首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Abstract

Wood ash treatment can probably increase forest productivity on low fertility sites. However, the resulting effect on the carbohydrate concentration as the main carbon and energy reserve in trees is little studied. In 2000, a square of 0.1 ha sandy soil below a 19-year-old Scots pine (Pinus sylvestris) plantation was treated with raw fly ash (0.5 kg.m-2); untreated square was used as control. One year after the treatment, carbohydrates (glucose, fructose, sucrose, maltodextrins, starch and excess bound fructose) were analyzed enzymatically from current-year and one-year-old needles. The ratio K/N in needles suggested an improved balance between these elements in treated trees, in which the K concentration was higher. The largest relative differences (50% of control) were observed in glucose and fructose in summer. The squares did not differ in the concentration of the accumulated carbohydrate reserves in needles during low temperature stress in winter and before the growth of new shoots in spring. During the vegetation period decreased levels of soluble carbohydrates and starch were observed (max 70% of the control value around 100 mg total carbohydrates g-1 dry mass). Because the experiment was designed without true replicates, reasons for the observed differences require further study.  相似文献   

2.
We studied seasonal dynamics of carbohydrate storage in red spruce (Picea rubens Sarg.) seedlings by measuring starch and sugar concentrations of old needles (>/= one year old), new needles (< one year old), stems, and roots in two stands in the Green Mountains of Vermont. Although the two stands differed in many site characteristics including percent slope, aspect, soil type, drainage, and 564 m in elevation, concentrations and seasonal patterns of carbohydrates were similar for the two stands. For all tissues, starch concentrations peaked in late spring, declined through summer, and reached a minimum in winter. Sugar concentrations were greater than starch concentrations in all months except May and June. Sugar concentrations peaked in winter, and old needles showed a significant increase in sugar concentration between February and March. This increase in sugar concentration occurred without any reduction in localized starch concentrations or reductions in sugar or starch concentrations in new needles, stems or roots. Because March measurements were made toward the end of a prolonged thaw, a time when increases in photosynthesis have been documented for red spruce, it is likely that the March increase in sugar concentrations resulted from photosynthesis during the thaw. Compared with stems and roots, needles generally contained the highest concentration of carbohydrates and exhibited the greatest seasonal change in carbohydrate concentration. Needles were also the largest reservoir of carbohydrates throughout the year, especially during winter. Because of the critical roles of needles in photosynthesis and storage of carbohydrates, we conclude that any factors that disrupt the accumulation or availability of carbohydrates in red spruce needles will greatly alter plant carbon relations.  相似文献   

3.
We explored environmental and genetic factors affecting seasonal dynamics of starch and soluble nonstructural carbohydrates in needle and twig cohorts and roots of Scots pine (Pinus sylvestris L.) trees of six populations originating between 49 degrees and 60 degrees N, and grown under common garden conditions in western Poland. Trees of each population were sampled once or twice per month over a 3-year period from age 15 to 17 years. Based on similarity in starch concentration patterns in needles, two distinct groups of populations were identified; one comprised northern populations from Sweden and Russia (59-60 degrees N), and another comprised central European populations from Latvia, Poland, Germany and France (49-56 degrees N). Needle starch concentrations of northern populations started to decline in late spring and reached minimum values earlier than those of central populations. For all populations, starch accumulation in spring started when minimum air temperature permanently exceeded 0 degrees C. Starch accumulation peaked before bud break and was highest in 1-year-old needles, averaging 9-13% of dry mass. Soluble carbohydrate concentrations were lowest in spring and summer and highest in autumn and winter. There were no differences among populations in seasonal pattern of soluble carbohydrate concentrations. Averaged across all populations, needle soluble carbohydrate concentrations increased from about 4% of needle dry mass in developing current-year needles, to about 9% in 1- and 2-year-old needles. Root carbohydrate concentration exhibited a bimodal pattern with peaks in spring and autumn. Northern populations had higher concentrations of fine-root starch in spring and autumn than central populations. Late-summer carbohydrate accumulation in roots started only after depletion of starch in needles and woody shoots. We conclude that Scots pine carbohydrate dynamics depend partially on inherited properties that are probably related to phenology of root and shoot growth.  相似文献   

