首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
OBJECTIVE: To develop proxies calculated from basal plasma glucose and insulin concentrations that predict insulin sensitivity (SI; L.min(-1) x mU(-1)) and beta-cell responsiveness (ie, acute insulin response to glucose [AIRg]; mU/L x min(-1)) and to determine reference quintiles for these and minimal model variables. ANIMALS: 1 laminitic pony and 46 healthy horses. PROCEDURE: Basal plasma glucose (mg/dL) and insulin (mU/L) concentrations were determined from blood samples obtained between 8:00 AM and 9:00 AM. Minimal model results for 46 horses were compared by equivalence testing with proxies for screening SI and pancreatic beta-cell responsiveness in humans and with 2 new proxies for screening in horses (ie, reciprocal of the square root of insulin [RISQI] and modified insulin-to-glucose ratio [MIRG]). RESULTS: Best predictors of SI and AIRg were RISQI (r = 0.77) and MIRG (r = 0.75) as follows: SI = 7.93(RISQI) - 1.03 and AIRg = 70.1(MIRG) - 13.8, where RISQI equals plasma insulin concentration(-0.5) and MIRG equals [800 - 0.30(plasma insulin concentration 50)(2)]/(plasma glucose concentration - 30). Total predictive powers were 78% and 80% for RISQI and MIRG, respectively. Reference ranges and quintiles for a population of healthy horses were calculated nonparametrically. CONCLUSIONS AND CLINICAL RELEVANCE: Proxies for screening SI and pancreatic beta-cell responsiveness in horses from this study compared favorably with proxies used effectively for humans. Combined use of RISQI and MIRG will enable differentiation between compensated and uncompensated insulin resistance. The sample size of our study allowed for determination of sound reference range values and quintiles for healthy horses.  相似文献   

2.
Metformin may be an effective therapeutic option for insulin-resistant (I-R) horses/ponies because, in humans, it reportedly enhances insulin sensitivity (SI) of peripheral tissues without stimulating insulin secretion. To determine the effect of metformin on insulin and glucose dynamics in I-R ponies, six ponies were studied in a cross-over design by Minimal Model analysis of a frequently-sampled intravenous glucose tolerance test (FSIGT). Metformin was administered at 15 mg/kg bodyweight (BW), orally, twice-daily, for 21 days to the metformin-treated group. The control group received a placebo. A FSIGT was conducted before and after treatment. The Minimal Model of glucose and insulin dynamics rendered indices describing SI, glucose effectiveness (Sg), acute insulin response to glucose (AIRg) and the disposition index (DI). The body condition score (BCS), BW and cresty neck score (CNS) were also assessed. There was no significant change in SI, Sg, AIRg, DI, BW, BCS or CNS in response to metformin, or over time in the control group. There were no measurable benefits of metformin on SI, consistent with recent work showing that the bioavailability of metformin in horses is poor, and chronic dosing may not achieve therapeutic blood concentrations. Alternatively, metformin may only be effective in obese ponies losing weight or with hyperglycaemia.  相似文献   

3.
Both the euglycemic-hyperinsulinemic clamp (EHC) and minimal model analysis of the frequently sampled intravenous glucose tolerance test (FSIGT) have been applied for measurement of insulin sensitivity in horses. However, no published data are available on the reproducibility of these methods. Therefore, the objective of this study was to evaluate the variation and repeatability of measures of glucose dynamics and insulin sensitivity in horses derived from minimal model analysis of the FSIGT and from the EHC method. Six healthy horses underwent both the FSIGT and EHC on 2 occasions over a 4-week period, with a minimum of 5 days between tests. Coefficient of variation (CV) and intraclass correlation coefficient (ICC) were calculated for measures of glucose metabolism and insulin sensitivity derived from each test. In the EHC, insulin sensitivity, expressed as the amount of metabolized glucose (M) per unit of serum insulin (I) (M/I ratio), averaged 0.19 +/- 0.06 x 10(-4) mmol/kg/min x (pmol/L)(-1) with an average interday CV of 14.1 +/- 5.7% (range, 7-20%) and ICC of 0.74. Minimal model analysis of the FSIGT demonstrated mean insulin sensitivity (Si) of 0.49 +/- 0.17 x 10(-4)/min x (pmol/L)(-1) with an average interday CV of 23.7 +/- 11.2% (range, 9-35%) and ICC of 0.33. Mean CV and ICC for minimal model glucose effectiveness (Sg) and acute insulin response (AIRg) were, respectively, 26.4 +/- 11.2% (range 13-40%) and 0.10 and 11.7 +/- 6.5% (range 7-21%) and 0.98. Insulin sensitivity measured by the EHC has lower interday variation when compared with the minimal model estimate derived from the FSIGT.  相似文献   

