首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This study examines multiple quality optimization of the injection molding for Polyether Ether Ketone (PEEK). It also looks into the dimensional deviation and strength of screws that are reduced and improved for the molding quality, respectively. This study applies the Taguchi method to cut down on the number of experiments and combines grey relational analysis to determine the optimal processing parameters for multiple quality characteristics. The quality characteristics of this experiment are the screws’ outer diameter, tensile strength and twisting strength. First, one should determine the processing parameters that may affect the injection molding with the L18(21×37) orthogonal, including mold temperature, pre-plasticity amount, injection pressure, injection speed, screw speed, packing pressure, packing time and cooling time. Then, the grey relational analysis, whose response table and response graph indicate the optimum processing parameters for multiple quality characteristics, is applied to resolve this drawback. The Taguchi method only takes a single quality characteristic into consideration. Finally, a processing parameter prediction system is established by using the back-propagation neural network. The percentage errors all fall within 2%, between the predicted values and the target values. This reveals that the prediction system established in this study produces excellent results.  相似文献   

2.
In this study, polyester and polypropylene staple fibers were selected as the raw material, and then processed through roller-carder, cross-lapper and needle-punching machine to produce needle-punched non-woven fabrics. First, the experiment was planned using the Taguchi method to select processing parameters that affect the quality of the needle-punched non-woven fabric to act as the control factors for this experiment. The quality characteristics were the longitudinal and transverse tensile strength of the non-woven fabric as well as longitudinal and transverse tear strength. The L18 (21×37) orthogonal array was selected for the experiment as it offered an improvement on the traditional method that wastes a lot of time, effort and cost. By using the analysis of variance (ANOVA) technique at the same time, the effect of significant factors on the production process of needle-punched non-woven fabrics could be determined. Finally, the processing parameters were set as the input parameters of a back-propagation neural network (BPNN). The BPNN consists of an input layer, a hidden layer and an output layer where the longitudinal/transverse tensile and tear strength of the non-woven fabric were set as the output parameters. This was used to construct a quality prediction system for needle-punched non-woven fabrics. The experimental results indicated that the prediction system implemented in this study provided accurate predictions.  相似文献   

3.
In the field of yarn spinning engineering, the importance of the processing parameters taken depends directly on the quality characteristics of the yarn. This study aimed to find the optimal processing parameters for an open-end rotor spinning frame at work to identify its multiple quality characteristics for yarn. In this study, Bamboo charcoal and cotton 70 %/polyester 30 % (CVC) blended fibers were adopted as the materials, and the open-end rotor spinning frame was used to spin the yarn. In order to identify optimal conditions of an open-end rotor spinning frame, the Taguchi experimental method was applied to design open-end rotor spinning experiments, and the L9 orthogonal array was chosen in accordance with nine sets of experiments and contained four control factors and three levels. Furthermore, a response surface methodology (RSM) was used to obtain the models of significant processing parameters for the strength, unevenness, I.P.I, and hairiness. Based on experiments designed to obtain an open-end rotor spun yarn Ne 30, the strength, unevenness, imperfection indicator/km (I.P.I) and hairiness were then chosen as the quality characteristics. In addition, grey relational analysis integrated the optimal processing parameter of multiple quality characteristics, and a confirmation experiment was performed. In conclusion, the optimal processing parameters under steady spinning conditions were a rotor speed of 88000 rpm, a feed speed of 0.392 m/min, and a winding speed of 39.466 m/min.  相似文献   

