首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Panek JA  Waring RH 《Tree physiology》1995,15(10):657-663
The natural abundance of stable carbon isotopes in the annual rings of forest trees is used as a tracer of environmental changes such as climate and atmospheric pollution. Although tree-ring delta(13)C varies by about 2 per thousand from year to year, variability within the foliage can be as high as 6 per thousand. Recent studies have shown that branch length affects stomatal response, which influences the integrated foliar delta(13)C signal. To improve the ability of delta(13)C to predict climate differences, we examined the relationship between branch length and foliar delta(13)C in Pseudotsuga menziesii (Mirb.) Franco from four sites across a steep climate gradient in Oregon. The transect spanned the boundary between the ranges of the coastal variety, P. menziesii var. menziesii (three sites), and the Rocky Mountain variety, P. menziesii var. glauca (one site). At the most maritime site, branch length explained 76% of within-site variation of 5 per thousand, whereas at the harshest site, branch length accounted for only 15% of this variation. We considered the possibility that cavitation in the water-conducting xylem obscures the branch length effect in the harsher climates. Cavitation, as measured by dye perfusion, was most extensive at sites where the branch length effect in the coastal variety was weakest. Trees at the site with the most substantial cavitation displayed seasonal xylem refilling. Branch length standardization significantly improved the relationship between delta(13)C and climate. With standardization to constant length, delta(13)C values were significantly related to the degree that climatic variables, as modeled with a forest growth simulation model, constrain transpiration (R(2) = 0.69, P < 0.0001). Without standardization, the R(2) was 0.27. We conclude that sampling standard length branches or tree rings from trees of similar shape and size is desirable when seeking correlations between isotopic composition and climate.  相似文献   

2.
Leffler AJ  Evans AS 《Tree physiology》2001,21(15):1149-1155
Different populations of widely distributed species can experience dramatically different climatic conditions that may influence physiological activity, specifically carbon assimilation and water use. Populus fremontii Wats. (Fremont cottonwood) populations are found near rivers of varying size along a precipitation gradient from New Mexico to northern California. Climatic differences among populations may lead to physiological differences because P. fremontii is sensitive to water availability. To assess physiological variation among populations, we collected foliage and wood samples from 13 populations that experience different precipitation and stream flow regimes and analyzed the samples for carbon isotope composition (delta13C). Wood delta13C served as a lifetime-averaged indicator of water-use efficiency (WUE), whereas foliage delta13C provided as an estimate of WUE during the growing season of collection. We found approximately 3.4 per thousand variation in delta13C among populations for both foliage (-31.1 to -27.9 per thousand) and wood (-28.3 to -24.7 per thousand). Wood delta13C was, on average, 2.8 per thousand more enriched than foliage. Some of the variation in wood delta13C can be explained by variation in elevation of the study sites. We constructed total precipitation and mean stream flow variables based on the length of the growing season at each study site and analyzed for a relationship between delta13C, precipitation and stream flow. A significant relationship between foliage delta13C and precipitation was found, but water availability did not explain a significant fraction of the variation in wood delta13C. The data suggest that water availability can account for some of the delta13C variation among populations but, given the large residual variances, other factors are important.  相似文献   

3.
Warren CR  Adams MA 《Tree physiology》2000,20(10):637-643
The stable carbon isotope composition (delta(13)C) of foliage integrates signals resulting from environmental and hydraulic constraints on water movement and photosynthesis. We used branch length as a simple predictor of hydraulic constraints to water fluxes and determined the response of delta(13)C to varying water availability. Foliage up to 6 years old was taken from Pinus pinaster Ait. trees growing at four sites differing in precipitation (P; 414-984 mm year(-1)) and potential evaporation (ET; 1091-1750 mm year(-1)). Branch length was the principal determinant of temporal trends in delta(13)C. The strong relationship between delta(13)C and branch length was a function of hydraulic conductance, which was negatively correlated with branch length (r(2) = 0.84). Variation in P and ET among sites was reflected in delta(13)C, which was negatively correlated with P/ET (r(2) = 0.66). However, this analysis was confounded by differences in branch length. If the effects of branch length on delta(13)C were first removed, then the 'residual' delta(13)C was more closely related to P/ET (r(2) = 0.99), highlighting the importance of accounting for variation in hydraulic constraints to water flux between sites and years. For plant species that exhibit considerable phenotypic plasticity in response to changes in environment (e.g., variation in leaf area, branch length and number, or stem form), the environmental effects on delta(13)C in foliage can only be reliably assessed if deconvoluted from hydraulic constraints.  相似文献   