4.
Reasons for performing study: Insulin resistance may be a risk factor for pasture‐associated laminitis. Diagnosis of insulin resistance could help identify individuals at increased risk of laminitis. Objective: To calculate proxy measurements of insulin sensitivity (reciprocal of the square root of insulin: RISQI and quantitative insulin sensitivity check index: QUICKI) and insulin secretory response (modified insulin‐to‐glucose ratio: MIRG) based on basal glucose and insulin concentrations in normal (NP) and previously laminitic (PLP) ponies. Methods: Proxies were calculated in 7 NP and 5 PLP from 20 separate measurements of insulin and glucose taken in spring, summer and winter when ponies were adapted to eating either pasture or hay. Proxies were RISQI: Insulin‐0.5, QUICKI: 1/(log[fasting Insulin]+ log[fasting Glucose]) and MIRG: (800?0.3×[Insulin‐50]2)/[Glucose‐30]. A modified insulin‐to‐glucose ratio for ponies (MIGRP) was investigated using: (3000?0.012 ×[Insulin‐500]2)/[Glucose‐30]. Statistical analysis used linear mixed models. Results: Diet did not significantly affect measurements, so values were pooled for further analysis. RISQI (mean ± s.d.) was lower in PLP (0.26 ± 0.15 [mu/l]‐0.5) than NP (0.29 ± 0.12 [mu/l]‐0.5; P = 0.05). QUICKI was lower in PLP (0.31 ± 0.05) than NP (0.33 ± 0.04; P = 0.047). There was no difference in MIRG between NP and PLP. MIGRP (median [interquartile range]) was greater in PLP (4.0 [7.9][muins]2/10·l·mggluc) than NP (2.6 [3.2][muins]2/10·l·mggluc; P = 0.022). In spring, NP had higher RISQI and QUICKI and lower MIGRP than PLP (P<0.001). In PLP, RISQI and QUICKI were higher in summer than spring (P<0.02) and MIGRP was lower in summer than other seasons (P<0.01). In NP, RISQI, QUICKI and MIGRP were each different between seasons (P<0.017). MIRG did not vary with season. Conclusions: RISQI, QUICKI and MIGRP, but not MIRG, differentiated between NP and PLP. None of the proxies accurately identified individual PLP. Seasonal changes in insulin sensitivity and insulin secretory response were apparent. Potential relevance: Current proxy measurements cannot determine an individual's laminitis susceptibility. MIGRP may be useful in hyperinsulinaemic animals.  相似文献   

5.
Equine pituitary pars intermedia dysfunction (PPID) is known to alter glucose/insulin metabolism. This study evaluated changes in parameters relating to glucose/insulin metabolism and determined whether there is a difference between pergolide-treated and untreated animals. We hypothesized that glucose/insulin dynamics in PPID horses receiving pergolide would be different than those in untreated horses. A total of 38 horses with diagnoses of PPID were included in the study (average age: 24 years). A total of 25 horses were untreated; 13 horses were treated with pergolide (>3 months). Parameters relating to glucose/insulin metabolism were determined in all horses, as follows: adrenocorticotropin-releasing hormone (ACTH), insulin, fructosamine, triglyceride, glucose, modified insulin-to-glucose ratio (MIRG), and reciprocal of the square root of insulin (RISQI). A combined glucose-insulin test (CGIT) was performed in 23 horses as not all owners agreed to the testing. Treated animals showed a tendency to have lower ACTH, but results were not significant. All animals had fructosamine levels exceeding reference values (mean value 314 ± 32 μmol/L; reference range: <280 μmol/L). There were no statistically significant differences between insulin, glucose, ACTH, triglycerides concentrations, RISQI/MIRG calculations, and CGIT results of pergolide-treated PPID and those of untreated horses. Five horses (13.2%) had combined hyperglycemia/hyperinsulinemia, whereas 7 horses (18.4%) displayed hyperglycemia, and 3 horses (7.9%) showed hyperinsulinemia alone. Forty percent of the horses with altered glucose/insulin metabolism were treated with pergolide. Based on RISQI and MIRG calculations, 19 animals displayed changes in glucose/insulin metabolism. Fourteen of twenty-three horses (61%) showed signs of insulin resistance in CGIT results. In conclusion, PPID horses frequently show alterations in glucose/insulin metabolism, but no significant differences were found between treated and untreated animals. Changes in insulin/glucose dynamics may not be a useful indicator of response to pergolide treatment.  相似文献   

