首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
KERR  GARY; NILES  JOHN 《Forestry》1998,71(3):219-224
The results of an experiment to investigate the early growthand form of ten different provenances of Norway maple (Acerplatanoides L.) are described. Two sites were planted and after8 years survival was 88 per cent and 95 per cent and heightincrement was 402 cm and 201 cm; confirmmg the potential ofNorway maple to be a productive forest tree. Provenances thatperformed well were from Germany, the Netherlands, Denmark andYugoslavia; exact locations were not known for all seed collections.A provenance from Russia was included, material from this fareast has rarely been tested in Britain. However, as expected,its performance was relatively poor. The main constraint tofurther planting of Norway maple is the palatability of thebark to grey squirrels (Sciurus carolinensis Gmelin.). However,it is a useful tree for high pH and heavy soils and as an alternativespecies to sycamore (Acer pseudoplatanus L.).  相似文献   

2.
Parker WC  Dey DC 《Tree physiology》2008,28(5):797-804
A field experiment was established in a second-growth hardwood forest dominated by red oak (Quercus rubra L.) to examine the effects of shelterwood overstory density on leaf gas exchange and seedling water status of planted red oak, naturally regenerated red oak and sugar maple (Acer saccharum Marsh.) seedlings during the first growing season following harvest. Canopy cover of uncut control stands and moderate and light shelterwoods averaged 97, 80 and 49%, respectively. Understory light and vapor pressure deficit (VPD) strongly influenced gas exchange responses to overstory reduction. Increased irradiance beneath the shelterwoods significantly increased net photosynthesis (P(n)) and leaf conductance to water vapor (G(wv)) of red oak and maple seedlings; however, P(n) and G(wv) of planted and naturally regenerated red oak seedlings were two to three times higher than those of sugar maple seedlings in both partial harvest treatments, due in large part to decreased stomatal limitation of gas exchange in red oak as a result of increased VPD in the shelterwoods. In both species, seedling water status was higher in the partial harvest treatments, as reflected by the higher predawn leaf water potential and seedling water-use efficiency in seedlings in shelterwoods than in uncut stands. Within a treatment, planted and natural red oak seedlings exhibited similar leaf gas exchange rates and water status, indicating little adverse physiological effect of transplanting. We conclude that the use of shelterwoods favors photosynthetic potential of red oak over sugar maple, and should improve red oak regeneration in Ontario.  相似文献   

3.

Genetic variation in adjacent Nordic populations of Acer platanoides L. and Betula pendula Roth was assessed by allozymes and in growth and phenology traits of juvenile trees grown in two field trials, and in growth chambers with free or restricted nutrient access. The objectives, based on the difference in the species' life-history traits, were to test the following hypotheses: (1) the population differentiation is higher in A. platanoides; (2) the genetic variability and (3) the phenotypic plasticity are larger in B. pendula. Analyses of variance revealed that, except for budburst, the growth and phenology traits generally supported the first hypothesis. The estimates of the coefficients of additive variance consistently disagreed with the second hypothesis. Allozyme data also supported the first hypothesis, but not the second. Finally, the phenotypic plasticity was larger in B. pendula.  相似文献   

4.
Leaf and crown morphology of shade-tolerant sugar maple (Acer saccharum Marsh.) were examined to test the hypotheses (1) that leaf area exhibits significant plasticity both within and between crown classes and individual tree crowns and (2) that leaf area is accurately predicted from estimates of crown volume. A total of 18 trees, ranging from 3.3 to 43.4 cm dbh, were felled and dissected into upper, middle, lower, and below-crown layers, for measurements of leaf, bark, and xylem dimensions. For dominant trees only, bark thickness and xylem radii were higher within the crown than below the crown. Cumulative leaf area index increased with decreasing stratum height at similar rates in all trees, except for two trees that were located in the understory. Area leaf weight declined with decreasing stratum height within the crown of all except four overstory trees. These four trees showed an increase with decreasing stratum height, i.e., leaves were heavier per unit area in the lower crown stratum and below the crown than they were at mid-crown. Within-tree leaf area density was usually higher in the upper crown of overstory trees and in the lower crown of understory trees. Total crown volume was the best predictor of whole-tree leaf area, but it was only slightly better than dbh.  相似文献   