4.
Effects of magnesium deficiency and variation in nitrate to ammonium ratio on needle histology and chlorophyll concentration were investigated in current-year and one-year-old needles of clonal Norway spruce trees (Picea abies (L.) Karst.). Six-year-old trees were grown for one year in sand culture with circulating nutrient solutions containing a sufficient (0.2 mM) or a limiting (0.04 mM) concentration of Mg. The nitrogen concentration was not varied (5 mM), but the NO(3) (-)/NH(4) (+)-ratio was adjusted to 0.76 in Mg-sufficient and to 1.86, 0.76 or 0.035 in Mg-limited plants. Visible symptoms of Mg deficiency occurred only in current-year needles, indicating adequate Mg nutrition before the experiment. Under conditions of Mg limitation, chlorophyll and Mg concentrations were lowest in needles of trees supplied with NH(4) (+) as the major nitrogen source and highest in needles of trees supplied with NO(3) (-) as the major nitrogen source. In current-year and one-year-old needles, starch accumulation induced by Mg deficiency was increased when NH(4) (+) was the major nitrogen source. The accumulation of tannin spherules in current-year needles, which occurred in response to Mg deficiency, also increased with decreasing NO(3) (-)/NH(4) (+)-ratios. Deficient Mg supply caused premature aging in tissues of the vascular bundle, as indicated by modifications of the cambium and increased amounts of collapsed sieve cells. The number of collapsed sieve cells was slightly lower in needles grown in a NH(4) (+)-dominated nutrient regime than in needles grown in a NO(3) (-)-dominated nutrient regime. We conclude that was not directly toxic to Norway spruce trees at the applied concentrations. However, effects of Mg deficiency were considerably greater in an NH(4) (+)-dominated nutrient regime than in a NO(3) (-)-dominated nutrient regime.  相似文献   

5.
Factors influencing red expression in autumn foliage of sugar maple trees   总被引:1,自引:0,他引:1  
We evaluated factors influencing the development of autumn red coloration in leaves of sugar maple (Acer saccharum Marsh.) by measuring mineral nutrient and carbohydrate concentrations, water content, and phenology of color development of leaves from 16 mature open-grown trees on 12 dates from June through October 1999. Mean foliar nutrient and carbohydrate concentrations and water content were generally within the range published for healthy sugar maple trees. However, foliar nitrogen (N) concentrations were near deficiency values for some trees. The timing and extent of red leaf coloration was consistently correlated with both foliar N concentrations and starch or sugar concentrations, which also varied with N status. Leaves of trees with low foliar N concentrations turned red earlier and more completely than those of trees with high foliar N concentrations. Low-N trees also had higher foliar starch concentrations than high-N trees. During the autumn development of red leaf coloration, foliar starch, glucose and fructose concentrations were positively correlated with red leaf color expression. At peak red expression, the concentrations of glucose, fructose, sucrose and stachyose were all positively correlated with red color expressed as a percent of total leaf area.  相似文献   

6.
Red spruce (Picea rubens Sarg.) trees growing at high elevation in the northeastern United States have experienced decline in recent years but seedlings have proved to be relatively tolerant of a wide range of environmental stresses in controlled studies. One possible reason for the wide tolerance to stress in seedlings is their inherently large pool of carbohydrate reserves, which is available for maintenance during and regrowth after periods of stress. We tested for the effects of foliar N and exposure to ozone on foliar carbohydrate reserves of 20-year-old naturally regenerated saplings. The trees were maintained in native soil in 360-l containers for 5 years before the experiment. The year before the experiment, trees were fertilized with N,P,K to provide a population of trees from N deficient to N sufficient. As foliar N decreased below 0.9%, length of current-year shoots and specific needle area of current-year needles declined. Foliar N concentration was correlated with foliar sugar and starch concentrations, but relationships varied with time of year. Before bud break, foliar carbohydrates and N, in general, were positively correlated, and date of bud break was delayed in N-deficient trees. During active growth, foliar soluble sugars and N were positively correlated, but starch concentrations were negatively correlated with N. By late September, neither starch nor sugar concentration was correlated with N concentration. Ozone and foliar N concentrations did not interact to change foliar carbohydrate concentrations or shoot and needle growth in this relatively short-term study.  相似文献   