4.
In the first stage, polyethylene terephthalate (PET) fibers and Kevlar fibers are combined at a blending ratio of 80/ 20 wt% in order to form PET/Kevlar nonwoven fabrics. Two pieces of PET/Kevlar nonwoven fabrics that enclose a carbonfiber (CF) interlayer are then needle punched in order to form PET/Kevlar/CF (PKC) composites. In the second stage, the sandwiches compose PKC composites as the top and the bottom layers, as well as an interlayer that is composed of a spacer fabric and polyurethane (PU) foam. PU foams have different densities of 200, 210, 220, 230, and 240 kg/m3. These resulting nonwoven fabric/spacer fabric/PU foam sandwiches are then tested using a drop-weight impact test, a compression test, a bursting strength test, a sound absorption test, and a horizontal burning test. The test results indicate that the optimal properties of sandwiches occur with their corresponding PU foam density as follows: an optimal residual stress (240 kg/m3), an optimal compressive strength (240 kg/m3), and an optimal bursting strength (220 kg/m3). In addition, the sandwiches reach the HF1 level according to the horizontal burning test results. They also have an average electromagnetic interference shielding effectiveness of -48 dB, as well as a sound absorption coefficient of 0.5 in a frequency between 1500-2500 Hz, which indicates a satisfactory sound absorption effect. The nonwoven fabric/spacer fabric/PU foam sandwiches proposed in this study are mechanically strong, sound absorbent, and fire retardant, and can be used in construction material and electromagnetic shielding composites.  相似文献   

5.
This study focused on the fabrication and acoustic property evaluation of sandwich cover-ply-reinforced highresilience thermal-bonding nonwoven hybrid composites. P-phenyleneterephthalamides and bicomponent high-resilience bonding polyester intra-ply hybrid nonwoven fabrics were compounded with glass plain fabric to produce the high strength sandwich structural cover ply by means of needle punching and thermal bonding to reinforce the whole composites and dissipate energy when being impacted. Then, the acoustic absorption properties of the homogenous intra-ply hybrid meshwork layer were investigated before and after being reinforced with the aforementioned cover ply. The influencing factors, including areal density, fiber blending ratio, needle punching depth, and air cavity thickness between back plate of the impedance tube and composites, were comparatively investigated. Results revealed that hybrid composites exhibited exceedingly high acoustic absorption properties. Acoustic absorption coefficients were promoted with increases in areal densities and fiber blending ratio of 3D crimped hollow polyester, particularly at low-mid frequency range. In addition, needle punching depths and back air cavity thicknesses considerably affected the average absorption coefficients. The meshwork center layer reinforced with sandwich structural cover-ply perform high resilience properties.  相似文献   

6.
Fabric porosity is the result of fabric constructional parameters combination and used technology of nonwoven production. The effects of fabric porosity structure, as well as the content of hydrophilic viscose and hydrophobic polyester fibres in the web mixture, on the vertical wicking rate by nonwoven fabrics have been explored in this research. Fibrous webs with a different content of viscose and polyester fibres, with the web volume mass range of 0.019-0.035 g/cm3 were utilized during this study. The samples were produced using a dry-laid method of web forming and two methods of web bonding, e.g. needle punching and calendar bonding. Results show that higher volume porosity gives higher vertical wicking rate by all groups of tested samples regarding the content of used hydrophilic/hydrophobic fibres and that fluid flow is faster in samples with larger pores. The higher content of viscose fibres improve the vertical wicking rate, but better rising height can be achieved at samples made from 100 % of coarser polyester fibres. A prediction model of vertical wicking rate of viscose/ polyester nonwovens was developed on the basis of the fundamental constructional parameters of nonwoven fabrics (fibre fineness, type of raw material, and web density) and a non-deterministic modelling method, e.g. genetic algorithms, which can serve as a useful tool for fabric engineers by developing a nonwoven fabric in order to fit desired wicking rate.  相似文献   

7.
In this study, nonwoven fabrics were developed for the replacement of polyurethane foams in car interiors, in particular, cushioning materials for car seats. Polyethylene terephthalate (PET) hollow fibers and two types of bicomponent binder fibers were used to manufacture automotive nonwovens by carding processes and then post-bonding processes, such as needle punching or thermal bonding. The physical and mechanical properties of nonwovens were thoroughly investigated with respect to the effects of binder fibers and bonding processes. The tensile strength and elongation for nonwovens were found to be significantly improved by combined needle punching and thermal bonding processes. In addition, the nonwoven cushioning materials were characterized in terms of hardness, support factors, and compressive and ball rebound resilience. The nonwovens showed greater hardness than the flexible PU foam. However, support factors over 2.8 for the nonwovens indicated improved seating comfort, along with better seating characteristics of greater resilience and air permeability in comparison with the PU foam.  相似文献   