5.
Field measurements were made of leaf photosynthesis (A), stomatal conductance (g) and leaf water relations for sugar maple (Acer saccharum Marsh.) seedlings growing in a forest understory, small gap or large clearing habitat in southwestern Wisconsin, USA. Predawn water status, leaf gas exchange and plasticity in field and laboratory water relations characteristics were compared among contrasting light environments in a wet year (1987) and a dry year (1988) to evaluate possible interactions between light and water availability in these habitats. Leaf water potentials (Psi(leaf)) at predawn and midday were lower for clearing than gap or understory seedlings. Acclimation of tissue osmotic potentials to light environment was observed among habitats but did not occur within any of the habitats in response to prolonged drought. During a summer drought in 1988, decreases in daily maximum g (g(max)) and maximum A (A(max)) in clearing seedlings were correlated with predawn Psi(leaf), which reached a seasonal minimum of -2.0 MPa. Under well-watered conditions, diurnal fluctuations in Psi(leaf) of up to 2.0 MPa in clearing seedlings occurred along with large midday depressions of A and g. In a wet year, strong stomatal responses to leaf-to-air vapor pressure difference (VPD) in sunny habitats were observed over nine diurnal courses of gas exchange measurements on seedlings in a gap and a clearing. Increasing stomatal limitations to photosynthesis appeared to be responsible for the reduction in A at high VPD for clearing seedlings. In understory seedlings, however, low water-use efficiency and development of leaf water deficits in sunflecks was related to reduced stomatal limitations to photosynthesis relative to seedlings in sunny habitats. Predawn Psi(leaf) and VPD appear to be important factors limiting carbon assimilation in sugar maple seedlings in light-saturating irradiances, primarily through stomatal closure. The overall results are consistent with the idea that sugar maple seedlings exhibit "conservative" water use patterns and have low drought tolerance. Leaf water relations and patterns of water use should be considered in studies of acclimation and species photosynthetic performance in contrasting light environments.  相似文献   

6.
Summary Water vapour diffusion characteristics and adsorption isotherms were determined for cell-lumen and cell-wall treated wood polymer composites (WPC). The diffusion coefficients of the cell-lumen WPC were lower than untreated wood and the cell-wall WPC coefficients were lower than cell-lumen. Using the Hailwood and Horrobin sorption model, it was found that the unimolecular layer is formed at lower moisture contents in WPC than in wood. The amount of free dissolved water was reduced only in the cell-wall WPC. The polymer reduces the water vapour accessibility in both types of WPC.  相似文献   

7.
Sager EP  Hutchinson TC 《Tree physiology》2006,26(10):1351-1361
Anticipated effects of climate change involve complex interactions in the field. To assess the effects of springtime warming, ambient ultraviolet-B radiation (UV-B) and nitrogen fertilization on the foliar chemistry and herbivore activity of native sugar maple (Acer saccharum Marsh.) seedlings, we carried out a field experiment for 2 years at two sugar maple forests growing on soils of contrasting acidity. At the Oliver site, soils are derived from a strongly calcareous till, whereas the naturally acidic soils and base-poor soils of the Haliburton site are derived from the largely granitic Precambrian Shield. At both sites, removal of ambient UV-B led to increases in chlorogenic acid and some flavonoids and reduced herbivore activity. At Haliburton, ammonium nitrate fertilization led to further increases in foliar manganese (Mn), whereas at Oliver there were no such changes. Nitrogen additions led to decreases in the concentrations of some flavonoids at both sites, but seedlings at Oliver had significantly higher concentrations of flavonoids and chlorogenic acid than seedlings at Haliburton. We suggest that this could be associated with increased mobilization of Mn due to increased soil acidity, which interferes with the role of calcium (Ca) in the phenolic biosynthetic pathway. It appears that the composition of the forest soil governs the response of seedlings when they are exposed to abiotic stressors.  相似文献   