4.
Recent studies have shown that stomata respond to changes in hydraulic conductance of the flow path from soil to leaf. In open-grown tall trees, branches of different heights may have different hydraulic conductances because of differences in path length and growth. We determined if leaf gas exchange, branch sap flux, leaf specific hydraulic conductance, foliar carbon isotope composition (delta13C) and ratios of leaf area to sapwood area within branches were dependent on branch height (10 and 25 m) within the crowns of four open-grown ponderosa pine (Pinus ponderosa Laws.) trees. We found no difference in leaf gas exchange or leaf specific hydraulic conductance from soil to leaf between the upper and lower canopy of our study trees. Branch sap flux per unit leaf area and per unit sapwood area did not differ between the 10- and 25-m canopy positions; however, branch sap flux per unit sapwood area at the 25-m position had consistently lower values. Branches at the 25-m canopy position had lower leaf to sapwood area ratios (0.17 m2 cm-2) compared with branches at the 10-m position (0.27 m2 cm-2) (P = 0.03). Leaf specific conductance of branches in the upper crown did not differ from that in the lower crown. Other studies at our site indicate lower hydraulic conductance, sap flux, whole-tree canopy conductance and photosynthesis in old trees compared with young trees. This study suggests that height alone may not explain these differences.  相似文献   

5.
The carbon isotopic composition (delta(13)C) of wood and leaf cellulose of beech trees (Fagus sylvatica L.) was studied at 80 sites in northeastern France. We sampled sites with contrasting water balance, depending on soil type and precipitation. We tested the hypothesis that inter-site variations in plant delta(13)C reflect the spatial distribution of soil water availability, and we assessed whether delta(13)C could be used as a bioindicator of soil water availability. Patterns of variation in delta(13)C were compared with estimates of monthly water balance and with other soil characteristics. Between-site variability in delta(13)C was high (2.9 per thousand range in wood cellulose, 2.1 per thousand in leaf cellulose), but variation in water availability appeared to be only a minor factor contributing to this variation in delta(13)C. Unexpectedly, spatial variations in wood and leaf cellulose delta(13)C were significantly and positively related to soil fertility expressed by soil pH (r = 0.42 and 0.43, respectively) and cation content. On average, trees growing on acidic soils displayed 0.5 per thousand lower delta(13)C in both wood and leaf material than trees growing on neutral or calcareous soils. Our initial hypothesis of a strong negative relationship between delta(13)C and site water availability was not confirmed. In the study zone, neither wood nor leaf delta(13)C appeared to be a reliable bioindicator of spatial variations in water availability. Possible causes for the lack of a relationship are discussed. Our findings confirm, under natural conditions, the strong effect of soil fertility on water-use efficiency previously observed in experiments. This effect needs to be considered in isotopic studies involving different sites.  相似文献   