7.
Boron (B) is an essential micronutrient whose deficiency is common both in agriculture and in silviculture. Boron deficiency impairs the growth of plants and affects many metabolic processes like carbohydrate metabolism. Boron deficiency and also excess B may decrease the sink demand by decreasing the growth and sugar transport which may lead to the accumulation of carbohydrates and down-regulation of photosynthesis. In this study, we investigated the effects of B nutrition on the soluble and storage carbohydrate concentrations of summer leaves and autumn buds in a deciduous tree species, Betula pendula Roth. In addition, we investigated the changes in the pools of condensed tannins between summer and autumn harvests. One-year-old birch seedlings were fertilized with a complete nutrient solution containing three different levels of B: 0, 30 and 100% of the standard level for complete nutrient solution. Half of the seedlings were harvested after summer period and another half when leaves abscised. The highest B fertilization level (B100) caused an accumulation of starch and a decrease in the concentrations of hexoses (glucose and fructose) in summer leaves, whereas in the B0 seedlings, hexoses (mainly glucose) accumulated and starch decreased. These changes in carbohydrate concentrations might be related to the changes in the sink demand since the autumn growth was the smallest for the B100 seedlings and largest for the B30 seedlings that did not accumulate carbohydrates. The autumn buds of B30 seedlings contained the lowest levels of glucose, glycerol, raffinose and total polyols, which was probably due to the dilution effect of the deposition of other substances like phenols. Condensed tannins accumulated in high amounts in the birch stems during the hardening of seedlings and the largest accumulation was detected in the B30 treatment. Our results suggest that B nutrition of birch seedlings affects the carbohydrate and phenol metabolism and may play an important role in the hardening process of the seedlings.  相似文献   

8.
A 17-year-old Norway-spruce stand at Mt. Kleiner Feldberg (Taunus) was investigated. The mineral soil was found to be in the aluminum buffer range (pH H2O = 3.5) but the fine and very fine roots of injured and uninjured trees were sufficiently supplied with Ca and Mg. Mg-deficiency, however, was observed in current-year needles where the contents were 30 % and 45 % below standard values in uninjured and injured trees, respectively. In injured trees the severe Mg-losses of current-year needles coincided with a 20 to 60 % loss of the activities of a number of enzymes involved in the carbohydrate metabolism and a significant reduction of the growth of current-year twigs.  相似文献   

9.
Tropical tree fodder is harvested by frequent prunings, and resprouting depends on nonstructural carbohydrate reserves in the remaining tree parts. We studied the effects of three pruning intensities (removal of all leaves and branches leaving 1 m of stem once a year (T-12), or every 6 months (T-6), and about 50% pruning every 2 months (P-2)) on regrowth and the dynamics of soluble sugars and starch in the legume tree Gliricidia sepium (Jacq.) Walp. growing under humid tropical conditions in Guadeloupe, Lesser Antilles. Carbohydrates were sampled in roots, stems and branches. Among pruned trees, trees in the T-6 harvest regime had the highest leaf fodder yield (0.73 kg tree(-1) year(-1)). High litter loss reduced leaf yield of T-12 trees, but compared with the other treatments, T-12 trees produced the most branch biomass (3.43 kg tree(-1)). Among treatments, P-2 trees had an intermediate leaf fodder yield and the lowest branch production. Sucrose, glucose and fructose were the most common sugars in all biomass compartments. Mannose, pinitol and an unidentified cyclitol were relatively abundant in branches. Root sugar and starch concentrations were unaffected by harvest regime. There was a significant interactive effect of harvest intensity and regrowth time on stem sugar concentration. Stem starch concentration was highest in T-12 trees. After a year of fodder harvesting, whole-tree reserves of nonstructural carbohydrates were highest in T-12 trees; however, a larger proportion of reserves were located in roots and stems of T-6 and P-2 trees. These reserves, which were not lost in pruning and contributed to regrowth of G. sepium after pruning, may explain the relatively small effects of harvesting regime on soluble sugar and starch concentrations.  相似文献   