8.
A survey on the occurrence of Phytophthora species in oak ecosystems in Austria was conducted from April to May 1999 and in June 2000. The investigations were carried out at 35 study sites distributed throughout the zone of oak forests in eastern Austria. Four oak species, including Quercus robur, Q. petraea, Q. cerris and Q. pubescens were considered in the survey. Rhizosphere soil samples were taken from sample trees, which consisted of healthy and declining trees as indicated by their crown transparency. Young oak leaflets were used as baits to recover Phytophthora species. The assemblage of Phytophthora spp. detected in Austrian oak forests consisted of five species, including Phytophthora quercina, P. citricola, P. gonapodyides, P. europaea and P. syringae. P. quercina and P. citricola were isolated from 11 and seven sites, respectively, and were thus the most common and most widely distributed species. The three other species were recovered only sporadically. P. citricola could be separated into two morphologically and genetically well‐characterized types (A and B). Phytophthora species, in particular the common P. quercina and P. citricola occurred on sites showing a wide variety of soil types, soil textures and moisture classes. There was mild evidence for connection between deteriorating crown status and the presence of Phytophthora spp. Furthermore, significant differences in contents of magnesium, as well as calcium, aluminium, nitrogen and carbon at different soil depths (0–10, 10–20 and 20–40 cm) were detected between Phytophthora‐infested and Phytophthora‐free sites. The results of the present study provide circumstantial evidence that Phytophthora species are involved in oak decline at certain sites in Austria.  相似文献   

9.
Heavy atmospheric nitrogen (N) deposition has been associated with altered nutrient cycling, and even N saturation, in forest ecosystems previously thought to be N-limited. This observation has prompted application to such forests of non-N mineral nutrients as a mitigation measure. We examined leaf gas-exchange, leaf chemistry and leaf and shoot morphological responses of Acer saccharum Marsh. saplings and mature trees to experimental additions of non-nitrogenous mineral nutrients (dolomitic lime, phosphorus + potassium (P + K) and lime plus P + K) over 2 years in the Haliburton region of central Ontario, which receives some of the largest annual N inputs in North America. Nutrients were adsorbed in the mineral soil and taken up by A. saccharum trees within 1 year of fertilizer application; however, contrary to expectation, liming had no effect on soil P availability. Saplings and canopy trees showed significant responses to both P + K fertilization and liming, including increased foliar nutrient concentration, leaf size and shoot extension growth; however, no treatment effects on leaf gas-exchange parameters were detected. Increases in shoot extension preceded increases in diameter growth in saplings and canopy trees. Vector analysis of shoot extension growth and nutrient content was consistent with sufficiency of N but marked limitation of P, with co-limitation by calcium (Ca) in saplings and by Ca, Mg and K in canopy trees.  相似文献   

10.
The emphasis of plantation management changes as the resource and the market develop. This is especially the case when a plantation program is developing a new timber resource, is not the case with many of the Pinus radiata (D. Don) plantings in the southern hemisphere. Australia establishes and manages plantations of both exotic conifer and native hardwood (Eucalyptus spp.) plantations, and these vary in their stage of development. The tenure and objectives in establishment have varied, but some key aspects of the resources may be analyzed. Optimization of production per unit area was not a prime objective during the developmental stages of many exotic pine plantations. Currently, with increased commercial emphasis, this has changed to a greater focus on increased value through Site Specific Management and tree improvement through which gains of at least 20 percent are expected during the first stages. With a key objective of sustainability, questions regarding impacts of soils, water, and biological changes need consideration and are being addressed. The eucalypt plantation resource in Australia is smaller in extent than is the pine resource, but of increasing importance, especially as the plantations are perceived to be more environmentally and ecologically acceptable than exotic conifers. In the past, questions of productivity, especially in relation to impacts of natural pests and diseases, have been raised. Sustainability of all plantations is a critical aspect, however, for specific issues there are different emphases with different species. For example, the relatively, high removal of calcium in smooth barked Eucalyptus plantations is seen as important in long term forest management. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