6.
The characteristic decline in height growth that occurs over a tree's lifespan is often called "age-related decline." But is the reduction in height growth in aging trees a function of age or of size? We grafted shoot tips across different ages and sizes of Douglas-fir (Pseudotsuga menziesii (Mirb.) Franco) trees to determine whether the decline in height growth is mediated by tree size or by the age of the apical meristem. We also evaluated whether reduced carbon assimilation plays an important role in height growth decline. In one experiment we cut shoot tips from old-growth, young-mature and seedling trees and grafted them onto 2-year-old graft-compatible rootstock in a seed orchard in Lebanon, Oregon. In another experiment we performed reciprocal grafts between lateral branches of old-growth trees accessible from the canopy crane at Wind River, Washington and young-mature trees in a nearby plantation. We measured growth (diameter and elongation of the dominant new stem) and mortality annually for three years in the Seed Orchard experiment and for two years in the Reciprocal Graft experiment. In the Seed Orchard experiment we also measured photosynthetic capacity (determined from the response of net carbon assimilation to the intercellular CO(2) concentration of the leaf, or A/C(i) curves), leaf mass per area (LMA) and carbon isotope composition (delta(13)C) of cellulose in 1-year-old foliage. Grafting caused changes in both growth and physiology of the grafted stems. Within two years after grafting, growth and physiology of all combinations of scions and rootstock exhibited characteristics of the rootstock. In some cases, the change in growth was dramatic-cuttings from old-growth trees showed a 10-fold increase in stem elongation rate within 2 years of grafting onto seedling rootstock. Similarly, carbon isotope discrimination of new foliage on shoots from old-growth trees increased by nearly 3 per thousand and 2 per thousand after grafting onto young-mature and seedling rootstock, respectively, whereas discrimination decreased by a similar magnitude in scions from young-mature trees after grafting on old- growth trees. Furthermore, differences in carbon assimilation estimated from carbon isotope discrimination and A/C(i )relationships were small relative to growth differences. Our results confirm that size, not age, drives developmental changes in height growth in Douglas-fir. Reduced carbon assimilation does not play an important role in height growth decline.  相似文献   

7.
The stand density of a forest affects the vertical distribution of foliage. Understanding the dynamics of this response is important for the study of crown structure and function, carbon-budget estimation, and forest management. We investigated the effect of tree density on the vertical distribution of foliage, branch, and stem growth, and ratio of biomass increment in aboveground tissues; by monitoring all first-order branches of five trees each from thinned and unthinned control stands of 10-year-old Chamaecyparis obtusa for four consecutive years. In the control stand, the foliage crown shifted upward with height growth but the foliage quantity of the whole crown did not increase. In addition, the vertical distribution of leaf mass shifted from lower-crown skewed to upper-crown skewed. In the thinned stand in contrast, the foliage quantity of individual crowns increased two-fold within 4 years, while the vertical distribution of leaf mass remained lower-crown skewed. The two stands had similar production rates, numbers of first-order branches per unit of tree height, and total lengths of first-order branches. However, the mortality rate of first-order branches and self-pruning within a first-order branch were significantly higher in the control stand than in the thinned stand, which resulted in a higher ratio of biomass increment in branch. Thinning induced a higher ratio of biomass increment in foliage and lower in branch. The increased foliage quantity and variation in ratio of biomass increment after thinning stimulated stem growth of residual trees. These results provide information that will be useful when considering thinning regimes and stand management.  相似文献   

8.
We tested the hypothesis that forest age influences the carbon isotope ratio (delta13C) of carbon reservoirs and CO2 at local and regional levels. Carbon isotope ratios of ecosystem respiration (delta13C(R)), soil respiration (delta13C(R-soil)), bulk needle tissue (delta13C(P)) and soil organic carbon (delta(13)C(SOC)) were measured in > 450-, 40- and 20-year-old temperate, mixed coniferous forests in southern Washington, USA. Values of delta13C(R), delta13C(R-soil), delta13C(P) and delta13C(SOC) showed consistent enrichment with increasing stand age. Between the youngest and oldest forests there was an approximately 1 per thousand enrichment in delta13C(P) (at similar canopy levels), delta13C(SOC) (throughout the soil column), delta13C(R-soil) (during the wet season) and delta13C(R) (during the dry season). Mean values of delta13C(R) were -25.9, -26.5 and -27.0 per thousand for the 450-, 40- and 20-year-old forests, respectively. Both delta13C(R-soil) and the difference between delta13C(R) and delta13C(R-soil) were more 13C enriched in older forests than in young forest: delta13C(R) - delta13C(R-soil) = 2.3, 1.1 and 0.5 per thousand for the 450-, 40- and 20-year-old forests, respectively. Values of delta(13)C(P) were proportionally more depleted relative to delta13C(R): delta13C(R) - delta13C(P) = 0.5, 2.2 and 2.5 per thousand for the 450-, 40- and 20-year-old forests, respectively. Values of delta13C(P) were most 13C-enriched at the top of the canopy and in the oldest forest regardless of season (overall values were -26.9, -28.7 and -29.4 per thousand for the 450-, 40- and 20-year-old forests, respectively). Values of delta13C(SOC) from shallow soil depths were similar to delta13C(P) values of upper- and mid-canopy needles. All delta13C data are consistent with the hypothesis that a decrease in stomatal conductance associated with decreased hydraulic conductance leads to increased CO2 diffusional limitations in older coniferous trees. The strong associations between delta13C(P) in needles with delta13C(R) and delta13C(R-soil) at the forest level suggest that 13C observations scale between leaf and ecosystem levels.  相似文献   