8.
This study proposes a combination for reciprocal reinforcement between warp knitting spacer fabrics and PU foams. PET/Kevlar nonwoven fabrics are made with an 80:20 ratio and an incorporation of various needle-punching speed of 100, 150, 200, 250, and 300 needles/min. Ascribing to having an optimal bursting strength, sound absorption coefficient, and limited oxygen index (LOI), the PET/Kevlar nonwoven fabric that is made by 200 needles/min are selected to be combined with a glass-fiber fabric by applying needle punch in order to form a surface layer. Next, warp knitting spacer fabrics and the nonwoven fabrics are laminated, followed by being combined with polyurethane (PU) foam that are featured with different densities of 200, 210, 220, 230, and 240 kg/m3 in order to form spacer fabric/PU foam composites with multiple functions. The composites are then tested with a drop-weight test, a compression test, a bursting strength test, a sound absorption test, and a horizontal burning test. The test results indicate that all spacer fabric/PU foam composites reach a horizontal burning level of HF1, and their sound absorption coefficients at 2500-4000 Hz also suggest a satisfactory sound absorption. In particular, the optimal residual stress and compressive strength are present when the composites contain 210 kg/m3 PU foam. Similarly, the optimal bursting strength of the composites occurs when they are composed of 230 kg/m3 PU foam. The spacer fabric/PU foam composites are proven to have high strengths, sound absorption, and fire retardant, and thus have promising potentials for use as construction materials and light weight composite planks.  相似文献   

9.
This paper is intended to determine the optimal processing parameters applied to the dyeing procedure so that the desired color strength of a raw fabric can be achieved. Moreover, the processing parameters are also used for constructing a system to predict the fabric quality. The fabric selected is the nylon and Lycra blend. The dyestuff used for dyeing is acid dyestuff and the dyeing method is one-bath-two-section. The Taguchi quality method is applied for parameter design. The analysis of variance (ANOVA) is applied to arrange the optimal condition, significant factors and the percentage contributions. In the experiment, according to the target value, a confirmation experiment is conducted to evaluate the reliability. Furthermore, the genetic algorithm (GA) is combined with the back propagation neural network (BPNN) in order to establish the forecasting system for searching the best connecting weights of BPNN. It can be shown that this combination not only enhances the efficiency of the learning algorithm, but also decreases the dependency of the initial condition during the network training. Most of all, the robustness of the learning algorithm will be increased and the quality characteristic of fabric will be precisely predicted.  相似文献   

10.
In this study, fire-retardant polyester fibers (FRPFs), which are hollow and have a 3D-crimp shape, were processed using nonwoven manufacturing technology to create fire-retardant fibrous material. The content of low-T m fibers (10, 20, 30, 40, 50 %) and number of layers of loose nonwoven sheet (1, 2, 3, 4, 5 layers) were changed to determine tensile strength and elongation, thermal conductivity, air permeability and the limiting oxygen index. The purposes of this study are to develop a manufacturing procedure for convenient installation of thermal insulation material and improve the application of fiber materials in thermal insulation. Experimental results demonstrate that, due to the loose nonwoven sheet combined with needle punching nonwoven sheets, tensile strength FRPFs increased to 100 %. The contents of the polyester low-melting-temperature fiber and the number of combined layers affected thermal conductivity results. In the test for the limit oxygen index, the optimal sample was manufactured using 7.78 dtex FRPFs, 10 % PET low-melting-temperature fiber and 5 layers of loose nonwoven sheet. The limit oxygen index is 35.  相似文献   