10.
We studied the effects of magnesium (Mg) NPK fertilizer applied in 2000 to maturing Norway spruce (Picea abies /L./ Karst.) stands with yellowing symptoms and situated on poor acidified soils in the ?umava mountains (the Czech Republic). Long-term defoliation, nutrient content in the foliage and diameter increment were evaluated in three specific variants: yellowing trees, trees without yellowing symptoms and fertilized trees. The results indicate differences in soil characteristics, nutrient content and radial growth with response to climate. Fertilization increased Mg content and base saturation in the soil and decreased the amount of exchangeable aluminum and hydrolytic acidity. Differences were significant especially in magnesium, calcium and phosphorus contents in the foliage of yellowing trees. There was also a significant difference in manganese content; yellowing trees showed deficiency in comparison with both fertilized and unfertilized healthy trees. Two years after the initial fertilization (to present), defoliation and yellowing symptoms in the unfertilized yellowing trees were more pronounced compared to other variants. These symptoms were more influenced by fertilization than foliation. The duration of significant positive effects of fertilization on diameter increment lasted for a shorter time than the effect on foliage. Simultaneously, higher sensitivity to climatic factors was observed in the fertilized trees.  相似文献   

11.
In 1998, a fertilizer experiment aiming to investigate the effects of slow-release N, P, K and Mg fertilizer (SILVAMIX Mg NPK®) on a 60-year-old spruce stand with symptoms of yellowing was established. In this paper, trees were selected to investigate the relation between annual diameter increment, yellowing, foliation, needle and soil chemical properties: ten from the fertilized treatment (F), ten green trees from the control (CG) and ten yellow trees from the control (CY). CG and CY trees were growing in close proximity at a distance of only several meters apart under the same soil conditions. In treatment F, increased annual diameter increment, improved foliation, needle Mg concentration, plant-available Mg and P concentrations in the soil and absence of yellow trees were recorded 7 years after a single application of the fertilizer. During the last 15 years, annual growth increment and foliation of CY trees have continuously decreased while relatively stable values were recorded for CG trees and increased for F trees. In 2006, CG and CY trees differed significantly in Mg concentration in needles, foliation, yellowing and annual diameter increment. Although differences in soil chemical properties between CG and CY treatments were not significant, lower concentrations of plant-available Mg2+ and higher concentrations of H+ and Al3+ were found in soils under CY trees. There was a negative correlation between soil concentration of Mg and yellowing, but this correlation was relatively weak, indicating that there is no simple relation between soil and needle concentrations of Mg. In the investigated locality, the “new type” of yellow tree decline has been a long-term gradual process.  相似文献   

12.
Growth and nutrition of hydroponically cultivated birch seedlings (Betula pendula Roth.) were investigated at various magnesium (Mg) availabilities. Suboptimum Mg conditions were created by adding Mg once per hour in exponentially increasing amounts at one of four relative addition rates (R(Mg)): 0.05, 0.10, 0.15 or 0.20 day(-1). Seedlings given free access to Mg were used as controls. After an acclimation period, the relative growth rate of the seedlings attained the same value as the corresponding relative rate of Mg addition. In all suboptimum Mg treatments, deficiency symptoms in the form of chloroses and necroses developed in the older leaves, both during and after the phase of growth acclimation. The severity of these symptoms was correlated with the availability of Mg. The relative growth rate of seedlings was linearly correlated with plant Mg status. The root fraction of the total biomass decreased from 22% in control plants to 8% in plants receiving the lowest rate of Mg addition. A shift in Mg availability from free access to R(Mg) = 0.05 day(-1) decreased the photosynthetically active leaf area per plant weight, despite a concomitant increase in the leaf weight ratio (leaf dry weight/plant dry weight) from 0.61 to 0.75. The loss in assimilating leaf area was mainly a consequence of enhanced leaf mortality and formation of necroses, and to a minor extent attributable to increased carbon costs for leaf area production. A decrease in starch concentration was observed in leaves showing Mg-deficiency symptoms, whereas the starch concentration in healthy leaves was unaffected by Mg availability. It was concluded that shortage of carbohydrates constituted the major growth constraint, particularly for roots, under Mg-limiting conditions.  相似文献   