9.
Both the spatial distribution of leaves and leaf functions affect the light interception, transpiration and photosynthetic capacities of trees, but their relative contributions have rarely been investigated. We assessed these contributions at the branch and tree scales in two apple cultivars (Malus x domestica Borkh. 'Fuji' and 'Braeburn') with contrasting architectures, by estimating their branch and tree capacities and comparing them with outputs from a radiation absorption, transpiration and photosynthesis (RATP) functional-structural plant model (FSPM). The structures of three 8-year-old trees of each cultivar were digitized to obtain 3-D representations of foliage geometry. Within-tree foliage distribution was compared with shoot demography, number of leaves per shoot and mean individual leaf area. We estimated branch and tree light interception from silhouette to total leaf area ratios (STAR), transpiration from sap flux measurements and net photosynthetic rates by the branch bag method. Based on a set of parameters we previously established for both cultivars, the outputs of the RATP model were tested against STAR values, sap fluxes and photosynthetic measurements. The RATP model was then used to virtually switch foliage distribution or leaf functions (stomatal and photosynthetic properties), or both, between cultivars and to evaluate the effects on branch and tree light interception, transpiration and photosynthetic capacities in each cultivar. 'Fuji' trees had a higher proportion of leaf area borne on long shoots, fewer leaves per unit shoot length and a larger individual leaf area than 'Braeburn' trees. This resulted in a lower leaf area density and, consequently, a higher STAR in 'Fuji' than in 'Braeburn' at both branch and tree scales. Transpiration and photosynthetic rates were significantly higher in 'Fuji' than in 'Braeburn'. Branch heterogeneity was greater in 'Braeburn' than in 'Fuji'. An analysis of the virtual switches of foliage distribution or leaf function showed that differences in leaf spatial distribution and functions had additive effects that accounted for the lower transpiration and photosynthetic rates of branches and trees of 'Braeburn' compared with 'Fuji'. Leaf distribution had a more important role at the branch scale than at the tree scale, but the leaf function effect exceeded the leaf distribution effect at both scales. Our study demonstrated the potential of FSPM to disentangle physiological differences between cultivars through in silico scenarios.  相似文献   

10.
Differences in stem wood production were found among four clones of Picea sitchensis (Bong.) Carr. at both an agricultural and a forest site. Clonal rankings were not consistent between the sites. Four variables were identified that may influence stem wood production, foliage amount, total aboveground production per unit foliage, proportional allocation of production to new foliage and to branch wood thickening. Comparison of clonal performance between sites showed that stem wood production could be influenced by differences in each of these variables. The four variables were themselves determined by components of crown structure, these were (i) production of new branches from the main stem, (ii) the numbers and lengths of branchlets supported on branches from the main stem, (iii) foliage production per unit branchlet length and foliage longevity, and (iv) branch wood thickening per unit branch length. These components varied both among clones and between sites. Branch production from the mainstem varied among clones, and for some clones it varied substantially between sites. In some clones branch production was positively correlated with mainstem height increment. There were differences among clones in the way that branchlet production varied between the agricultural and forest sites. In the absence of needle fall, foliage weight/branch length varied threefold among clones, but for each clone, varied little between sites. Branch wood weight/branch length was generally greater when foliage weight/branch length was large, but total branch wood increment/tree was strongly influenced by total branch length. The dynamics of crown development and its relation to stem wood production are discussed with reference to (i) the importance of needle longevity, (ii) the importance of tallness and narrowness of crowns and (iii) the importance of branch thickening, a process that competes with stem growth in the utilization of photosynthate. It is concluded that although each of these factors may be important, none singly accounts for the observed differences in stem wood production among genotypes and the way these change in response to the environment.  相似文献   

