首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Cardiopulmonary consequences of acepromazine (0.2 mg/kg of body weight, IV) followed by IV administration of ketamine (10 mg/kg) were evaluated in 13 dogs. Acepromazine caused significant decreases in arterial blood pressure, stroke volume, left ventricular work, left ventricular stroke work, breathing rate, minute ventilation, and oxygen consumption. Subsequent administration of ketamine caused significant increases in heart rate, effective alveolar volume, alveolar-arterial Po2 gradient (transient increase), venous admixture (transient increase), and PaCO2 and PVCO2 (transient increases), and caused significant decreases in stroke volume, minute ventilation, physiologic dead space, and arterial and venous PO2 (transient decreases).  相似文献   

2.
OBJECTIVE: To determine hemodynamic effects of 3 concentrations of sevoflurane in cats. ANIMALS: 6 cats. PROCEDURE: Cats were anesthetized with sevoflurane in oxygen. After instruments were inserted, end-tidal sevoflurane concentration was set at 1.25, 1.5, or 1.75 times the individual minimum alveolar concentration (MAC), which was determined in another study. Twenty-five minutes were allowed after each change of concentration. Heart rate; systemic and pulmonary arterial pressures; central venous pressure; pulmonary artery occlusion pressure; cardiac output; body temperature; arterial and mixed-venous pH, PCO2, PO2, oxygen saturation, and hemoglobin concentrations; PCV; and total protein and lactate concentrations were measured for each sevoflurane concentration before and during noxious stimulation. Arterial and mixed-venous bicarbonate concentrations, cardiac index, stroke index, rate-pressure product, systemic and pulmonary vascular resistance indices, left and right ventricular stroke work indices, PaO2, mixed-venous partial pressure of oxygen (PVO2), oxygen delivery, oxygen consumption, oxygen-extraction ratio, alveolar-to-arterial oxygen difference, and venous admixture were calculated. Spontaneous and mechanical ventilations were studied during separate experiments. RESULTS: Mode of ventilation did not significantly influence any of the variables examined. Therefore, data from both ventilation modes were pooled for analysis. Mean arterial pressure, cardiac index, stroke index, rate-pressure product, left ventricular stroke work index, arterial and mixed-venous pH, PaO2, and oxygen delivery decreased, whereas PaCO2, PVO2, and mixed-venous partial pressure of CO2 increased significantly with increasing doses of sevoflurane. Noxious stimulation caused a significant increase in most cardiovascular variables. CONCLUSIONS AND CLINICAL RELEVANCE: Sevoflurane induces dose-dependent cardiovascular depression in cats that is mainly attributable to myocardial depression.  相似文献   

3.
Ketamine in dogs   总被引:1,自引:0,他引:1  
The cardiopulmonary consequences of ketamine (10 mg/kg, IV) were evaluated in 18 dogs. Heart rate, cardiac output, systemic blood pressure, left ventricular work, oxygen transport, oxygen consumption, carbon dioxide production, and core temperature increased. Breathing rate, minute ventilation, and arterial partial pressure of oxygen transiently decreased. Arterial partial pressure of carbon dioxide, alveolar-arterial oxygen gradient, and venous admixture transiently increased. The duration of action of ketamine for surgical anesthesia was short. Muscle tone and salivation were excessive, and spontaneous muscular activity was prominent.  相似文献   

