首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
在农田蒸散量日变化规律的基础上,导出了一个由瞬时遥感蒸散量估算农田蒸散日总量的计算模式。并用吴忠春小麦和民勤棉花的田间试验资料对导出的公式进行了验证。结果表明,利用真太阳时9:00~15:00之间一日一次的瞬时遥感蒸散量由该模式可以较地的估算农田蒸散日总 量。  相似文献   

2.
研究区域气候变化及干旱监测,需要准确估算陆面蒸散发。利用兰州大学半干旱气候与环境监测站SACOL的观测资料,以CLM模式模拟的蒸散发量和MODIS观测的归一化植被指数(NDVI)为基础,构建了一种"模拟—校正"的新方法,用于估算黄土高原半干旱区草地下垫面的蒸散发。结果表明:CLM较好地模拟了蒸散发的变化趋势,但模拟值较观测值存在较大的偏差。干旱条件下CLM模拟的蒸散发相对误差与NDVI成正比,随NDVI的增大而增大;湿润条件下,相对误差与NDVI之间满足二次曲线变化规律。经过新方法校正CLM模拟的蒸散发以后,估算的蒸散发与观测值间的偏差显著降低,平均偏差由9.71 W/m~2减小到2.77 W/m~2,均方根偏差由34.16 W/m~2减小到8.58 W/m~2,相关系数由0.67增加到0.94。"模拟—校正"法由于考虑了植被的作用改进了黄土高原半干旱区蒸散发的估算效果。  相似文献   

3.
王文  王晓刚  黄对  雍斌 《农业工程学报》2013,29(12):101-109
提出了以Priestley-Taylor方程为基础,综合利用地面气象观测数据与卫星遥感观测数据的陆面蒸散量估算方法。其基本思路是:基于地表能量平衡原理,利用遥感观测与地面气象观测数据,计算给定气温条件下全植被覆盖与祼土地面在极湿、极干状况下的地表温度,构建每个像元的地表温度(Ts)与植被指数(VI)的理论梯形空间,进而根据该象元Ts-VI坐标点在该梯形中的位置,计算其Priestley-Taylor系数,并利用Priestley-Taylor方程估算像元的蒸散比。利用美国一个半干旱地区的地面观测数据进行了精度验证,结果表明该方法具有较理想的精度,蒸散量估算的平均绝对误差约为35.5%。  相似文献   

4.
基于遥感的泾河流域日蒸散量估算   总被引:2,自引:0,他引:2  
蒸散发是陆地水分和能量循环过程中的重要环节。利用遥感数据与传统蒸散发模型相结合的方法,对泾河流域2006年3—10月日实际蒸散量进行动态模拟,并利用LAS站实测数据对模拟结果进行了验证。结果表明:1)基于遥感的P-T方法估算地表实际蒸散发可获得较好的效果。2)泾河流域蒸散发空间上,总体趋势为"南高北低;东西两侧山区高,中部平原低";林地蒸散量最高,其次为农田,最低的是草地。3)时间上,泾河流域蒸散发呈单峰型分布,7月、8月份的蒸散发量最高。4)月均气温、月降雨量和月均植被指数与月均蒸散发量的相关系数分别在0.8,0.5,0.7左右,表明温度、降水和植被是影响泾河流域蒸散发的关键因素。  相似文献   

5.
利用遥感反演干旱区大面积区域的蒸散量,对于该区域水资源的有效利用具有重要的指导意义.以鄂尔多斯高原皇甫川流域为研究区,利用遥感方法对1996年、2003年和2007年3期影像数据进行处理,基于地表能量平衡原理,结合同期气象资料,估算出流域日蒸散量,发现反演得到的日蒸散量分布与地表状况比较吻合,植被覆盖区日蒸散量较裸地区的日蒸散量大,植被密集的地方蒸散值较大,且明显高于植被稀疏的地区,阳坡的蒸散量明显高于阴坡,日蒸散量最大的对应于水体,最小的为裸地.运用实测数据和FAO推荐式进行了局部验证,证明该遥感方法具有一定的适用性.并对反演的3期蒸散量结果进行了对比分析,发现从1996年到2003年和2007年,8月份流域日蒸散量呈逐年递减的趋势.  相似文献   

