature leaves had only a minor effect on root suckering. Removal of a continuous band of bark (girdling) at the base of the stem consistently stimulated growth of adventitious shoots from the stem below the girdle and occasionally promoted root suckering. Exogenous application of indole-3-acetic acid to excised stumps inhibited root suckering and basal stem sprouting. Naphthylphthalamic acid (NPA), an auxin polar transport inhibitor, had no effect on root suckering or stem sprouting when it was applied to the bark of the basal stem. However, NPA significantly increased root suckering when it was applied to the exposed surface of xylem after girdling. These results suggest that polar transport of auxin in the xylem parenchyma is an important inhibitor of root suckering. On decapitated stems, vacuum extraction of xylem sap from the root system lowered the frequency of root suckering compared with decapitation alone, indicating that substance(s) originating in the root system also play a significant role in controlling root suckering.  相似文献   

13.
  • ? In Quebec (Canada), predicting net merchantable volume of standing trees is essential to adjust stumpage fees. Furthermore, round-wood end use is important in the provincial forest management context because it is used to split the allowable annual cut among the different mill types.
  • ? A method relying on linear, binomial and cumulative logit regressions is proposed to predict both decay volume and round-wood end use volume. Tree age, height and quality, as well as ecological region, stand origin and presence of Phellinus tremulae (Bond.) Bond. & Boriss. and Ceratocystis fimbriata (Ellis & Halst.) fungi are the main factors that contribute to the presence and the proportion of decayed merchantable volume. Once the net merchantable volume is estimated, its division into round-wood end use is estimated through a series of steps involving the presence of Phellinus tremulae, saw log height, stem quality and size as explanatory variables. The first step is a multinomial regression which predicts the number of end uses (pulp wood, low-grade saw logs, saw logs, low-grade veneer, and veneer) that are present in the stem. A series of logistic regressions then determines the presence of each end use, with linear regressions predicting the round-wood volume of each end use.
  •   相似文献   

    14.
    Sloan JL  Jacobs DF 《Tree physiology》2008,28(7):1121-1126
    Patterns of carbon allocation in northern red oak (Quercus rubra L.), characterized by episodic growth through recurrent single-season flushing, vary by growth stage. To examine post-transplant timing and carbohydrate sources for new root growth, dormant, bare-root, half-sibling northern red oak seedlings were transplanted to pots and placed in a favorable growth chamber environment. Unlabeled seedlings were harvested at transplant and at the bud swell stage. After leaf emergence, seedlings were exposed to (14)CO(2) at the linear shoot, linear leaf or lag growth stages. Seedlings were then placed in a growth room for 48 h to allow for translocation of (14)C-labeled current photosynthate and its stabilization in sink component plant parts. Seedlings were subsequently harvested and tissue (14)C:(12)C ratio analyzed. New root growth began during the linear shoot growth stage. However, no increase in (14)C:(12)C ratio was found in new roots until the linear leaf and lag growth stages, indicating a downward shift in translocation of current photosynthate to fuel new root growth. In old roots, (14)C:(12)C ratio increased at the lag stage. Our results indicate that both stored carbohydrates and current photosynthate contribute to new root growth of transplanted northern red oak seedlings; stored carbohydrates promote initial new root proliferation, whereas current photosynthate assumes a greater role as new leaves mature and the flush terminates. Optimizing nursery practices to increase carbohydrate reserves may reduce the time required to establish root-soil contact and facilitate early post-planting survival.  相似文献   

    15.
    This study examined the role of ectomycorrhizal associations in nitrogen assimilation of Populus tremuloides seedlings. Seedlings were inoculated with Hebeloma crustuliniforme and compared with non-inoculated plants. Nitrogen-metabolizing enzymatic properties were also determined in H. crustuliniforme grown in sterile culture. The seedlings and fungal cultures were subjected to nitrogen treatments (including NO??, NH?? and a combination of NO???+?NH??) for 2 months to examine the effects on growth, nitrogen-assimilating enzyme activities and xylem sap concentrations of NH?? and NO??. Seedlings were also provided for 3 days with 1?N-labeled NH?? and NO??, and leaf and root 1?N content relative to total nitrogen was measured. Both NO?? and NH?? were effective in supporting seedling growth when either form was provided separately. When NO?? and NH?? were provided together, seedling growth decreased while enzymatic assimilation of NH?? increased. Additionally, nitrogen assimilation in inoculated seedlings was less affected by the form of nitrogen compared with non-inoculated plants. Fungal ability to enzymatically respond to and assimilate NH?? combined with aspen's enzymatic responsiveness to NO?? was likely the reason for efficient assimilation of both nitrogen forms by mycorrhizal plants.  相似文献   

    16.
    Here we describe alterations in the cinnamate/monolignol pathway in three transgenic aspen lines: one with downregulated expression of 4-coumarate:CoA ligase (4CL), one with upregulated expression of coniferaldehyde 5-hydroxylase (CAld5H), and a 4CL downregulated/CAld5H upregulated line. Compared with the wild type, the 4CL downregulated line showed significantly increased levels of p-hydroxycinnamic acids such as p-coumaric, ferulic, and sinapic acids. In contrast, the CAld5H upregulated line had increased content of p-coumaryl and 5-hydroxyconiferyl alcohols. In the 4CL downregulated line, it was likely that most hydroxycinnamic acids were glycosylated. These results strongly suggest that the downregulation of 4CL and upregulation of CAld5H disrupt the metabolic flow through the cinnamate/monolignol pathway and thus alter the amount and structure of its final product, lignin.  相似文献   