11.
We measured oxygen isotope ratios (delta18O) of xylem sap, phloem sap, leaves, wood and bark of Eucalyptus globulus Labill. growing in southwestern Australia. Carbon isotope ratios (delta13C) were measured in the dry matter of phloem sap, leaves and wood. Results were used to test several aspects of a mechanistic model of 18O enrichment and provided insights into post-photosynthetic variations in dry matter delta13C. Xylem water delta18O varied little within the tree crown, whereas variation at the landscape-level was more pronounced, with plantations near the coast being enriched by up to 3 per thousand compared with plantations less than 100 km inland. Phloem water was significantly enriched in 18O compared with xylem water in two of three sampling campaigns; mean enrichments were 0.5 and 0.8 per thousand. Phloem sap sugars exported from E. globulus leaves closely reflected observed leaf water enrichment when diurnal variation in photosynthesis was taken into account. Photosynthetic rates were higher in the morning than in the afternoon, whereas leaf water 18O enrichment increased to maximum values in the afternoon. A non-steady-state model of leaf water 18O enrichment accurately predicted observed values through a full diel cycle. Mean estimates of the proportion of organic oxygen effectively exchanging with xylem water during cellulose synthesis were close to 0.40 for both leaves and wood. Carbon isotope ratios of nascent xylem tissues did not differ from those of phloem sap sugars collected concurrently, whereas nascent leaf tissues were depleted in 13C by 2 per thousand compared with phloem sap sugars, suggesting that, in E. globulus, 13C enrichment of sink tissues compared with source leaves does not result from an enriching process within the sink tissue.  相似文献   

12.
We present a new, rapid method for high-resolution online determination of delta13C in tree rings, combining laser ablation (LA), combustion (C), gas chromatography (GC) and isotope ratio mass spectrometry (IRMS) (LA-C-GC-IRMS). Sample material was extracted every 6 min with a UV-laser from a tree core, leaving 40-microm-wide holes. Ablated wood dust was combusted to CO2 at 700 degrees C, separated from other gases on a GC column and injected into an isotope ratio mass spectrometer after removal of water vapor. The measurements were calibrated against an internal and an external standard. The tree core remained intact and could be used for subsequent dendrochronological and dendrochemical analyses. Cores from two Scots pine trees (Pinus sylvestris spp. sibirica Lebed.) from central Siberia were sampled. Inter- and intra-annual patterns of delta13C in whole-wood and lignin-extracted cores were indistinguishable apart from a constant offset, suggesting that lignin extraction is unnecessary for our method. Comparison with the conventional method (microtome slicing, elemental analysis and IRMS) indicated high accuracy of the LA-C-GC-IRMS measurements. Patterns of delta13C along three parallel ablation lines on the same core showed high congruence. A conservative estimate of the precision was +/- 0.24 per thousand. Isotopic patterns of the two Scots pine trees were broadly similar, indicating a signal related to the forest stand's climate history. The maximum variation in delta13C over 22 years was about 5 per thousand, ranging from -27 to -22.3 per thousand. The most obvious pattern was a sharp decline in delta13C during latewood formation and a rapid increase with spring early growth. We conclude that the LA-C-GC-IRMS method will be useful in elucidating short-term climate effects on the delta13C signal in tree rings.  相似文献   