11.
Novel, high-performance silver coated polyamide, Ag/PA66, nonwoven fabrics with a density of only 0.04 g/cm3 have been developed using staple fibres of 19 (3.3 dtex) and 27 (6.7 dtex) μm diameter. The obtained nonwoven fabrics with an Ag loading of 12-18 wt% exhibited excellent weight-normalised specific electromagnetic shielding effectiveness of over 1200 dB/(g/cm3) in the 0.015-3 GHz range, which is among the highest reported till date. Moreover, the applied microwave was verified to be absorbed rather than being reflected back making the fabrics highly suitable for shielding applications. It was also observed that nonwoven fabrics made from finer 3.3 dtex Ag/PA66 fibres have higher reflection and lower absorption values than their thicker (6.7 dtex) counterparts. Additionally, we have also explored the use of these nonwoven Ag/PA66 fabrics for personal thermal management via Joule heating with samples showing rapid heating response (up to 0.2 °C/sec) and long-term stability measured over 10,000 seconds. The needle-punched Ag/PA66 nonwoven fabrics, in spite of their low density of the order of 0.04 g/cm2, exhibited high EMSE values of nearly 69-80 dB, leading to excellent weightnormalised specific electromagnetic shielding effectiveness of over 1200 dB/(g/cm3) in the 0.015-3 GHz range. The production of Ag/PA66 needle punched nonwoven fabrics thus offers a facile route to develop multifunctional fabrics for EMI shielding as well as personal thermal management applications.  相似文献   

12.
The present study deals with the effect of parallel-laid and cross-laid web of polypropylene needle punched nonwoven fabrics on compression properties (initial thickness, percentage compression, percentage thickness loss and percentage compression resilience) under wet condition. These compression properties of polypropylene needle-punched nonwoven under wet condition have also been compared with its dry condition. With the increase in needling density the initial thickness, percentage compression and percentage thickness loss of the fabrics under wet condition decrease to higher extent compared to its dry condition both in case of parallel-laid and cross-laid fabrics. Cross-laid nonwoven fabric presents lower value of initial thickness percentage compression and thickness loss compared to parallel-laid fabric which is very prominent at high needling density (350 punches/cm2). The percentage compression resilience shows increasing trend with the increase in needling density both under dry and wet conditions of parallel-laid web. It also follows similar trend in case of cross-laid nonwoven under wet condition. The optimum needling density for compression resilience of cross-laid nonwoven fabric under dry condition is 250 punches/cm2.  相似文献   

13.
A detailed study on the heat and moisture vapour transmission characteristics of different types of single and multi-layered fabric ensemble by using sweating guarded hot plate (SGHP) has been reported in the present paper. A comparison has been made on thermal and moisture vapour transmission properties of five different insulative fabrics, namely, knitted-raised fabric, needle punched nonwoven, through air bonded nonwoven, spunbonded-through air bonded sandwich nonwoven and warp knitted spacer fabric and three different coated fabrics, namely, plain woven rubber coated, plain woven polyester polymer coated and plain woven polytetrafluoroethylene (PTFE) coated fabric, used for thermal insulation purpose. ANOVA has been conducted to analyse the significance of type of insulative and coated fabrics used. Sandwich nonwoven fabric which has higher thickness and porosity shows higher thermal resistance followed by through air bonded fabric, raised fabric, needle punched fabric and spacer fabric. Spacer fabric shows lesser evaporative resistance due to its lesser thickness and larger aperture size, which increases the diffusion of moisture vapour. Needle punched fabric shows slightly higher evaporative resistance than spacer fabric, followed by raised fabric, through air bonded fabric and sandwich nonwoven fabric. Permeability index of different multilayered fabric ensembles are also compared.  相似文献   