11.
An experimental introduction of pear thrips (Taeniothrips inconsequens Uzel), a major defoliator in sugar maple (Acer saccharum Marsh.) forests in northeastern North America, was conducted in a field plantation to determine if compensatory gas exchange occurs in response to feeding damage by this piercing-sucking insect. Sugar maple trees were enclosed in netting (167 micro m mesh) and pear thrips adults were introduced before leaf expansion in the spring. Pear thrips reduced whole-tree leaf area by approximately 23% and reduced leaf size (both mass and area) by 20% in the upper crown. Measurements of net CO(2) assimilation rate (A(net)) and stomatal conductance (g(s)) were made on tagged foliage that was later analyzed for stable carbon isotope composition (delta(13)C) to provide estimates of short- and long-term leaf water use efficiency (WUE). Pear thrips feeding reduced A(net) for fully expanded leaves by approximately 20%, although leaf chlorophyll content and leaf mass per unit area were apparently not affected. Comparison of A(net), g(s), instantaneous WUE and leaf delta(13)C between damaged and control trees as well as visibly undamaged versus moderately damaged foliage on pear thrips-infested trees indicated that there were no effects of pear thrips feeding damage on WUE or leaf delta(13)C. Long-term WUE among sugar maple trees in the field plantation, indicated by leaf delta(13)C analysis, was related to shorter-term estimates of leaf gas exchange behavior such as g(s) and calculated leaf intercellular CO(2) concentration (C(i)). We conclude that pear thrips feeding has no effect on leaf WUE, but at the defoliation levels in our experiment, it may reduce leaf A(net), as a result of direct tissue damage or through reduced g(s). Therefore, even small reductions in leaf A(net) by pear thrips feeding damage may have an important effect on the seasonal carbon balance of sugar maple when integrated over the entire growing season.  相似文献   

12.
We aimed to study tree effects on the chemical properties of forest soils. We compared soil features of three types of forest ecosystems, each with four stands (replicates): beech forests (Fagus sylvatica), oak forests (dominated by Quercus pyrenaica) and pine plantations (Pinus sylvestris). Five samples from the top 10 cm of soil were taken per stand, from which pH, organic matter content (O.M.), total nitrogen (N) and available calcium (Ca2+), magnesium (Mg2+), potassium (K+) and sodium (Na+) were determined. Litter layer depth was measured at each soil sampling point. We also measured tree density and crown diameters at each stand. Our results indicated that soil samples from the four pine plantation stands were more similar while oak and beech stands were characterised by great variability in terms of soil properties and leaf litter depth. Although the identity of the dominant tree species significantly influenced several topsoil chemical properties (increase in pH and available cations in oak forests and higher organic matter and total nitrogen in beech and pine ecosystems), there were other important factors affecting soil features that may be taken under consideration. Differences between soil properties of the three types of forest ecosystems were mainly related to the characteristics of the litter layer and less related to the tree layer structure. Finally, the establishment of pine plantations in naturally deciduous tree areas made the topsoil features more homogeneous.  相似文献   

13.
对肯尼亚东南部泰塔(Taita)山区的3片破碎的森林进行了树种生物多样性评估,比较外来的松树、柏树、桉树人工林的物种多样性以及外来树种森林和本土森林物种多样性。研究地点为Ngangao(120 hm2)、Chawia(86 hm2)和Mbololo(185 hm2)。采用Y型设计设立32个样区,包含65个小样区。按树种记录每个小样区胸高直径5cm和5cm以上的幼树,同时也记录了各树木的更新情况(幼苗和树苗)。用 Shannon-weiner指数计算了物种的多样性和均匀度。导处的 Shannon指数被进一步转化成有效的数值,用于展示物种多样性的差别幅度。为了评估物种多样性的差别,进行单因素方差分析,为了分离均值,分别用Tukey HSD法和Duncan检测法验证偶数和奇数样品。采用Jaccard相似指数评估物种的类似性。共有58个树种的林木密度变化在每公顷10到2000棵树之间。森林类型和立地之间的物种多样性存在显著差异。本地森林的物种多样性比外来树种森林高;Chawia立地的物种多样性比Nganga和Mbololo立地高,且更新的树种数量也比其他2个立地多,包括野柠檬木(Xymalos monospora)、黑皮密花木(Rapanea melanophloeos)、和(几内亚蒲桃(Syzygium guineense),这些树种具有低干扰属性。这些发现说明,本地森林物种多样性比较高,正如热带地区所预期。Chawia立地的物种多样性高说明此地经历干扰比其他2个立地大。在Chawia地区发现有低干扰树种更新,说明有长期土壤种子库的存在。在Nganga和Mbololo地区发现的外来树种样地上的更新较差情况,可能是缺少种子库所致,因为很多人工林是造在裸地上(如Nganga地区),或者是因为某些树种固有的生理特性(相生相克)抑制了其他树种的更新。  相似文献   