6.
Insulin resistance is considered a risk factor in obesity, laminitis, exertional rhabdomyolysis, and osteochondrosis. The objective was to use the minimal model to estimate glucose effectiveness (Sg) and insulin sensitivity (Si) in nonobese to obese horses initially adapted to forage only, then adapted to forage plus supplements rich in starch and sugar (SS) or fiber and fat (FF). Ten Thoroughbred geldings, with BCS of 5 (nonobese), 6 (moderately obese), and 7 to 8 (obese), were adapted to pasture and hay, allocated to two groups, and fed SS or FF in a switch-back design with 8 wk of adaptation. Modified frequent-sampling i.v. glucose tolerance tests were applied after adaptation to forage, SS, and FF. For the tolerance tests, horses were kept in stalls overnight and provided hay, and venous catheters were placed the next morning. Baseline samples were collected, 0.3 g of glucose/kg of BW was given i.v., and blood was sampled at 1, 2, 3, 4, 5, 6, 7, 8, 10, 12, 14, 16, and 19 min. At 20 min, 30 mU of insulin/kg of BW was given, followed by sampling at 22, 23, 24, 25, 27, 30, 35, 40, 50, 60, 70, 80, 90, 100, 120, 150, and 180 min. Plasma was analyzed for glucose and insulin, and Si, Sg, acute insulin response to glucose, and the disposition index were calculated. Normality was tested using the Shapiro-Wilk statistic. Body condition effects were analyzed using a mixed model with repeated measures. Diet effects were analyzed using a Wilcoxon signed rank test. The Sg was higher in obese than nonobese (P = 0.003) and moderately obese (P = 0.007) horses; Si was lower in obese than nonobese (P = 0.008) horses, and acute insulin response to glucose was higher in obese than nonobese (P = 0.039) horses. Effects of diet were likely confounded by body condition, but horses had lower Si (P = 0.066) when fed SS compared with FF, especially when nonobese. In conclusion, the minimal model effectively estimated Sg, Si, acute insulin response to glucose, and disposition index in horses. Obese geldings were insulin-resistant and seemed to rely primarily on Sg for glucose disposal. Feeding a diet rich in sugar and starch decreased insulin sensitivity of horses. Maintenance of body condition and avoidance of grain-based meals rich in sugar and starch would be beneficial to decrease the risk of developing insulin resistance and associated metabolic syndromes in horses, especially for horses at risk for these syndromes.  相似文献   

7.
OBJECTIVE: To evaluate genetic and metabolic predispositions and nutritional risk factors for development of pasture-associated laminitis in ponies. DESIGN: Observational cohort study. ANIMALS: 160 ponies. PROCEDURES: A previous diagnosis of laminitis was used to differentiate 54 ponies (PL group) from 106 nonlaminitic ponies (NL group). Pedigree analysis was used to determine a mode of inheritance for ponies with a previous diagnosis of laminitis. In early March, ponies were weighed and scored for body condition and basal venous blood samples were obtained. Plasma was analyzed for glucose, insulin, triglycerides, nonesterified fatty acids, and cortisol concentrations. Basal proxies for insulin sensitivity (reciprocal of the square root of insulin [RISQI]) and insulin secretory response (modified insulin-to-glucose ratio [MIRG]) were calculated. Observations were repeated in May, when some ponies had signs of clinical laminitis. RESULTS: A previous diagnosis of laminitis was consistent with the expected inheritance of a dominant major gene or genes with reduced penetrance. A prelaminitic metabolic profile was defined on the basis of body condition, plasma triglyceride concentration, RISQI, and MIRG. Meeting > or = 3 of these criteria differentiated PL- from NL-group ponies with a total predictive power of 78%. Determination of prelaminitic metabolic syndrome in March predicted 11 of 13 cases of clinical laminitis observed in May when pasture starch concentration was high. CONCLUSIONS AND CLINICAL RELEVANCE: Prelaminitic metabolic syndrome in apparently healthy ponies is comparable to metabolic syndromes in humans and is the first such set of risk factors to be supported by data in equids. Prelaminitic metabolic syndrome identifies ponies requiring special management, such as avoiding high starch intake that exacerbates insulin resistance.  相似文献   