4.
The Hemodynamic Response of Calves to Tiletamine-Zolazepam Anesthesia   总被引:1,自引:0,他引:1  
Six isoflurane-anesthetized calves were instrumented for hemodynamic studies and allowed to recover from anesthesia. When the mean arterial blood pressure rose to 100 mmHg or when vigorous movement occurred, a 1:1 tiletamine-zolazepam mixture (4 mg/kg) was administered intravenously (IV). Values for cardiac output, cardiac index, stroke index, central venous pressure, and right ventricular stroke work index did not change significantly. Systolic, mean, and diastolic arterial blood pressures and systemic vascular resistance were significantly decreased below baseline at 5 minutes; they were significantly increased above baseline at 20 minutes and remained so throughout the 60 minute study. Changes in left ventricular stroke work index and rate pressure product were similar to those of arterial blood pressure and systemic vascular resistance, although they were not significant. Heart rate and pulmonary capillary wedge pressure decreased significantly but gradually returned to baseline at 40 minutes and then increased significantly above baseline by the end of the study. Minor venous-arterial shunting or perhaps mismatching of ventilation and perfusion appeared to have developed in the later stages of the study. This was reflected in a minor increase in the arterial partial pressure of carbon dioxide (PaCO2) and a decrease in the arterial partial pressure of oxygen (PaO2) and arterial pH. At the dose administered, the hemodynamic changes induced by tiletamine-zolazepam were minimal and were compatible with safe anesthesia in calves.  相似文献   

5.
OBJECTIVE: To evaluate the cardiovascular effects of norepinephrine (NE) and dobutamine (DB) in isoflurane-anesthetized foals. STUDY DESIGN: Prospective laboratory study. METHODS: Norepinephrine (0.05, 0.10, 0.20, and 0.40 microg kg(-1) minute(-1)) and dobutamine (2.5, 5.0, and 10 microg kg(-1) minute(-1)) were alternately administered to seven healthy, 1- to 2-week-old isoflurane-anesthetized foals. Arterial and pulmonary arterial blood pressure, right atrial pressure, pulmonary artery occlusion pressure, heart rate, body temperature, cardiac output, arterial and mixed venous blood pH, partial pressure of carbon dioxide, partial pressure of oxygen [arterial partial pressure of oxygen (PaO(2)) and mixed venous partial pressure of oxygen (PvO(2))], and packed cell volume were measured. Standard base excess, bicarbonate concentration, systemic and pulmonary vascular resistance, cardiac index (CI), stroke volume, left and right stroke work indices, oxygen delivery (DO(2)), consumption, and extraction were calculated. Results Norepinephrine infusion resulted in significant increases in arterial and pulmonary arterial pressure, systemic and pulmonary vascular resistance indices, and PaO(2); heart rate was decreased. Dobutamine infusion resulted in significant increases in heart rate, stroke volume index, CI, and arterial and pulmonary arterial blood pressure. Systemic and pulmonary vascular resistance indices were decreased while the ventricular stroke work indices increased. The PaO(2) decreased while DO(2) and oxygen consumption increased. Oxygen extraction decreased and PvO(2) increased. CONCLUSIONS AND CLINICAL RELEVANCE: Norepinephrine primarily augments arterial blood pressure while decreasing CI. Dobutamine primarily augments CI with only modest increases in arterial blood pressure. Both NE and DB could be useful in the hemodynamic management of anesthetized foals.  相似文献   

6.
Dogs were used to determine cardiopulmonary and chemical restraining effects of racemic ketamine and its enantiomers. Levorotatory ketamine induced the shortest duration of unconsciousness and recumbency when compared with effects of dextrorotatory and racemic ketamine. Administration of racemic ketamine or either of its enantiomers (30 mg/kg of body weight, IV) to dogs recovering from isoflurane anesthesia induced transient, but significant (P less than 0.05), decreases in arterial blood pressure, left ventricular contractility, cardiac output, and total peripheral vascular resistance. Arterial blood pressure and left ventricular contractility significantly (P less than 0.05) increased at later times after ketamine administration. Arterial pH and the PO2 values decreased after IV administration of racemic ketamine or its enantiomers. Significant differences in cardiopulmonary variables were not observed between groups given ketamine or its enantiomers.  相似文献   