13.
Concentrations of glucose, sucrose, soluble reducing sugars, starch and total non-structural carbohydrate were determined during propagation of cuttings from sexually mature Pinus banksiana Lamb. trees. Such cuttings rarely initiate adventitious roots whatever the method or duration of propagation. Terminals, needles, and upper and basal stem segments of cuttings were analyzed at Day 0 and every 2 days for 18 days. Comparison of the results with those of earlier studies with cuttings of P. banksiana seedlings, which root readily, indicated pronounced differences in carbohydrate concentrations and partitioning between the two types of cutting. Compared with those from seedlings, cuttings from sexually mature trees exhibited: (1) more total non-structural carbohydrate in each tissue at Day 0; (2) decreasing rather than increasing total carbohydrate (mainly starch) concentrations in each tissue during propagation; (3) different carbohydrate concentration ratios in each tissue during propagation; and (4) higher sucrose concentrations in terminals during propagation, relative to concentrations at Day 0. Cuttings from sexually mature trees also differed from cuttings of seedlings in having a much lower rate of dry matter accumulation during propagation. These findings suggest that the poor rooting ability of cuttings from sexually mature P. banksiana is not attributable to a lack of total carbohydrate, but that the rooting abilities of cuttings from seedlings and from sexually mature trees differ because of differences between the two types of cutting in rates of net photosynthesis and starch metabolism. The difference in starch metabolism becomes apparent during the first 2 days of propagation.  相似文献   

14.
Under experimental conditions, the growth of loblolly pine (Pinus taeda L.) is often responsive to ozone at near-ambient concentrations. However, little is known of the biochemical changes associated with this or other pollutants. Loblolly pine seedlings in open-top chambers were exposed to combinations of ozone (sub-ambient, ambient, or twice-ambient), acidic precipitation (pH 3.8 or pH 5.2) and soil magnesium (0.15 or 0.32 microg g(-1) exchangeable Mg) for three growing seasons. The effects of these treatments were greater in foliage than in stems or roots. The largest treatment effect was a 50% decrease in the starch concentration of current-year foliage from the twice-ambient ozone treatment compared with current-year foliage from the sub-ambient ozone treatment. Responses to ozone were consistent with the hypothesis that ozone-induced growth reductions are associated with depletion of carbohydrate reserves resulting from injury compensation and repair processes or reduced carbon fixation or both. Addition of acidic precipitation, and to a small extent Mg, decreased sugar concentrations of tissues; however, this effect appeared to be mediated by nutrient addition rather than by acidity per se. Given the role of carbohydrates in plant resistance to environmental stress, the sensitivity of carbohydrates to experimental treatments demonstrates the potential for indirect effects of ozone, acidic precipitation, and soil properties on stress resistance. Noncarbohydrate constituents were largely unresponsive to the experimental treatments. These findings imply that tissue carbohydrate analysis may be useful for assessing the impacts of pollutants in forest ecosystems.  相似文献   

15.
To study the effects of elevated CO(2) on gas exchange, nonstructural carbohydrate and nutrient concentrations in current-year foliage of 30-year-old Norway spruce (Picea abies (L.) Karst.) trees, branches were enclosed in ventilated, transparent plastic bags and flushed with ambient air (mean 370 &mgr;mol CO(2) mol(-1); control) or ambient air + 340 &mgr;mol CO(2) mol(-1) (elevated CO(2)) during two growing seasons. One branch bag was installed on each of 24 selected trees from control and fertilized plots. To reduce the effect of variation among trees, results from each treated branch were compared with those from a control branch on the same whorl of the same tree. Elevated CO(2) increased rates of light-saturated photosynthesis on average by 55% when measured at the treatment CO(2) concentration. The increase was larger in shoots with high needle nitrogen concentrations than in shoots with low needle nitrogen concentrations. However, shoots grown in elevated CO(2) showed a decrease in photosynthetic capacity compared with shoots grown in ambient CO(2). When measured at the internal CO(2) concentration of 200 &mgr;mol CO(2) mol(-1), photosynthetic rates of branches in the elevated CO(2) treatments were reduced by 8 to 32%. The elevated CO(2) treatment caused a 9 to 20% reduction in carboxylation efficiency and an 18% increase in respiration rates. In response to elevated CO(2), starch, fructose and glucose concentrations in the needles increased on average 33%, whereas concentrations of potassium, nitrogen, phosphorus, magnesium and boron decreased. Needle nitrogen concentrations explained 50-60% of the variation in photosynthesis and CO(2) acclimation was greater at low nitrogen concentrations than at high nitrogen concentrations. We conclude that the enhanced photosynthetic rates found in shoots exposed to elevated CO(2) increased carbohydrate concentrations, which may have a negative feedback on the photosynthetic apparatus and stimulate cyanide-resistant respiration. We also infer that the decrease in nutrient concentrations of needles exposed to elevated CO(2) was the result of retranslocation of nutrients to other parts of the branch or tree.  相似文献   