14.
In this study, the effect of processing parameters such as temperature, pressure, time of compaction process and areal density on high-velocity impact behaviour of high performance polyethylene fibre cross-ply composites were investigated by Taguchi method. Samples were made through high temperature and pressure compacting process and morphology and interlayer adhesive of samples were investigated by scanning electron microscopy “SEM and T-peel test, repectively. Taguchi method was used to plan a minimum number of experiments. Statistical analysis, analysis of variance (ANOVA), was also employed to determine the relationship between experimental conditions and yield levels. ANOVA was applied to calculate sum of square, variance, ratio of factors variance to error variance and contribution percentage of each factors on response. A hemispherical tip type projectile was used for high velocity impact tests and the depth of trauma as the response factor was measured after impacting test. Results showed that when the temperature, pressure, and time of compacting process were 125 °C, 3 MPa, and 30 min for the composite sample with 7.4 kg/m2 areal density, the trauma depth was decreased to its lowest value.  相似文献   

15.
The surface morphology of the CO2 laser treated grey cotton fabrics was studied which showed a characteristics sponge-like structure on cotton fibres after treating with CO2 laser irradiation. The laser treatment parameters ranging from 100 to 150 pixel time and 40 to 70 dot per inch (dpi) were irradiated on the grey cotton fabrics directly and the degree of physical modifications, such as surface morphology, wettability and fabric strength, were changed accordingly with various laser treatment parameters. The surface morphology, wettability and tensile strength of cotton fibre treating with laser were evaluated using different instruments, such as Scanning Electron Microscope (SEM), contact angle meter and tensile strength machine. In spite of creating a sponge-like structure on fibre surface after treating with laser, the wettability of the samples was highly improved but the tensile strength was decreased.  相似文献   

16.
A series of some novel hybrid materials prepared via a sol-gel process have been synthesized from methyltrimethoxysilane and titanium n-butoxide with heterocyclic thiazole azo dyes. Silica/titania/thiazole azo dyes hybrid materials were synthesized via a sol-gel process with a precursor system. Alternatively, the heterocyclic thiazole azo dyes were catalytically processed by means of hydrolysis-condensation reactions with appropriate amounts of a mixture of vinyltriethoxysilane, methyltrimethoxysilane, and titanium n-butoxide at a fixed molar ratio. The structure of these hybrid silica/titania/thiazole dye materials was characterized by Fourier transform infrared (FT-IR) analysis. The surface morphology of processed PET/PA6 nonwoven fabrics was evaluated by scanning electron microscopy (SEM). SEM images showed uniform dyeing, thereby confirming the reaction of the hybrid materials with the PET/PA6 nonwoven fabrics. The water contact angle, washing fastness, color evenness, air permeability, and weatherability characteristics of the as-prepared dyed PET/PA6 nonwoven fabrics were subsequently evaluated. Results revealed improved weatherability and good water repellency. Further, it was also revealed that dyeing and finishing could be achieved in a single bath, which is advantageous to reduce processing costs.  相似文献   

17.
Calcium alginate nonwoven fabrics were gelation-modified by two-stage with aqueous HCl solution and then ethanolic NaOH solution. The structure and crystallinity properties of the samples were characterized by FT-IR, SEM, and XRD. The preparation conditions and modification mechanism were investigated. The results indicated that the crystal structure of calcium alginate fibers was destroyed; the crystallinity and calcium ion content decreased after HCl treatment. This resulted from the formation of ester bonds among the hydrolytic molecules after NaOH treatment. The best gel performance was obtained at the HCl concentration of 0.05-0.1 wt% with the NaOH concentration in ethanol of 2–4 mol/l. The liquid absorption of nonwoven alginate fabrics increased by 145 %. The water capability increased by 2673 % after modification, while the thickness, mass per unit area, permeability, and tensile strength of nonwoven alginate fabrics changed little.  相似文献   