7.
OBJECTIVE: To evaluate the cardiovascular effects of the alpha2-adrenergic receptor agonist medetomidine hydrochloride in clinically normal cats. ANIMALS: 7 clinically normal cats. PROCEDURE: Cats were anesthetized with isoflurane, and thermodilution catheters were placed for measurement of central venous, pulmonary, and pulmonary capillary wedge pressures and for determination of cardiac output. The dorsal pedal artery was catheterized for measurement of arterial blood pressures and blood gas tensions. Baseline variables were recorded, and medetomidine (20 microg/kg of body weight, IM) was administered. Hemodynamic measurements were repeated 15 and 30 minutes after medetomidine administration. RESULTS: Heart rate, cardiac index, stroke index, rate-pressure product, and right and left ventricular stroke work index significantly decreased from baseline after medetomidine administration, whereas systemic vascular resistance and central venous pressure increased. However, systolic, mean, and diastolic arterial pressures as well as arterial pH, and oxygen and carbon dioxide tensions were not significantly different from baseline values. CONCLUSIONS AND CLINICAL RELEVANCE: When administered alone to clinically normal cats, medetomidine (20 microg/kg, IM) induced a significant decrease in cardiac output, stroke volume, and heart rate. Arterial blood pressures did not increase, which may reflect a predominant central alpha2-adrenergic effect over peripheral vascular effects.  相似文献   

8.
OBJECTIVE: To evaluate the effects of a hemoglobin-based oxygen carrier (HBOC-301) on left ventricular preload, afterload, contractility, and ventriculo-arterial coupling in anesthetized dogs. STUDY DESIGN: A prospective experimental study. ANIMALS: Seven adult male dogs weighing 2.3 to 2.7 kg. METHODS: The study was performed on intact, closed-chest, chloralose-anesthetized dogs. Heart rate, left ventricular end-systolic and end-diastolic volume and pressure, cardiac output, stroke volume, blood resistivity, mean arterial pressure (MAP), dP/dtmax, end-systolic elastance (Ees), systemic vascular resistance (SVR), effective arterial elastance (Ea), left ventricular-arterial coupling (Ees/Ea), and myocardial oxygen consumption (MVO2) were determined during a 90-minute infusion of 30 mL/kg (20 mL/kg/h) of HBOC-301 and for 90 minutes thereafter. RESULTS: The administration of HBOC-301 significantly decreased packed cell volume, blood resistivity, heart rate, cardiac output, and dP/dtmax and significantly increased left ventricular end-diastolic and end-systolic pressure, MAP, and SVR. The Ea, Ees, Ees/Ea and MVO2 did not change. CONCLUSIONS: HBOC-301 produced insignificant changes in load independent indexes of cardiac performance (Ees, E, Ees/Ea) in anesthetized dogs. The collective directional changes in these variables, however, in conjunction with significant increases in SVR were most likely responsible for a decrease in cardiac output. Increases in SVR and the volume load (30 mL/kg) contributed to increases in left ventricular end-diastolic pressure. CLINICAL RELEVANCE: HBOC-301 infusion should be monitored and administered cautiously to dogs with poor ventricular function.  相似文献   

9.
Cardiopulmonary effects of laparoscopic surgery were investigated in five crossbred dogs (21 ± 1.9 kg). Premedicated dogs were anesthetized with thiopental and maintained with halothane at 1.5 times minimum alveolar concentration in oxygen. Controlled ventilation maintained partial pressure of end-tidal co2 at 40 ± 2 mm Hg. Vecuronium was used for skeletal muscle relaxation. After instrumentation and stabilization, baseline measurements were made of cardiac output (thermodilution technique), mean systemic, mean pulmonary arterial and pulmonary wedge pressures, heart rate, saphenous vein and central venous pressures, and minute ventilation. Baseline arterial and mixed venous blood samples were drawn for analysis of pH, Pao2, Paco2, Pvo2, Pvco2, and bicarbonate concentrations. Systemic and pulmonary vascular resistances, oxygen delivery and consumption, shunt fraction, and dead space ventilation were calculated using standard formulas. Abdominal insufflation using co2 to a pressure of 15 mm Hg for 180 minutes resulted in significant ( P <.05) increases in heart rate (15 to 180 minutes), minute ventilation (75 to 135 minutes), and saphenous vein pressure (15 to 180 minutes), and decreases in pH (60 to 180 minutes) and Pao2 (60 to 180 minutes). For 30 minutes after desufflation, there was a significant decrease in Pao2, and increases in cardiac output, o2 delivery, and heart rate, compared with baseline. There was a significant increase in shunt fraction and decrease in pH at 15 minutes after desufflation only. The changes were within physiologically acceptable limits in these healthy, ventilated dogs.  相似文献   