16.
Seasonal changes in amino acids, protein and total nitrogen in needles of 30-year-old, fertilized Scots pine (Pinus sylvestris L.) trees growing in Northern Sweden were investigated over two years in field experiments. The studied plots had been fertilized annually for 17 years with (i) a high level of N, (ii) a medium level of N, or (iii) a medium level of N, P and K. Trees growing on unfertilized plots served as controls. In control trees, glutamine, glutamic acid, gamma-aminobutyric acid, aspartic acid and proline represented 50-70% of the total free amino acids determined. Arginine was present only in low concentrations in control trees throughout the year, but it was usually the most abundant amino acid in fertilized trees. Glutamine concentrations were high during the spring and summer in both years of study, whereas proline concentrations were high in the spring but otherwise low throughout the year. In the first year of study, glutamic acid concentrations were high during the spring and summer, whereas gamma-aminobutyric acid was present in high concentrations during the winter months. This pattern was less pronounced in the second year of investigation. The concentrations of most amino acids, except glutamic acid, increased in response to fertilization. Nitrogen fertilization increased the foliar concentration of arginine from < 1 micromol g(dw) (-1) in control trees to a maximum of 110 micromol g(dw) (-1). Trees fertilized with nitrogen, phosphorus and potassium had significantly lower arginine concentrations than trees fertilized with the same amount of nitrogen only. Protein concentrations were similar in all fertilized trees but higher than those in control trees. For all treatments, protein concentrations were high in winter and at a minimum in early spring. In summer, the protein concentration remained almost constant except for a temporary decrease which coincided with the expansion of new shoots. Apart from arginine, the amino acid composition of proteins was similar in all treatments.  相似文献   

17.
Zha T  Wang KY  Ryyppö A  Kellomäki S 《Tree physiology》2002,22(17):1241-1248
Sixteen 20-year-old Scots pine (Pinus sylvestris L.) trees growing in the field were enclosed in environment-controlled chambers that for 4 years maintained: (1) ambient conditions (CON); (2) elevated atmospheric carbon dioxide concentration [CO2] (ambient + 350 micromol mol-1; EC); (3) elevated temperature (ambient + 2-3 degrees C; ET); or (4) elevated [CO2] and temperature (EC+ET). Dark respiration rate, specific leaf area (SLA) and the concentrations of starch and soluble sugars in needles were measured in the fourth year. Respiration rates, on both an area and a mass basis, and SLA decreased in EC relative to CON, but increased in ET and EC+ET, regardless of needle age class. Starch and soluble sugar concentrations for a given needle age class increased in EC, but decreased slightly in ET and EC+ET. Respiration rates and SLA were highest in current-year needles in all treatments, whereas starch and soluble sugar concentrations were highest in 1-year-old needles. Relative to that of older needles, respiration of current-year needles was inhibited less by EC, but increased in response to ET and EC+ET. All treatments enhanced the difference in respiration between current-year and older needles relative to that in CON. Age had a greater effect on needle respiration than any of the treatments. There were no differences in carbohydrate concentration or SLA between needle age classes in response to any treatment. Relative to CON, the temperature coefficient (Q10) of respiration increased slightly in EC, regardless of age, but declined significantly in ET and EC+ET, indicating acclimation of respiration to temperature.  相似文献   