13.
Comparison of branch-level foliage and branch (wood+bark) biomass relationships for North Carolina Coastal (NCC) and Oklahoma/Arkansas (O/A) loblolly pine (Pinus taeda L.) seed sources provided an indication of biomass partitioning differences between these two seed sources. The objective of this study was to quantify and compare the branch-level foliage and branch biomass of NCC and O/A provenances on an excessively drained site in southeastern Oklahoma to assess their branch-level biomass partitioning patterns; a modeling process was developed to accomplish this objective. It was found that seed source significantly influenced the amount of foliage per branch. If tree and branch dimensions were held constant, NCC branches would carry approximately 30% more foliage per branch than O/A branches. The relationship between tree and branch dimensions and branch production did not differ for the two seed sources. Vertical distributions of branch and foliage biomass were found to be similar for the two seed sources as well. Thus, on the droughty site observed in this study: (1) the NCC seed source tended to partition more biomass into the foliage component at the individual branch level than did the O/A seed source; (2) the two seed sources were similar in their propensity to partition biomass into the branch component at the branch level, and (3) the two seed sources were similar in the vertical distribution of branch and foliage biomass within the crown.  相似文献   

14.
Elevated CO(2) concentrations ([CO(2)]) affect plant water relations and photosynthesis, and the increase in atmospheric [CO(2)] over the past 100-200 years has been related to changes in stomatal density and the carbon isotope ratio (delta(13)C) in tree rings and leaves from herbarium specimens. Because many tropical trees do not produce annual growth rings and their wood is therefore difficult to date, no trends in delta(13)C of tropical trees have been reported. Wood from Cedrela odorata L. (tropical cedar) and Swietenia macrophylla King (bigleaf mahogany), which do produce annual rings, was collected from a primary rain forest in Aripuan?, Brazil (10 degrees 09' S, 59 degrees 26' W). We measured wood cellulose delta(13)C in 10-year growth increments from 37 Cedrela trees (between 11 and 151 years old in 2001) and 16 Swietenia trees (48-126 years old). A comparison of delta(13)C in cellulose of trees from different decades and of trees of different cambial ages showed that the amount of delta(13)C was largely related to the decade the wood was produced in, and not, or only to a minor extent, to tree age. Cellulose delta(13)C decreased from -26.0 to -27.3 per thousand in Cedrela and from -25.7 to -27.1 per thousand in Swietenia, with the largest changes occurring during the past 50 years. Based on these data and the trends in atmospheric [CO(2)] and delta(13)CO(2), we calculated that the internal [CO(2)] increased from about 220 to 260 ppm and that intrinsic water-use efficiency increased by 34% in Cedrela and by 52% in Swietenia. This may have implications for the water cycle and may explain the trend toward increased tree growth and turnover observed in some tropical forests.  相似文献   

15.
Dwarf mistletoes (Arceuthobium species) are arboreal, hemiparasitic plants of conifers that can change the structure and function of the tree crown. Hemlock dwarf mistletoe (Arceuthobium tsugense subsp. tsugense) principally parasitizes western hemlock (Tsuga heterophylla) and effects 10.8% of all western hemlock trees in Oregon, USA. In this study, we climbed 16 western hemlock trees (age 97–321 years, height 33–54.7 m) across a gradient of infection (0%–100% of branches infected) and measured occurrence of all dwarf mistletoe infections, dwarf mistletoe caused deformities, foliage, branch and crown metrics, and sapwood area. We then modelled over 25 different response variables using linear and generalized linear models with three metrics of severity as explanatory variables: total infection incidence, proportion of all live branches infected, and proportion of all live, infected branches with 33 per cent or more foliage distal to infection. A strong effect of dwarf mistletoe intensification was the reduction of branch foliage and an increase in the proportional amount of foliage distal to infections, with severely infected trees having the majority of foliage distal to infections. Increasing severity led to an apparent crown compaction as crown volumes decreased and became increasingly comprised of deformities. Sapwood area was unrelated to infection severity. Branch length and diameters were unrelated to increasing infection severity despite severely infected branches supporting 1–70 infections. The most severely infected tree had 3,615 individual plants in the crown. Our results suggested that shifts in crown structure and branch deformation, foliage amount, and foliage distal to infection, reflected a likely reduction of capacity for tree growth that coincided with a hypothesized increase in resource demand by dwarf mistletoe plants as infection severity intensified.  相似文献   