10.
The purpose of this study was to compare the cardiovascular effects of halothane when used alone at increasing doses (1.2, 1.45 and 1.7 minimum alveolar concentration, MAC) to those produced with equipotent doses of halothane after potentiation of the anesthetic effect with acepromazine (ACP) sedation (45% reduction of halothane MAC). Six healthy mature dogs were used on three occasions. The treatments were halothane and intramuscular (IM) saline (1.0 mL), halothane and ACP (0.04 mg/kg IM), or halothane and ACP (0.2 mg/kg IM). Anesthesia was induced and maintained with halothane in oxygen and the dogs were prepared for the collection of arterial and mixed venous blood and for the determination of heart rate, systolic, diastolic and mean arterial pressure, mean pulmonary arterial pressure (PAP), central venous pressure and cardiac output. Following animal preparation the saline or ACP was administered and positive pressure ventilation instituted. Twenty-five minutes later the dogs were exposed to the first of three anesthetic levels, with random assignment of the sequence of administration. At each anesthetic level, measurements were obtained at 20 and 35 min. Calculated values included cardiac index, stroke index, left ventricular work, systemic vascular resistance, arterial oxygen content, mixed venous oxygen content, oxygen delivery and oxygen consumption. Heart rate was significantly higher with halothane alone than with both halothane-ACP combinations and was significantly higher with high dose ACP compared to low dose ACP. Systolic and mean blood pressures were lowest with halothane alone and highest with 0.2 mg/kg ACP, the differences being significant for each treatment. Oxygen uptake and PAP were significantly lower in dogs treated with ACP. It was concluded that ACP does not potentiate the cardiovascular depression that accompanies halothane anesthesia when the resultant lower dose requirements of halothane are taken into consideration.  相似文献   

11.
Blood was withdrawn from 15 dogs over the course of about 1 hour until the mean arterial blood pressure was reduced to 60 mm Hg. Small aliquots of additional blood were withdrawn in order to maintain the mean arterial blood pressure near 60 mm Hg for an additional hour. Oxymorphone (0.4 mg/kg) was then administered intravenously to ten dogs, and all measurements were repeated in 5, 15, 30, and 60 minutes. Five dogs served as controls.
Heart rate, tidal volume, arterial oxygen, oxygen extraction, and pH significantly decreased after oxymorphone administration, while systemic and pulmonary arterial blood pressures, systemic vascular resistance (transiently), breathing rate, minute ventilation, physiologic dead space, venous admixture, venous oxygen, arterial and venous carbon dioxide, and bicarbonate concentration increased significantly. Cardiac output was also increased, but the change was not statistically significant. Oxymorphone was associated with significantly lower heart rate, tidal volume, arterial oxygen, and pH, and higher systemic and pulmonary arterial pressure, cardiac output, venous oxygen, and arterial and venous carbon dioxide, compared to the control group, which did not receive oxymorphone.
Oxymorphone significantly improved cardiovascular performance and tissue perfusion in these hypovolemic dogs. Oxymorphone did cause a significant increase in arterial carbon dioxide and a decrease in arterial oxygenation. Oxymorphone is an opioid agonist that may represent a reasonable alternative for the induction of anesthesia in patients who are candidates for induction hypotension.  相似文献   