18.
Barbaroux C  Bréda N 《Tree physiology》2002,22(17):1201-1210
We tested the hypothesis that broad-leaved forest species with contrasting wood anatomy and hydraulic system (ring-porous versus diffuse-porous) also differ in distribution and seasonal dynamics of carbohydrate reserves in stem wood. Total nonstructural carbohydrate (TNC) reserves (starch and sugars) were measured enzymatically in the 10 youngest stem xylem rings of adult oak (Quercus petraea (Matt.) Liebl.) and beech (Fagus sylvatica L.) trees during an annual cycle. Radial distribution of carbohydrates was investigated according to ring age. On all dates, oak trees had twofold higher TNC concentration than beech trees (41 versus 23 mg g(DM)(-1)), with starch accounting for the high TNC concentration in oak. Seasonal dynamics of TNC concentration were significantly (P < 0.05) more pronounced in oak (20-64 mg TNC g(DM)(-1)) than in beech (17-34 mg TNC g(DM)(-1)). A marked decrease in TNC concentration was observed in oak trees during bud burst and early wood growth, whereas seasonal fluctuations in TNC concentrations in beech trees were small. The radial distribution of TNC based on ring age differed between species: TNC was restricted to the sapwood rings in oak, whereas in beech, it was distributed throughout the wood from the outermost sapwood ring to the pith. Although the high TNC concentrations in the outermost rings accounted for most of the observed seasonal pattern, all of the 10 youngest xylem rings analyzed participated in the seasonal dynamics of TNC in beech trees. The innermost sapwood rings of oak trees had low TNC concentrations. Stem growth and accumulation of carbon reserves occurred concomitantly during the first part of the season, when there was no soil water deficit. When soil water content was depleted, stem growth ceased in both species, whereas TNC accumulation was negligibly affected and continued until leaf fall. The contrasting dynamics and distribution of carbohydrate reserves in oak and beech are discussed with reference to differences in phenology, early spring growth and hydraulic properties between ring-porous trees and diffuse-porous trees.  相似文献   

19.
Yang WQ  Murthy R  King P  Topa MA 《Tree physiology》2002,22(7):489-498
We investigated diurnal and seasonal changes in carbon acquisition and partitioning of recently assimilated carbon in fast- and slow-growing families of loblolly pine (Pinus taeda L.) to determine whether fast-growing families exhibited greater carbon gain at the leaf level. Since planting on a xeric infertile site in Scotland County, NC, USA in 1993, five Atlantic Coastal Plain (ACP) and five "Lost Pines" Texas (TX) families have been grown with either optimal nutrition or without fertilization (control). In 1998 and 1999, gas exchange parameters were monitored bimonthly in four families and needles were analyzed bimonthly for starch and soluble sugar concentrations. Although diurnal and seasonal effects on net photosynthesis (A(net)) and maximum rate of light-saturated photosynthesis (A(max)) were significant, few family or treatment differences in gas exchange characteristics were observed. The A(net) peaked at different times during the day over the season, and A(max) was generally highest in May. Instantaneous water-use efficiency (WUE(i)), derived from gas exchange parameters, did not differ among families, whereas foliage stable isotope composition (delta(13)C) values suggested that TX families exhibited lower WUE than more mesic ACP families. Although there were no diurnal effects on foliar starch concentrations, needles exhibited pronounced seasonal changes in absolute concentrations of total nonstructural carbohydrates (TNC), starch and soluble sugars, and in partitioning of TNC to starch and sugars, mirroring seasonal changes in photosynthesis and shoot and root growth. In all families, foliar starch concentrations peaked in May and decreased to a minimum in winter, whereas reducing sugar concentrations were highest in winter. Some family and treatment differences in partitioning of recently assimilated carbon in needles were observed, with the two TX families exhibiting higher concentrations of TNC and starch and enhanced starch partitioning compared with the ACP families. We conclude that growth differences among the four families are not a function of differences in carbon acquisition or partitioning at the leaf level.  相似文献   

20.
Pruning of agroforestry trees, while reducing shade of the crops, usually reduces both biomass production and nitrogen fixation. Short pruning cycles are often not sustainable on the long run, because tree production declines over subsequent pruning cycles. We compared biomass and labile carbohydrate dynamics of Erythrina lanceolata Standley (Papilionaceae) shade trees under total and partial pruning regimes in a vanilla (Vanilla planifolia L.) plantation in South-western Costa Rica. The highest biomass production was measured in the unpruned control, followed by trees with 50% of the leaf pruned every three months, while total pruning every six months resulted in the lowest biomass pruduction. In the more productive treatments, a higher proportion of the production was in branches. Because, the N content of woody branches was high, they were important for nitrogen cycling. In the partial pruning treatment more nitrogen was returned to the soil from litter and woody branches than from pruned leaf. Sugar concentrations were not different between treatments and the dynamics of non-structural carbohydrates (sugar and starch) seems to depend more on plant phenology than pruning treatment. However, the starch concentrations in the total pruning were lower than in the other treatments.This revised version was published online in November 2005 with corrections to the Cover Date.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号