8.
Reasons for performing study: The use of plasma fructosamine concentration ([fructosamine]) as a marker of abnormal glucose homeostasis in laminitic horses has not been investigated. Hypothesis: Plasma fructosamine concentration may be higher amongst laminitic horses than normal horses; this might relate to underlying insulin resistance. Objectives: 1) To compare [fructosamine] between laminitic and normal horses. 2) To investigate associations between [fructosamine] at presentation in laminitic horses with a) single sample markers of insulin resistance and b) outcome. Methods: Plasma fructosamine concentration, fasting serum insulin concentration (insulin) and fasting plasma glucose concentration (glucose) were measured in 30 horses that presented with laminitis. Clinical details and follow‐up data were recorded. Plasma fructosamine concentration was also measured in 19 nonlaminitic control horses. Results: Laminitic horses had significantly higher mean [fructosamine] than normal horses (P<0.001). Thirteen of 30 laminitic horses had fasting hyperinsulinaemia, 2/30 had fasting hyperglycaemia. Statistically significant univariable correlations were identified between [fructosamine] and [glucose], [insulin] and the proxies RISQI and MIRG. Trends for association between [fructosamine] and negative outcome did not reach statistical significance. Conclusions and potential relevance: Increased mean [fructosamine] in laminitic horses may represent abnormal glycaemic control and [fructosamine] may become a clinically useful marker.  相似文献   

9.
Insulin resistance has been suggested to increase the risk of certain diseases, including osteochondrosis and laminitis. Our objective was to evaluate the effect of adaptation to high-glycemic meals on glucose-insulin regulation in healthy Thoroughbred weanlings. Twelve Thoroughbred foals were raised on pasture and supplemented twice daily with a feed high in either sugar and starch (SS; 49% nonstructural carbohydrates, 21% NDF, 3% crude fat on a DM basis) or fat and fiber (FF; 12% nonstructural carbohydrates, 44% NDF, 10% crude fat on a DM basis). As weanlings (age 199 +/- 5 d; BW 274 +/- 5 kg) the subjects underwent a modified frequently sampled i.v. glucose tolerance test. A series of 39 blood samples was collected from -60 to 360 min, with a glucose bolus of 300 mg/kg BW injected at 0 min and an insulin bolus of 1.5 mIU/kg BW at 20 min. All samples were analyzed for glucose and insulin, and basal samples also were analyzed for plasma cortisol, triglyceride, and IGF-I. The minimal model of glucose and insulin dynamics was used to determine insulin sensitivity (SI), glucose effectiveness, acute insulin response to glucose (AIRg), and disposition index (DI). Insulin sensitivity was 37% less (P = 0.007) in weanlings fed SS than in those fed FF; however, DI did not differ (P = 0.65) between diets because AIRg tended to be negatively correlated with SI (r = -0.55; P = 0.067). This finding indicates that the SI decrease was compensated by AIRg in the weanlings adapted to SS. This compensation was further demonstrated by greater insulin concentrations in SS-adapted weanlings compared with FF-adapted weanlings at 11 of 36 sample points (P < 0.055) and greater (P = 0.040) total area under the insulin curve in SS than in FF weanlings. Plasma cortisol and triglycerides did not differ between dietary groups, but IGF-I was greater (P = 0.001) in SS weanlings. Despite appearing healthy, horses adapted to high-glycemic feeds may exhibit changes in altered insulin sensitivity and compensation that increase the risk of diseases involving insulin resistance. These changes seem to be partially amenable to dietary management.  相似文献   

10.
Reasons for performing study: Obesity and insulin resistance are risk factors for laminitis in equids and supplements containing chromium and magnesium might improve insulin sensitivity. Hypothesis: A supplement containing chromium, magnesium and other nutraceuticals would alter morphometric measurements, blood variables, and insulin sensitivity in laminitic obese horses. Methods: Twelve previously laminitic obese (body condition score ≥ 7/9) horses were randomly allocated to treatment (n = 6) and control (n = 6) groups and 2 obese horses with clinical laminitis were included in the treatment group. Treated animals received 56 g supplement with 0.25 kg oats once daily for 16 weeks. The supplement contained chromium (5 mg/day as yeast), magnesium (8.8 g/day as oxide/proteinate), and other nutraceuticals. Insulin‐modified frequently sampled i.v. glucose tolerance tests were performed with hay provided at 0, 8 and 16 weeks, and insulin sensitivity was estimated by minimal model analysis. Physical measurements were collected at the same points. Horses were not exercised. Results: Hyperinsulinaemia (>30 µu/ml) was detected in 12 of 14 horses prior to treatment. Glucose and insulin data from one mare with clinical laminitis were excluded because of persistent pain. Mean ± s.d. insulin sensitivity was 0.64 ± 0.62 × 10?4 l/min/mu prior to treatment for the remaining 13 horses. Time and treatment × time effects were not significant for any of the variables examined, with the exception of resting insulin concentrations, which significantly increased over time (P = 0.018). Health status remained the same. Conclusions: The supplement containing chromium and magnesium evaluated in this study did not alter morphometric measurements, blood variables, resting insulin concentrations or insulin sensitivity in laminitic obese horses. Potential relevance: Additional research is required to determine the appropriate use of chromium and magnesium supplements in horses.  相似文献   