12.
The cardiovascular changes associated with anesthesia induced and maintained with romifidine/ketamine versus xylazine/ ketamine were compared using 6 horses in a cross over design. Anesthesia was induced and maintained with romifidine (100 microg/kg, IV)/ketamine (2.0 mg/kg, IV) and ketamine (0.1 mg/kg/min, IV), respectively, in horses assigned to the romifidine/ ketamine group. Horses assigned to the xylazine/ketamine group had anesthesia induced and maintained with xylazine (1.0 mg/kg, IV)/ketamine (2.0 mg/kg, IV) and a combination of xylazine (0.05 mg/kg/min, IV) and ketamine (0.1 mg/kg/min, IV), respectively. Cardiopulmonary variables were measured at intervals up to 40 min after induction. All horses showed effective sedation following intravenous romifidine or xylazine and achieved recumbency after ketamine administration. There were no significant differences between groups in heart rate, arterial oxygen partial pressures, arterial carbon dioxide partial pressures, cardiac index, stroke index, oxygen delivery, oxygen utilization, systemic vascular resistance, left ventricular work, or any of the measured systemic arterial blood pressures. Cardiac index and left ventricular work fell significantly from baseline while systemic vascular resistance increased from baseline in both groups. The oxygen utilization ratio was higher in the xylazine group at 5 and 15 min after induction. In conclusion, the combination of romifidine/ketamine results in similar cardiopulmonary alterations as a xylazine/ketamine regime, and is a suitable alternative for clinical anesthesia of the horse from a cardiopulmonary viewpoint.  相似文献   

13.
OBJECTIVE: To characterize the cardiovascular effects of romifidine at doses ranging from 5 to 100 microg/kg of body weight, IV. ANIMALS: 25 clinically normal male Beagles. PROCEDURE: Romifidine was administered IV at a dose of 5, 10, 25, 50, or 100 microg/kg (n = 5/group). Heart rate, arterial pressure, central venous pressure, mean pulmonary arterial pressure, pulmonary capillary wedge pressure, body temperature, cardiac output, and PCV were measured immediately prior to and at selected times after romifidine administration. Cardiac index, stroke index, rate-pressure product, systemic and pulmonary vascular resistance indices, and left and right ventricular stroke work indices were calculated. Degree of sedation was assessed by an observer who was blinded to the dose administered. RESULTS: Romifidine induced a decrease in heart rate, pulmonary arterial pressure, rate-pressure product, cardiac index, and right ventricular stroke work index and an increase in central venous pressure, pulmonary capillary wedge pressure, and systemic vascular resistance index. In dogs given romifidine at a dose of 25, 50, or 100 microg/kg, an initial increase followed by a prolonged decrease in arterial pressure was observed. Arterial pressure immediately decreased in dogs given romifidine at a dose of 5 or 10 microg/kg. CONCLUSIONS AND CLINICAL RELEVANCE: Results suggest that IV administration of romifidine induces dose-dependent cardiovascular changes in dogs. However, the 2 lowest doses (5 and 10 microg/kg) induced less cardiovascular depression, and doses > or = 25 microg/kg induced similar cardiovascular changes, suggesting that there may be a ceiling on the cardiovascular effects of romifidine.  相似文献   

14.
The purpose of this study was to investigate the cardiopulmonary influences of sevoflurane in oxygen at two anaesthetic concentrations (1.5 and 2 MAC) during spontaneous and controlled ventilation in dogs. After premedication with fentany-droperidol (5 microg/kg and 0.25 mg/kg intramuscularly) and induction with propofol (6 mg/kg intravenously) six dogs were anaesthetized for 3 h. Three types of ventilation were compared: spontaneous ventilation (SpV), intermittent positive pressure ventilation (IPPV), and positive end expiratory pressure ventilation (PEEP, 5 cm H2O). Heart rate, haemoglobin oxygen saturation, arterial blood pressures, right atrial and pulmonary arterial pressures, pulmonary capillary wedge pressure and cardiac output were measured. End tidal CO2%, inspiratory oxygen fraction, respiration rate and tidal volume were recorded using a multi-gas analyser and a respirometer. Acid-base and blood gas analyses were performed. Cardiac index, stroke volume, stroke index, systemic and pulmonary vascular resistance, left and right ventricular stroke work index were calculated. Increasing the MAC value during sevoflurane anaesthesia with spontaneous ventilation induced a marked cardiopulmonary depression; on the other hand, heart rate increased significantly, but the increases were not clinically relevant. The influences of artificial respiration on cardiopulmonary parameters during 1.5 MAC sevoflurane anaesthesia were minimal. In contrast, PEEP ventilation during 2 MAC concentration had more pronounced negative influences, especially on right cardiac parameters. In conclusion, at 1.5 MAC, a surgical anaesthesia level, sevoflurane can be used safely in healthy dogs during spontaneous and controlled ventilation (IPPV and PEEP of 5 cm H2O).  相似文献   