18.
The thermal characteristics of hollow polyester fibers were compared with solid polyester fibers in order to study their processing behavior and performance characteristics. The effects of different processing and structural properties including fiber diameter, bulk density of layer, and surface pressure on layers of needle-punched nonwoven fabrics with hollow fibers on thermal resistance properties were also investigated. The results show that hollow fibers have a higher thermal resistance in comparison with solid ones. This is a consequence of air trapping inside the fibers, higher bulkiness, and higher surface area of hollow fibers. Furthermore, thermal resistance of microfibers is better than those of macrofibers in both hollow and solid fibers. The thermal resistance of nonwoven subjected to this study, have an inverted-U-shaped pattern versus the bulk density of the fabric. The results also showed that thermal resistance of needle-punched nonwoven fabrics can be affected by the range of heater temperature during the test, however considerably can be affected by fabric thickness as a main structural property of nonwoven fabrics.  相似文献   

19.
In this research, results of an experimental interaction effect of operating parameters on tensile strength carbon fibers from a commercial PAN-based precursor are investigated. Ten parameters at two and four levels (L32=21×49) were investigated: stabilization temperature at first stage (STFIS), stabilization duration time at first stage (SDTFIS), stabilization temperature at second stage (STSS), stabilization duration time at second stage (SDTSS), stabilization temperature at third stage (STTS), stabilization duration time at third stage (SDTTS), stabilization temperature at fourth stage (STFOS), stabilization duration time at fourth stage (SDTFOS), carbonization temperature (CT), and carbonization duration time (CDT). In this study, Taguchi method was used initially to plan a minimum number of experiments. Statistical analysis, analysis of variance (ANOVA), was also employed to determine the relationship between experimental conditions and yield levels. ANOVA was applied to calculate sum of square, variance, ratio of factor variance to error variance and contribution percentage of each factor on response. The results show that increasing all of parameters improves tensile strength performance. The optimum levels of influential factors, determined for tensile strength are STFIS 200 °C, SDTFIS 120 min, STSS 225 °C, SDTSS 120 min, STTS 240 °C, SDTTS 120 min, STFOS 260 °C, SDTFOS 60 min, CT 1400 °C and CDT 10 min. The results showed that CT and ODTFIS are the most and the less effective factors on response, respectively.  相似文献   

20.
An efficient, simple and facile process, i.e., suspension grafting polymerization combined with melt-blown technique, was employed to synthesize Polypropylene-g-(acrylic acid-co-acrylamide) nonwoven fabrics [PP-g-(AA-co-AM) nonwovens]. In this study, the grafting mechanism and the effect of synthesis parameters on grafting percentage (GP) were investigated. The as-synthesized products were characterized by melt flow rate (MFR), Fourier transform infrared spectroscopy (FTIR), scanning electron microscope (SEM), water contact angle (WCA) and thermalgravimetric analysis (TGA). Besides, the uptake properties of metal ions (i.e., Ba2+, Cu2+, Ni2+, Mg2+, Al3+, Ca2+) on the PP-g-(AA-co-AM) nonwovens in dynamic condition were studied. Results of FTIR showed that AA and AM were successfully grafted onto the PP surface. The decrease in WCAs of the grafted nonwovens with the increasing GP indicated that (AA-co-AM) side chains existed as the hydrophilic component. TGA results revealed that no significant change in thermal stability was found in grafted PP samples. The synthesis experiments showed that the highest GP was obtained at grafting time 3 h, water 3 ml/g, xylene 15 wt%, benzoyl peroxide 0.5 wt%, AA, AM 30 wt% and AA: AM 1:1, with a GP of 16.7 %, and a grafting efficiency of 67 %. However, MFR measurement and SEM image demonstrated that PP-g-(AA-co-AM) nonwovens with the highest GP showed almost no mechanical strength existed between filaments resulting in the occurrence of deformation and contraction of nonwovens, and breaking up into small pieces. Comprehensively, the optimal GP was 8.7 %, and the corresponding PP-g-(AA-co-AM) nonwovens exhibited higher metal ions uptake capacity than pristine PP nonwovens in the dynamic adsorption process.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号