11.
In the horse, resting insulin concentration (INS), the glucose-to-insulin ratio (G:I), and the reciprocal of the square root of insulin (RISQI = 1/√INS) are commonly used to estimate insulin sensitivity, whereas the modified insulin-to-glucose ratio (MIRG = [800 – 0.30 × (INS -50)2]/(GLU – 30) is used to estimate pancreatic beta-cell responsiveness. Because no estimates of their within-horse variability and repeatability have been reported, the objective of this study was to evaluate the within-horse variation of these estimates. Resting blood samples were obtained from six healthy equids (three geldings, two mares; mean ± SD body weight, 525.0 ± 43.36 kg; mean age, 9.8 ± 8.2 years; and one pony gelding: 293 kg; 12 years) on three consecutive days in week 1 and again in week 2. Samples were collected at 12:00 noon, approximately 6 hours postprandially. Serum insulin and plasma glucose (GLU) concentrations were analyzed and used to calculate G:I, RISQI, and MIRG, as well as the insulin to glucose ratio (I:G). The coefficient of variation was used to determine within-horse variation, and repeatability was determined using the repeatability coefficient (RC; measurements from a single horse should differ less than the RC for 95% of the pairs). The mean coefficients of variation (CVs) for resting GLU, INS, G:I, I:G, MIRG, and RISQI were 5.5%, 33.7%, 36.0%, 31.6%, 22.3%, and 18.6%, respectively. All variables had values that differed more than the RC in at least one horse. These data suggest that care should be taken when interpreting insulin sensitivity estimates from a single blood sample.  相似文献   

12.
ObjecTIVE: To determine the effects of dexamethasone treatment on selected components of insulin signaling and glucose metabolism in skeletal muscle obtained from horses before and after administration of a euglycemic-hyperinsulinemic clamp (EHC). ANIMALS: 6 adult Standardbreds. PROCEDURES: In a balanced crossover study, horses received either dexamethasone (0.08 mg/kg, IV, q 48 h) or an equivalent volume of saline (0.9% NaCl) solution, IV, for 21 days. A 2-hour EHC was administered for measurement of insulin sensitivity 1 day after treatment. Muscle biopsy specimens obtained before and after the EHC were analyzed for glucose transporter 4, protein kinase B (PKB), glycogen synthase kinase (GSK)-3alpha/beta protein abundance and phosphorylation state (PKB Ser(473) and GSK-3alpha/beta Ser(21/9)), glycogen synthase and hexokinase enzyme activities, and muscle glycogen concentration. RESULTS: Dexamethasone treatment resulted in resting hyperinsulinemia and a significant decrease (70%) in glucose infusion rate during the EHC. In the dexamethasone group, increased hexokinase activity, abrogation of the insulin-stimulated increase in glycogen synthase fractional velocity, and decreased phosphorylation of GSK-3alpha Ser(21) and GSK-3B Ser(9) were detected, but there was no effect of dexamethasone treatment on glucose transporter 4 content and glycogen concentration or on PKB abundance and phosphorylation state. CONCLUSIONS AND CLINICAL RELEVANCE: In horses, 21 days of dexamethasone treatment resulted in substantial insulin resistance and impaired GSK-3 phosphorylation in skeletal muscle, which may have contributed to the decreased glycogen synthase activity seen after insulin stimulation.  相似文献   