14.
Leaf nutrition and photosynthetic performance of sugar maple (Acer saccharum Marsh.) were compared between two sugar maple stands in northwestern Vermont with contrasting health conditions as indicated by annual basal area growth, degree of crown dieback, and foliar appearance. Observations made during the diurnal cycle of both stands showed no apparent leaf water stress. In both stands, leaves had similar concentrations of major non-structural carbohydrates (starch and sucrose). Over two consecutive growing seasons (1991 and 1992), we consistently observed lower leaf Ca and Mg concentrations in the declining stand than in the healthy stand. Compared with the healthy stand, lower leaf chlorophyll concentrations and apparent leaf chlorosis were observed in the declining stand, and some trees had very low foliar Ca and Mg concentrations (0.31 +/- 0.03% and 0.09 +/- 0.01%, respectively). Trees in the declining stand had lower light-saturated net photosynthetic rates on a dry mass basis at both ambient CO(2) (P(n,amb)) and saturating CO(2) (P(n,sat)) than trees in the healthy stand. There were significant linear correlations between P(n,amb) and leaf mass per unit area (LMA) and between P(n,sat) per unit leaf area and LMA. There were also linear correlations between both P(n,amb) and P(n,sat) and leaf N when expressed on an area basis in both stands, indicating that variation in LMA may have been largely responsible for the observed photosynthesis-nitrogen relationship. The values of P(n,amb) and P(n,sat) were not significantly correlated with leaf N on a mass basis but were weakly correlated with leaf Ca and Mg on a mass basis. We conclude that low leaf Ca or Mg concentrations may limit leaf CO(2) assimilation and tree carbohydrate status in the declining stand.  相似文献   

15.
Liu X  Tyree MT 《Tree physiology》1997,17(3):179-185
Soil and root characteristics were contrasted between a "declining" and a "healthy" sugar maple (Acer saccharum Marsh.) stand in Vermont, USA. The declining stand had lower basal area increment and more crown dieback than the healthy stand. Soil pH and base cation content were lower and soil water content was higher at the site of the declining stand than at the site of the healthy stand, whereas soil temperature did not differ significantly between the sites. In live fine roots, concentrations of K and Ca were marginally (P < 0.07) lower in the declining than in the healthy stand, whereas concentrations of N, P, Mg, and Al were not significantly different (P = 0.13 to 0.87) between stands. Starch and soluble sugar concentrations of fine and coarse roots did not differ significantly between stands, indicating that crown dieback did not affect carbohydrate supply to the roots in the declining stand. Throughout the growing season, the standing live and dead root biomass were significantly higher in the declining stand than in the healthy stand, indicating that more carbon was allocated to roots and that root turnover was higher in the declining stand than in the healthy stand.  相似文献   

16.
Interception loss, gross precipitation, throughfall and stemflow solution chemistry beneath pine (Pinus pseudostrobus Lindl.), oak (Quercus sp.) and pine-oak natural forest canopies in northeastern Mexico were measured. Coefficients of variation for throughfall were 12% in pine and oak canopies and 17% in the mixed pine-oak canopy. The variability of stemflow averaged 66, 126 and 73% for pine, oak and the mixed pine-oak canopies, respectively. Linear regression analysis of net versus gross precipitation for the three canopies showed highly significant correlations (r = 0.974-0.984). Total precipitation during the experimental period was 974 mm and estimated interception loss was 19.2, 13.6 and 23% for the pine, oak and pine-oak canopies, respectively. Stemflow did not occur following rainfall events of less than 4 mm and, in all canopies, stemflow represented a minimal proportion of gross precipitation (0.60, 0.50 and 0.03% for pine, oak and pine-oak, respectively). Throughfall pH in pine (6.2), oak (6.3) and pine-oak (6.3) canopies was significantly more acidic than gross precipitation (6.6). Stemflow pH ranged from 3.7 (pine) to 6.0 (oak). The pine-oak canopy registered the highest throughfall and stemflow electrical conductivities, 104 and 188 microS cm(-1), respectively. Net nutrient leaching of K, Mg, Na, Fe, Mn and Zn was significantly higher from the pine-oak canopy than from the pure pine and oak canopies. Mean depositions of Ca and Cu in throughfall behaved similarly among the three types of canopies. A greater proportion of Zn in gross precipitation was absorbed by the oak canopy than by the pine and pine-oak canopies. Enrichment factors beneath the pine-oak canopy relative to gross precipitation varied from 1.2 to 3.2 for macro-nutrients (Ca, K, Mg and Na) and from 1.4 to 3.1 for micro-nutrients (Cu, Fe, Mn and Zn). Stemflow depositions of Ca, K, Mg and Cu were higher in the pine-oak canopy, whereas stemflow depositions of Na, Fe, Mn and Zn were higher in the pine canopy.  相似文献   