15.
Dobutamine is routinely used to improve cardiovascular function in anaesthetized horses. However, dobutamine in conscious horses is insufficiently investigated. Ten research horses that were already instrumented for a preceding trial were included into the study. Cardiovascular variables were recorded and blood samples taken after instrumentation (Baseline), before starting dobutamine and after 10 min of dobutamine infusion (2 µg kg−1 min−1). A significant increase in systemic blood pressure, mean pulmonary artery pressure and right atrial pressure, and a decrease in heart rate were observed with dobutamine compared with baseline measurements. Arterial and mixed venous haemoglobin and oxygen content, as well as mixed venous partial pressure of oxygen increased. No significant changes in cardiac output, stroke volume, systemic vascular resistance, arterial partial pressure of oxygen, or oxygen consumption, delivery and extraction ratio were detected. Concluding, dobutamine increased systemic blood pressure without detectable changes in stroke volume, cardiac output or systemic vascular resistance in conscious horses.  相似文献   

16.
OBJECTIVE: To determine the hemodynamic effects of nitrous oxide in isoflurane-anesthetized cats. ANIMALS: 12 healthy adult domestic shorthair cats. PROCEDURE: Cats were anesthetized by administration of isoflurane in oxygen. After instruments were inserted, end-tidal isoflurane concentration was set at 1.25 times the individual minimum alveolar concentration, and nitrous oxide was administered in a Latin-square design at 0, 30, 50, and 70%. Each concentration was administered for 25 minutes before measurements were obtained to allow for stabilization. Heart rate; systemic and pulmonary arterial pressures; central venous pressure; pulmonary artery occlusion pressure; cardiac output; body temperature; arterial and mixed-venous pH, PCO2, PO2, and hemoglobin concentrations; PCV; and total protein and lactate concentrations were measured before and during noxious stimulation for each nitrous oxide concentration. Arterial and mixed-venous bicarbonate concentrations and oxygen saturation, cardiac index, stroke index, rate-pressure product, systemic and pulmonary vascular resistance indices, left and right ventricular stroke work indices, arterial and mixed-venous oxygen contents, oxygen delivery, oxygen consumption, oxygen extraction ratio, alveolar-to-arterial oxygen difference, and venous admixture were calculated. RESULTS: Arterial pressure, central venous pressure, pulmonary arterial pressure, rate-pressure product, systemic and pulmonary vascular resistance indices, arterial PCO2, and PCV increased during administration of 70% nitrous oxide. Arterial and mixed-venous pH, mixed-venous PO2, and alveolar-to-arterial oxygen difference decreased during administration of 70% nitrous oxide. Results before and during noxious stimulation were similar. CONCLUSIONS AND CLINICAL RELEVANCE: Administration of 70% nitrous oxide to isoflurane-anesthetized cats resulted in improved arterial pressure, which was related to a vasoconstrictive effect.  相似文献   

17.
Ether, ethanol and aqueous extracts of ginseng were serially prepared from Korean ginseng plants. Each extract in the dose of 40 mg/kg was administered intravenously to ten dogs under light halothane anesthesia while 11 cardiovascular variables were compared during the ensuing two hours. The variable included cardiac output, stroke volume, heart rate, mean arterial pressure, pulse pressure, central venous pressure, total peripheral resistance, pH, PaCO2, PaO2 and base deficit. Following the administration of the ether extract (40 mg/kg) the heart rate and the central venous pressure decreased significantly. The administration of ethanol extract (40 mg/kg) caused a significant decrease in the heart rate and the mean arterial pressure. After the administration of the aqueous extract (40 mg/kg) the cardiac output, stroke volume and central venous pressure were significantly decreased, while the total peripheral resistance was significantly increased.  相似文献   