16.
We examined the physiological response of foliage in the upper third of the canopy of 125-year-old giant sequoia (Sequoiadendron giganteum Buchholz.) trees to a 61-day exposure to 0.25x, 1x, 2x or 3x ambient ozone concentration. Four branch exposure chambers, one per ozone treatment, were installed on 1-m long secondary branches of each tree at a height of 34 m. No visible symptoms of foliar ozone damage were apparent throughout the 61-day exposure period and none of the ozone treatments affected branch growth. Despite the similarity in ozone concentrations in the branch chambers within a treatment, the trees exhibited different physiological responses to increasing ozone uptake. Differences in diurnal and seasonal patterns of g(s) among the trees led to a 2-fold greater ozone uptake in tree No. 2 compared with trees Nos. 1 and 3. Tree No. 3 had significantly higher CER and g(s) at 0.25x ambient ozone than trees Nos. 1 and 2, and g(s) and CER of tree No. 3 declined with increasing ozone uptake. The y-intercept of the regression for dark respiration versus ozone uptake was significantly lower for tree No. 2 than for trees Nos. 1 and 3. In the 0.25x and 1x ozone treatments, the chlorophyll concentration of current-year foliage of trees Nos. 1 and 2 was significantly higher than that of current-year foliage of tree No. 3. Chlorophyll concentration of current-year foliage on tree No. 1 did not decline with increasing ozone uptake. In all trees, total needle water potential decreased with increasing ozone uptake, but turgor was constant. Although tree No. 2 had the greatest ozone uptake, g(s) was highest and foliar chlorophyll concentration was lowest in tree No. 3 in the 0.25x and 1x ambient atmospheric ozone treatments.  相似文献   

17.
The stable oxygen isotope ratio (delta(18)O) of tree-ring cellulose is jointly determined by the delta(18)O of xylem water, the delta(18)O of atmospheric water vapor, the humidity of the atmosphere and perhaps by species-specific differences in leaf structure and function. Atmospheric humidity and the delta(18)O of water vapor vary seasonally and annually, but if the canopy atmosphere is well mixed, atmospheric characteristics should be uniform among co-occurring trees. In contrast, xylem water delta(18)O is determined by the delta(18)O of water being drawn from the soil, which varies with depth. If co-occurring trees draw water from different soil depths, this soil-water delta(18)O signal would be manifest as differences in delta(18)O among the trees. We examined the variation in tree ring delta(18)O, over eight decades during the 20th Century, among three species co-occurring in natural forest stands of the northern Rocky Mountains in the USA. We sampled 10 Douglas-firs (Pseudotsuga menziesii (Mirb.) Franco var. glauca), 10 ponderosa pines (Pinus ponderosa Laws.) and seven western white pines (Pinus monticola Dougl.). As expected, variation in atmospheric conditions was recorded in the delta(18)O of the cellulose produced in a given year, but observed climatic correlations with delta(18)O were weak. Significant correlations with June climate data included: daily maximum temperature (r = 0.29), daily minimum temperature (r = -0.25), mean temperature (r = 0.20), mean daily precipitation (r = -0.54), vapor pressure deficit (r = 0.32) and solar radiation (r = 0.44). Lagged effects were observed in Douglas-fir and western white pine. In these species, the delta(18)O of a given annual ring was correlated with the delta(18)O of the previous ring. Ponderosa pine showed no significant autocorrelation. Although the species means were correlated among years (r = 0.67 to 0.76), ponderosa pine was consistently enriched in delta(18)O relative to the other species; differences were close to 2 per thousand and they are steadily increasing. Relative to the mean for the three species, ponderosa pine is becoming steadily more enriched (-1.0 per thousand). In contrast, Douglas-fir is being steadily depleted and western pine is intermediate, with an enrichment of 0.5 per thousand. Because all trees were exposed to the same atmospheric conditions, the differences in delta(18)O observed between species are likely due either to differences in the depth of water extraction or leaf function. If the former, presumably ponderosa pine has steadily taken up more water from near the soil surface and Douglas-fir has shifted uptake to a greater depth. If the latter, we suggest the pronounced changes in leaf-water delta(18)O are a result of changes in leaf structure and function with tree size and age.  相似文献   