17.
Reeves I  Emery RJ 《Tree physiology》2007,27(11):1635-1645
Seasonal patterns of cytokinins (CKs) and microclimate were examined in the upper, middle and lower canopy layers of mature Acer saccharum Marsh. (sugar maple) trees to elucidate the potential role of CKs in the mediation of gas exchange. The upper canopy showed a distinctly dissimilar microclimate from the middle and lower canopy layers with higher photosynthetically active radiation and wind speed, but showed no corresponding differences in transpiration (E) or stomatal conductance (g(s)). Although E and g(s) tended to be higher in the upper canopy than in the middle and lower canopies, the differences were not significant, indicating regulation beyond the passive response to changes in microclimate. The upper canopy accumulated significantly higher concentrations of CKs, predominantly as ribosides, and all canopy layers showed distinct seasonal patterns in CK profiles. Multiple regression models showed significant relationships between both g(s) and E and foliar CK concentration, although these relationships varied among canopy layers. The relationships were strongest in the middle and lower canopy layers where there was less fluctuation in leaf water status and less variability in abiotic variables. The relationships between gas exchange parameters and leaf CK concentration began to decouple near the end of the growing season as foliar phytohormone concentrations changed with the approach of dormancy.  相似文献   

18.
To determine a possible role of Fusarium eumartii in oak decline in different zones of Italy some requirements (temperature, substrates, pH) and some biological aspects (ability to produce phytotoxic metabolites, and pathogenicity) were studied in vitro and by inoculation tests on oak seedlings.  相似文献   

19.
In the United States, diseased oaks (Quercus species) exhibit tip blight, branch and stem cankers, and dieback often attributed to Diplodia species or related fungi. Emergence of Diplodia corticola as a pathogen of European oaks, and reports of this fungus in the eastern and western United States, prompted re‐examination of strains from Wisconsin. These had been obtained in the late 1990s and early 2000s and previously identified only as Diplodia species. Nuclear ribosomal ITS sequences were obtained from the Wisconsin strains and analysed with other sequences from GenBank. Wisconsin strains confirmed as D. corticola were from northern red oak (Q. rubra), black oak (Q. velutina), white oak (Q. alba) and bur oak (Q. macrocarpa). Other strains from oaks in Wisconsin were D. mutila and D. seriata. Wound inoculation of northern red, white and bur oak seedlings with D. corticola in a greenhouse resulted in shoot death and stem lesions, from which the pathogen was reisolated. We conclude that D. corticola has been present in the northcentral United States for at least two decades and report two previously unrecognized hosts of this pathogen: white oak and bur oak. The roles of D. corticola, related fungi and influences of other environmental factors in deterioration of oak health in North America merit additional investigation.  相似文献   

20.
A serious canker disease is affecting the health of Corymbia ficifolia in urban areas of Perth, Western Australia. Quambalaria coyrecup was frequently associated with diseased trees and its presence confirmed by morphological characters and DNA sequencing. A number of Quambalaria species have previously been identified as causal agents of canker and shoot blight diseases on a range of Eucalyptus and Corymbia species. It was therefore the aim, using glasshouse studies, to determine whether Q. coyrecup was the primary causal agent of the cankers on C. ficifolia and whether other Quambalaria species could also be associated with the disease. All seedlings inoculated with Q. coyrecup produced canker symptoms within 1 month after inoculation. Canker lesions typical of those observed in the field also occurred in the four subsequent months, after which time the trial was terminated. Inoculation with Q. cyanescens and Q. pitereka (isolated from C. ficifolia shoots) did not result in lesion development. This study establishes that Q. coyrecup is a serious pathogen of C. ficifolia and that wounding is required for canker development to occur. The management of Quambalaria canker must therefore include the minimization of artificial wounding of trees in the nursery and field.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号