18.
The cardiopulmonary effects of a ketamine/ acepromazine combination was studied in ten cats subjected to a 25% whole blood volume loss. Test parameters included cardiac output, measured via thermodilution, heart rate, respiratory rate, arterial blood pressure (systolic, diastolic and mean) and blood gas analysis. Values for cardiac index, stroke volume and systemic vascular resistance were calculated from these data. Posthemorrhage, cardiac output, cardiac index, stroke volume, heart rate and measurements of arterial blood pressure were significantly decreased (p less than 0.05). Following the induction of ketamine/ acepromazine anesthesia, cardiac output, cardiac index, stroke volume and heart rate showed mild but statistically insignificant declines and were above their respective posthemorrhage values 120 min into ketamine/ acepromazine anesthesia. Measurements of arterial blood pressure showed further declines from their respective posthemorrhage values that were statistically significant (p less than 0.05). Following hemorrhage, respiratory rate increased significantly (p less than 0.05), associated with a fall in arterial CO2 tension. During ketamine/ acepromazine anesthesia, respiratory rate showed a dramatic and significant decline (p less than 0.05) with arterial CO2 tension rising to prehemorrhage values. Systemic vascular resistance, arterial O2 tension and pH remained essentially unchanged throughout the experimental period.  相似文献   

19.
The load-reducing effect of nitroglycerin (NTG), a vasodilator, was studied in dogs with heart failure. The chordae tendineae of the mitral valve were transected to induce acute mitral regurgitation (MR) for hemodynamic evaluation. By such surgical treatment, preload indices such as left ventricular end-diastolic pressure (LVEDP) and left atrial pressure (LAP) increased significantly, and subsequent cardiac dysfunction and heart failure were indicated by another decrease in stroke volume, myocardial contractility, forward flow, and myocardial oxygen consumption. To dogs with artificially established acute MR, 3 micrograms/kg/min of NTG was administered intra-arterially by means of a continuous infusion, that resulted in decrease of LVEDP, LAP and central venous pressure (CVP). Thus, a reduction of preload was determined. Simultaneously, afterload indices such as aortic systolic pressure (Aos), aortic mean pressure (Aom) and total peripheral resistance (TPR) decreased remarkably. Afterload reduction depended on the amount of venous return; therefore, an extra-corporeal circulation system was applied in order to supply a constant venous return before NTG administration. This caused a significant decrease in aortic diastolic pressure (Aod), Aos, Aom, left ventricular systolic pressure (LVSP) and TPR, and an increase in myocardial contractility and cardiac output. This suggested that afterload reduction might be realized by the vasodilatory effect of NTG on the resistance vessels.  相似文献   

20.
The haemodynamic effects of intravenously (iv) administered hypertonic saline solution (7.2%, 4 ml/kg of body weight [bwt]) were investigated in normovolaemic ponies during halothane anaesthesia (dorsal recumbent position, intermittent pressure ventilation). Heart rate, arterial blood and pulmonary artery pressures, cardiac output, and arterial blood gases were measured throughout the experiment while related haemodynamic parameters (cardiac index, systemic and pulmonary vascular resistance, stroke volume, ventricular work) were calculated.
A transient decrease in arterial blood pressure occurred during the administration of the hypertonic solution. Significant increases in cardiac output and index, stroke work, and systolic arterial pressure were observed 5 min after the administration of the hypertonic infusion. A gradual normalization of the increased parameters occurred afterwards. Heart rate and arterial blood gases remained constant throughout the study. No clinical side-effects, except for an increase in urinary production in the recovery period, were seen during and after anaesthesia.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号