6.
夏季黑河中游绿洲样带蒸散量遥感估算   总被引:5,自引:3,他引:2  
黑河中游绿洲集中了全流域95%的耕地,利用了全流域68%的水资源,绿洲农田蒸散是水资源的主要支出项。为了解绿洲生态系统不同景观单元的耗水规律,高效管理区域水资源,该文利用2011年6-8月的7期Landsat TM影像,结合地面气象、物候数据和土地覆盖类型,基于SEBAL-METRIC模型估算了夏季黑河中游样带尺度不同土地覆盖类型蒸散量,并利用涡度观测数据对卫星过境日模型估算的蒸散量进行验证,发现遥感估算值与实测值具有较好的一致性。结果表明:由于土地覆盖类型和灌溉的差异,黑河中游样带尺度内蒸散量空间变化较大,6-8月农田平均总蒸散量是340 mm,林地是328 mm,草地的平均值是214 mm,荒漠区只有97 mm;夏季不同土地覆盖类型蒸散量均保持在较高水平,农田日蒸散量在6月底达到最大值,荒漠日蒸散量于7月中旬达到最大值,草地6月和7月平均日蒸散值较8月大,林地蒸散量月际变化较小。另外,荒漠与绿洲土壤类型差异较大,在荒漠区与绿洲区分别选取"热点"可有效提高模型估算精度。研究对于干旱半干旱区域水资源利用与管理有参考价值。  相似文献   

7.
基于STME模型和MODIS数据的滹滏平原实际蒸散量遥感估算   总被引:1,自引:0,他引:1  
滹滏平原光、热及土壤资源优越,是华北平原重要的粮食生产基地,灌溉是该区农业获得稳产高产的重要保障,持续抽取地下水和无节制利用地表水已经引起了严重的水资源危机,合理高效利用有限水资源进行农业生产势在必行。本文利用单源梯形遥感蒸散发模型(a single-source trapezoid model for evapotranspiration,STME)和中等分辨率成像光谱仪MODIS(2011—2012年共115期)地表温度和反射率产品估算区域地表土壤缺水状况及实际蒸散量,并利用中国科学院栾城农业生态系统试验站(以下简称"栾城站")和赵县梨园涡度相关系统地表水热通量的观测值对STME模型估算结果进行验证。结果表明该模型可以很好地估算区域蒸散量,误差在可接受范围内。赵县梨园净辐射Rn的观测平均值为4.10 mm,估算平均值为4.69 mm,均方根差RMSD为0.80 mm;赵县梨园蒸散量观测平均值为2.86 mm,估算平均值为3.01 mm,均方根差RMSD为0.95 mm;栾城站蒸散量的观测平均值为2.67 mm,估算平均值为2.44 mm,均方根差RMSD为0.87 mm。将STME模型应用到滹滏平原估算日蒸散量,明确了区域尺度蒸散发的时空变化特征:10月份果园生态系统蒸散量多于农田生态系统;11月份区域蒸散量整体小于1 mm;第2年春季小麦返青、拔节期,农田生态系统蒸散量多于果园生态系统蒸散量;5月份处于植被生长旺盛期,农田和果园生态系统的蒸散量相差不大;6月份小麦收获,玉米播种,农田生态系统蒸散量少于果园生态系统;7月份整个区域蒸散量达到最大,蒸散量不仅与植被长势相关,而且与土壤湿度相关;8、9月份随着植被的成熟和收获,区域蒸散量整体变小。不同时期区域水分亏缺指数不同,可根据其指导区域灌溉量。STME模型继承了基于数理计算确定梯形顶点的方法和水分亏缺指数,使得计算过程得以简化且物理机制明确。  相似文献   

8.
遥感蒸散模式   总被引:1,自引:0,他引:1  
在已发表的应用遥感植被温度(Tc)的蒸散模式中发现了一个重要错误。Tc一直被错误解释为由气温廓线外延所得到的动量汇高度上的温度,但根据定义,Tc 应是在热量源(汇)高度上的温度。这个错误会导致对蒸散量估算的偏差。本研究根据植物小气候学原理提出了一个理论蒸散模式。这一模式揭示了 Tc 的物理含意并能应用更多的小气侯信息,所以更为可靠,并具有更广泛的用途.  相似文献   