18.
Panek JA 《Tree physiology》1996,16(9):747-755
Stomatal conductance in trees is related to both foliar carbon-isotope abundance and stem hydraulic properties. By combining these relationships, I hypothesized that carbon-isotope abundance in foliage should vary with limitations to water movement through supporting branches. I sampled Douglas-fir branches (Pseudotsuga menziesii (Mirb.) Franco) from six sites across a climate gradient in Oregon, USA for foliar carbon-isotope abundance and stem hydraulic properties. I used a forest growth model to quantify climate-induced stomatal limitations, expressed as reduced potential transpiration, across the gradient. Foliar stable carbon-isotope abundance showed a strong inverse relationship with branch specific conductivity (hydraulic conductivity per unit functional sapwood area) and leaf-specific conductivity (hydraulic conductivity per unit leaf area). Foliar stable carbon-isotope abundance was correlated with modeled reductions in potential transpiration; however, the inclusion of leaf-specific conductivity improved the correlation by more than 30%. Combined, leaf-specific conductivity and climate-induced stomatal constraints explained 84% of the variation in foliar isotope abundance in 1994 foliage. This model was confirmed on foliage classes 1990-1993.  相似文献   

19.
Carbon isotope composition (delta13C) of branchlet tissue at nine canopy positions, and nitrogen concentration (N(mass)) at four canopy positions, were assessed in 8-year-old hoop pine (Araucaria cunninghamii Ait. ex D. Don) trees from 23 half-sib families, grown in six blocks of a progeny test in southeastern Queensland, Australia. There was considerable variation among sampling positions, families and blocks in both delta13C and N(mass). The delta13C was positively related to N(mass) only for samples from the upper outer crown (P < 0.005). Phenotypic correlations existed between tree growth and canopy delta13C. Branchlet delta13C of the inner and lower outer crown was positively related (P < 0.037) to tree height, but delta13C in branchlets of the upper outer crown was not related to tree height, or was related negatively (P < 0.045). There were significant differences in delta13C between hoop pine families for six canopy positions (upper canopy positions as well as lower canopy positions on the northern side), with heritabilities greater than 0.40. The significance of these findings is discussed in relation to water and light competition within the tree canopy of hoop pine.  相似文献   

20.
The stable carbon (C) isotope composition (delta13C) of tree rings is a powerful metric for reconstructing past physiological responses to climate variation. However, accurate measurement and interpretation are complicated by diagenesis and the translocation of compounds with distinct isotopic signatures. Isolation and analysis of cellulose minimizes these complications by eliminating variation due to biosynthetic pathways; however, isolation of cellulose is time-consuming and has no clear endpoint. A faster and better-defined analytical method is desirable. Our objectives were to determine if there is a direct relationship between the isotopic compositions of whole wood (WW), whole wood treated with solvents to remove mobile extractives (extractive-free wood; EF) and holocellulose (HC) isolated by extractive removal and subsequent bleaching. We also determined if total C concentration could explain the isotopic composition and variation among these three wood components of each sample. A set of wood samples of diverse phylogeny, anatomy and chemical composition, was examined. The mean offset or difference between HC and EF delta13C was 1.07 +/- 0.09 per thousand and the offset between HC and WW was 1.32 +/- 0.10 per thousand. Equivalence tests (with alpha = 0.05) indicated that the relationship between EF delta13C and HC delta13C had a slope significantly similar to 1 +/- 5.5%, whereas for the WW delta13C: HC delta13C relationship, the slope was significantly similar to 1 +/- 10.08%. A regression model using EF delta13C to predict HC delta13C had a slope of 0.97, which was not significantly different from unity (P = 0.264), whereas the regression for WW had a slope of 0.92 which was significantly different from unity (P = 0.0098). Carbon concentration was correlated with HC:WW offset and cellulose:EF offset (P = 0.0501 and 0.007, respectively), but neither relationship explained much of the variation (r2 = 0.12 and 0.14, respectively). We suggest that HC extraction is unnecessary for most analyses of tree-ring delta13C; a simple solvent extraction is a suitable alternative for many applications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号