    17.
    Abstract

    Exponential nutrient loading has been used to improve nursery fertilizer uptake efficiency of conifer seedlings, but the technique has received little attention in the culture of temperate deciduous hardwoods. This study examined responses of northern red oak (Quercus rubra L.) and white oak (Q. alba L.) seedlings to modified exponential nitrogen loading during bareroot nursery culture using a broad range of nutrient supply from 0 to 3.35 g nitrogen (N) per plant per season for 18 weeks in Indiana, USA. Seedling growth and nutritional parameters followed a curvilinear pattern that ranged from deficiency to toxicity with increased fertilization consistent with trends depicted in the proposed model for nutrient loading. Fertilization increased plant dry mass by 113–260% for red oak and 49–144% for white oak. Severe nutrient deficiency occurred under indigenous soil fertility, and limited phosphorus and potassium uptake were found to inhibit seedling growth at higher N supply. The sufficiency and optimum rates were determined to be 0.84 and 1.68 g N per seedling per season, respectively, under the current cultural conditions. Fertilization at 1.68 g N per plant increased N content by 40% in red oak and 35% in white oak. This approach may be used to help refine nursery fertilization practices in hardwood culture to produce high-quality seedlings for field planting.  相似文献   

    18.
    Wang X  Curtis PS  Pregitzer KS  Zak DR 《Tree physiology》2000,20(15):1019-1028
    Physiological and biomass responses of six genotypes of Populus tremuloides Michx., grown in ambient t (357 micromol mol(-1)) or twice ambient (707 micromol mol(-1)) CO2 concentration ([CO2]) and in low-N or high-N soils, were studied in 1995 and 1996 in northern Lower Michigan, USA. There was a significant CO2 x genotype interaction in photosynthetic responses. Net CO2 assimilation (A) was significantly enhanced by elevated [CO2] for five genotypes in high-N soil and for four genotypes in low-N soil. Enhancement of A by elevated [CO2] ranged from 14 to 68%. Genotypes also differed in their biomass responses to elevated [CO2], but biomass responses were poorly correlated with A responses. There was a correlation between magnitude of A enhancement by elevated [CO2] and stomatal sensitivity to CO2. Genotypes with low stomatal sensitivity to CO2 had a significantly higher A at elevated [CO2] than at ambient [CO2], but elevated [CO2] did not affect the ratio of intercellular [CO2] to leaf surface [CO2]. Stomatal conductance and A of different genotypes responded differentially to recovery from drought stress. Photosynthetic quantum yield and light compensation point were unaffected by elevated [CO2]. We conclude that P. tremuloides genotypes will respond differentially to rising atmospheric [CO2], with the degree of response dependent on other abiotic factors, such as soil N and water availability. The observed genotypic variation in growth could result in altered genotypic representation within natural populations and could affect the composition and structure of plant communities in a higher [CO2] environment in the future.  相似文献   

    19.
    Effects of root zone temperature on growth, shoot water relations, and root water flow were studied in 1-year-old aspen (Populus tremuloides Michx.) seedlings. Seedlings were grown in solution culture and exposed to day/night air temperatures of 22/16 degrees C and solution culture temperatures of 5, 10, or 20 degrees C for 28 days after bud flush. Compared with root growth at 20 degrees C, root growth was completely inhibited at 5 degrees C and inhibited by 97% at 10 degrees C. The 5 and 10 degrees C treatments severely reduced shoot growth, leaf size, and total leaf area. Root water flow was inhibited by the 5 and 10 degrees C treatments. However, when seedlings were grown for 28 days at 5 degrees C and root water flow was measured at 20 degrees C, there was an increase in flow rate. This increase in root water flow was similar in magnitude to the decrease in root water flow observed when seedlings were grown for 28 days at 20 degrees C and root water flow was measured at 5 degrees C. Reduced root water flow of seedlings grown at 5 and 10 degrees C resulted in decreased stomatal conductance, net assimilation, and shoot water potentials. Root water flow was positively correlated with leaf size, total leaf area, shoot length, and new root growth. Transferring seedlings from 5 to 20 degrees C for 24 h significantly increased root water flow, shoot water potential, and net photosynthesis, whereas transferring seedlings from 10 to 20 degrees C resulted in only a slightly increased shoot water potential. Transferring seedlings from 20 to 5 degrees C greatly reduced root water flow, stomatal conductance, and net photosynthesis, whereas shoot water potential decreased only slightly.  相似文献   

    20.
    Net photosynthetic rates of developing foliage and one-year-old foliage of loblolly pine (Pinus taeda L.) were measured under field conditions. In the subsequent year, net photosynthesis and dark respiration rates of current-year and one-year-old foliage were measured under controlled environmental conditions. Loblolly pine foliage grows slowly, reaching its final size 3.5 to 4 months after bud burst. Positive rates of net photosynthesis were recorded when the foliage was 13 and 18% of final length, in the controlled-environment and field study, respectively. However, because of high rates of dark respiration during the initial growth period, a positive diurnal carbon balance did not occur until foliage was about a third of final length (40 days after bud burst). Two months after bud burst, when foliage was about 55% of final length, its photosynthetic capacity exceeded that of one-year-old foliage. The highest rates of net photosynthesis were achieved when foliage was more than 90% fully expanded.  相似文献   

    设为首页 | 免责声明 | 关于勤云 | 加入收藏

    Copyright©北京勤云科技发展有限公司  京ICP备09084417号