9.
基于静止气象卫星的河北平原实际蒸散量遥感估算   总被引:1,自引:0,他引:1  
本文提出利用中国第1 颗可操作性静止气象卫星风云2 号C 星(FY-2C)数据结合中等分辨率航天成像光谱仪MODIS 产品估算河北灌溉农田实际蒸散量(ET)的方法, 其中FY-2C 的第1、2 波段用于反演区域地表温度, 再结合16 d MODIS 合成的植被指数产品(MOD13), 得到地表温度与植被指数的三角空间分布图(Ts-NDVI)。通过Ts-NDVI 空间分布的关系, 利用改良三角算法得到区域的蒸发比(EF)。最后结合MODIS 地表反射率产品MCD43 估算得到的日净辐射量, 根据能量平衡计算得到该地区的日实际蒸散量。模型结果与地表Lysimeter 观测数据比较, 显示该模型估算得到的蒸发比和日蒸散量结果较为合理, 误差在可接受范围。此外, FY-2C 用于估算地表ET, 其时间分辨率具有较强的优势, 从而为获得多幅无云蒸散图提供了有利条件。  相似文献   

10.
基于多源遥感数据的三江平原日蒸散量估算   总被引:1,自引:0,他引:1  
采用FAO Penman-Monteith(P-M)模型,结合多源遥感数据,实现空间尺度上的扩展,对三江平原生长季(5-9月)不同气象条件和不同下垫面条件下的日实际蒸散量进行了估算,并利用波文比观测数据对模拟结果进行了验证.结果表明:(1)观测站日实际蒸散发的模拟值与实测值较为一致,R2达到0.824,RMSE为0.493,研究所采用的基于遥感驱动的PM模型适用于三江平原日蒸散发的估算.(2)生长季内,三江平原的月蒸散发量呈单峰性分布,7月达到峰值;蒸散发量的空间分布与植被盖度和水分供给状况密切相关.(3)净辐射和气温是影响三江平原实际蒸散发的两个主要因子,其次为比湿和风速,此外,降水可以明显增加实际蒸散量,是影响区域蒸散发的关键因素.  相似文献   

11.
于红博  杨劼  包铁军 《水土保持通报》2008,28(1):102-105,114
利用GIS软件对黑河金盆水库下游周至县的一些基础资料进行处理,利用内插法,生成洪水淹没区实体地形图.利用损失率计算模型对淹没区内损失状况进行了预评估.结果认为,金盆水库遭受10 000 a-遇的洪水重现期发生漫顶溃坝时,洪灾所造成的直接经济损失为50.355亿元,间接经济损失为9.0639亿元.通过对水库溃坝洪水淹没损失的计算分析,可以让防洪决策人员及水库管理人员对水库洪水可能产生的后果做到心中有数,平时认真做好科学合理的水量调度,防止灾害发生.  相似文献   

12.
植物蒸散量主要受能量、土壤含水量和植物生物学特性影响。在多年野外试验基础上,运用数理统计方法建立了估算阿拉尔灌区农田白杨防护林2003—2007年4—10月蒸散量的经验模型。分析结果表明,白杨农田防护林蒸散量与水面蒸发量的比与根系层土壤含水率的关系服从Logistic曲线。该模式仅需常规气象与土壤湿度资料,计算简便,具有一定的应用价值。  相似文献   

13.
基于MODIS产品和SEBAL模型的三江平原日蒸散量估算   总被引:4,自引:0,他引:4  
在SEBAL模型的基础上,集成MODIS产品和气象数据进行了三江平原的日蒸散量估算,然后以2005年6月22日的蒸散量估算结果为例,在ArcGIS空间分析模块的支持下对不同土地覆盖类型的日蒸散量进行统计分析。结果表明:遥感估算的蒸散量与利用涡度相关系统实测的蒸散量的相对误差较小且相关性较好,平均相对误差为11.2%;不同土地利用类型的日蒸散量间差别显著。水体和林地的蒸散量较大,平均蒸散量分别为8.2mm和6.5mm;湿地和水田次之,平均分别为5.2mm和4.8mm;旱田的蒸散量最低,平均仅为3.7mm,基本符合蒸散规律。  相似文献   

14.
基于遥感技术的陆面蒸散研究进展   总被引:3,自引:2,他引:1  
遥感技术的发展为大面积的陆面水分蒸散估算提供了一种新的手段。本文首先分析了目前常用的几种陆面蒸散方法的理论基础;在此基础上介绍了各自的模型算法,并阐述了各种模型算法的特点及其优劣势;分析了目前遥感蒸散研究所面临的问题和发展趋势。  相似文献   

15.
滴灌夏玉米土壤水分与蒸散量SIMDualKc模型估算   总被引:2,自引:1,他引:1  
为研究西北半干旱地区作物蒸腾和土壤蒸发规律,以及土壤蒸发量占蒸散量的比例(简称蒸发占比),开展2 a夏玉米滴灌控水试验,设置正常灌水(W1)、适度水分亏缺(W2)和中度水分亏缺(W3)3个灌水水平.采用W2实测土壤水分数据对SIMDualKc模型进行参数率定,并采用W1和W3实测土壤水分数据对模型进行验证;进一步基于SIMDualKc模型对不同水分供应的土壤水分胁迫系数、土壤蒸发量、植株蒸腾和蒸散量进行定量模拟分析.结果表明,SIMDualKc模型可以较好地模拟西北半干旱区滴灌夏玉米不同水分供应条件下的土壤水分动态变化过程,实测值与模型预测值有较好的一致性(R2>0.88,RMSE<5%);夏玉米生长期,模型能较好地估算不同水分供应的土壤水分胁迫系数、土壤蒸发量和植株蒸腾.土壤蒸发主要集中在生育前期,而生育中期较低,后期略微升高.植物蒸腾主要集中在快速生长期和生长中期,整个生育期呈先增大后减小的趋势.蒸散量随着土壤蒸发和植物蒸腾的变化而变化,前期主要受土壤蒸发的影响,快速生长期、生长中期和后期主要受植物蒸腾的影响.Wl~W3处理土壤蒸发量为78.1~100.2 mm,植株蒸腾为221.8~293.3 mm,蒸散量为299.3~383.0 mm,蒸发占比为24.1%~28.7%.研究可为西北半干旱地区制定合理的夏玉米滴灌制度和灌溉决策提供理论依据.  相似文献   

16.
改进Hargreaves模型估算川中丘陵区参考作物蒸散量   总被引:3,自引:2,他引:3  
为提高Hargreaves-Samani(HS)模型参考作物蒸散量(ET0)计算精度,该文基于贝叶斯原理利用川中丘陵区1954-2002年逐日资料对其温度指数、温度系数和温度常数进行改进,并使用2003-2013年资料以Penman-Monteith(PM)模型为标准评价HS改进模型计算精度与适应性。结果表明:HS改进模型参数在川中丘陵区各区均小于联合国粮农组织推荐值,并呈现出随纬度上升而增大的趋势;与PM模型计算结果相比,HS改进模型计算的ET0相对误差在川中丘陵区北部从14.2%~60.9%降至-1.1%~33.4%、中部从40.6%~92.6%降至16.9%~61.1%、南部从31.3%~96.0%降至8.5%~64.4%、整个川中丘陵区从32.1%~82.7%降至9.5%~52.6%;相关性分析表明,HS改进模型和PM模型计算的ET0回归曲线的斜率更接近于1(北部1.16、中部1.02、南部0.99、全区1.13),决定系数均达到0.85(P0.01)以上;趋势分析表明,HS改进模型和PM模型计算的ET0变化一致,年内均呈开口向下的抛物线状,年际均呈微小上升趋势。因此,基于贝叶斯原理改进的HS模型在川中丘陵区不同区域变异性较小,适应性较强,具有较高的计算精度,可作为川中丘陵区参考作物蒸散量简化计算的推荐模型。  相似文献   

17.
根系层土壤湿度控制植被根系的水分吸收和蒸腾过程,是陆地—大气相互作用中的一个重要变量。为了获得根系层土壤湿度的时空分布,以半干旱区的老哈河流域为研究对象,利用具有物理基础的土壤水分分析关系(SMAR)模型,并结合遥感土壤湿度产品进行研究。结果表明:利用土壤物理属性、归一化植被指数(NDVI)和实际蒸散发作为自变量进行多元线性回归分析,可以建立SMAR模型参数的估算方程(p0.05,双尾t检验)。将遥感土壤湿度产品与SMAR模型结合估算区域根系层的土壤湿度具有良好效果,与基于实测数据的估算结果比较,其相关性R主要分布在0.5~0.9,平均值为0.692(p0.05,双尾t检验),平均绝对误差、平均相对误差、均方根误差和标准偏差总体均0.1。SMAR模型与遥感数据产品结合能够良好地模拟出区域尺度根系层土壤湿度的空间分布状况。该研究为更大尺度根系层土壤湿度的估算提供支撑,也能更好地运用于干旱半干旱区农业规划、干旱监测及其他水文模拟。  相似文献   

18.
构建华北地区设施茄子蒸散量估算模型,可为制定其优化灌溉制度提供理论依据。本研究设灌水定额15 mm(W1)、22.5 mm(W2)、30 mm(W3)和37.5 mm(充分灌溉, CK)4个处理,在设施茄子苗期、开花座果期和成熟采摘期土壤含水率分别达田间持水量的70%、80%和70%时进行灌溉,以保证土壤供水充足。基于修正后的Penman-Monteith方程,通过分析CK处理的作物系数与叶面积指数的关系,建立了基于气象数据与叶面积指数的蒸散量估算模型,利用W1、 W2和W3实测蒸散量对其进行验证。结果表明:修正后的Penman-Monteith方程可用于设施参考作物蒸散量的估算,W1、W2和W3蒸散量的实测值与新建模型的模拟值平均相对误差分别为17.81%、18.31%和17.97%。作物系数与叶面积指数呈显著线性关系,可通过叶面积指数确定作物系数。分析W1、W2、W3和CK处理的产量和水分利用效率(WUE)得出, W2与CK产量差异性不显著,而WUE差异性显著,较CK提高31.59%,表明W2兼顾产量和WUE。W2处理下茄子的作物系数,苗期为0.21~0.46,开花座果期为0.62~0.94,成熟采摘期为0.70~0.92。本研究认为,新建模型在估算设施茄子实际蒸散量上具有较好适用性,计算出的作物系数在节水灌溉条件下具有实际应用价值。  相似文献   

19.
地形效应下的区域蒸散遥感估算   总被引:2,自引:0,他引:2  
在地表起伏地区,由于受到坡度、坡向等的影响,地表能量通量表现出与水平地表不一样的特征,为了定量表征起伏地表条件下的蒸散格局,以位于陕甘宁交界区的华池县、庆城县、镇原县、西峰区和合水县为研究区,从能量平衡原理入手,对各能量通量进行了量化计算,并着重考虑了蒸散的能量来源即地表净辐射的地形效应;同时,针对研究区地表特征,确定了土壤热通量的计算方案和感热通量的参数化方案,如零平面位移、动量粗糙长度、热量粗糙长度、动量和热量的稳定度校正项等算法;在此基础上,计算了研究区的瞬时蒸散,计算结果表明采用的蒸散遥感估算方案  相似文献   

20.
以锡林河流域为研究区,利用遥感对合成的MODIS影像数据进行处理,结合同期气象资料估算出流域日蒸散量。结果表明,反演得到的日蒸散量分布与地表状况比较吻合,上游地区日蒸散量高于中下游地区,其中低湿地植被、草甸草原蒸散量较大,锡林河流经区域的地段形成的湿地植被日蒸散量较大,植被密集的地方如耕地蒸散值较大,明显高于植被稀疏的地区。日蒸散量分布曲线基本为正态分布,主值区间为2~7 mm/d,流域平均蒸散量为4.51 mm/d。运用FAO推荐式进行了验证,误差在允许范围之内,说明该遥感方法具有一定的适用性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号