13.
Reasons for performing study: Hyperinsulinaemia is known to induce laminitis experimentally in healthy ponies with no history of the condition. Horses are more insulin sensitive than ponies and whether prolonged hyperinsulinaemia and euglycaemia would have a similar laminitogenic effect requires study. Objectives: To determine if laminitis results when the prolonged euglycaemic hyperinsulinaemic clamp technique (p‐EHC) is applied to clinically normal Standardbred horses, and to monitor hoof wall temperature seeking an association between vascular activity and laminitis development. Methods: Eight young, clinically normal Standardbred horses were assigned into 4 pairs and within each pair, one was assigned randomly to either treatment (n = 4) or control (n = 4) groups. Treated horses received continuous infusions of insulin and glucose until clinical signs of laminitis developed, at which point the horses were subjected to euthanasia. Control horses received an equivalent volume of a balanced electrolyte infusion for the same period. Hoof wall surface temperature (HWST) was monitored continuously throughout the experimental period. Results: All horses in the treatment group were calculated to have normal insulin sensitivity. All treated horses, and none in the control group, developed laminitis (P = 0.01). Pronounced digital pulses were a feature of the treatment group, while insignificant digital pulses occurred in control horses. HWST was higher and less variable in treated horses once hyperinsulinaemia was established. Conclusions: Healthy Standardbred horses subjected to prolonged hyperinsulinaemia develop laminitis within 48 h, demonstrating that laminitis in horses can be triggered by insulin. Potential relevance: Insulin resistance and the associated hyperinsulinaemia place horses and ponies at risk of developing laminitis. This study demonstrates a need for prompt management of the persistent hyperinsulinaemia seen in some endocrinopathies.  相似文献   

14.
Reasons for performing study: Insulin resistance (IR) is a risk factor for pasture‐associated laminitis in equids and alimentary carbohydrate overload may trigger laminitis. Whether glucose metabolism responses to carbohydrate overload are more pronounced in insulin‐resistant horses requires further study. Hypothesis: Horses pretreated with endotoxin to alter insulin sensitivity differ significantly in their glucose and insulin responses to carbohydrate overload. Methods: Horses (n = 24) were divided into 3 groups. A lipopolysaccharide (LPS; n = 8) group that received endotoxin as an 8 h 7.5 ng/kg bwt/h i.v. continuous rate infusion, an oligofructose (OF; n = 8) group that received an infusion of saline followed by 5 g/kg bwt OF via nasogastric intubation, and a LPS/OF (n = 8) group that received LPS followed 16 h later by OF. Glucose and insulin dynamics were evaluated at ‐24 h and 48 h using the frequently sampled i.v. glucose tolerance test and minimal model analysis. Physical examinations and haematology were performed and the severity of laminitis assessed. Results: Horses receiving LPS developed leucopenia and both LPS and OF induced clinical signs consistent with systemic inflammation. Insulin sensitivity significantly decreased (P<0.001) over time, but responses did not differ significantly among groups. Time (P<0.001) and treatment × time (P = 0.038) effects were detected for the acute insulin response to glucose, with mean values significantly increasing in LPS and LPS/OF groups, but not the OF group. Five horses in the LPS/OF group developed clinical laminitis compared with 0 and 2 horses in the LPS and OF groups, respectively. Conclusions: Endotoxaemia and carbohydrate overload reduce insulin sensitivity in horses. Endotoxin pretreatment does not affect the alterations in glucose metabolism induced by carbohydrate overload. Potential relevance: Insulin sensitivity decreases after carbohydrate overload in horses, which may be relevant to the development of pasture‐associated laminitis.  相似文献   

15.
Reasons for performing study: Several conditions associated with laminitis in horses are also associated with insulin resistance, which represents the failure of glucose uptake via the insulin‐responsive glucose transport proteins in certain tissues. Glucose starvation is a possible mechanism of laminitis, but glucose uptake mechanisms in the hoof are not well understood. Objectives: To determine whether glucose uptake in equine lamellae is dependent on insulin, to characterise the glucose transport mechanism in lamellae from healthy horses and ponies, and to compare this with ponies with laminitis. Methods: Study 1 investigated the effects of insulin (300 µU/ml; acute and 24 h) and various concentrations of glucose up to 24 mmol/l, on 2‐deoxy‐D‐[2,6‐3H]glucose uptake in hoof lamellar explants in vitro. Study 2 measured the mRNA expression of GLUT1 and GLUT4 transport proteins by PCR analysis in coronary band and lamellar tissue from healthy horses and ponies, ponies with insulin‐induced laminitis, and ponies suffering from chronic laminitis as a result of equine Cushing's syndrome. Results: Glucose uptake was not affected by insulin. Furthermore, the relationship between glucose concentration and glucose uptake was consistent with an insulin‐independent glucose transport system. GLUT1 mRNA expression was strong in brain, coronary band and lamellar tissue, but was weak in skeletal muscle. Expression of GLUT4 mRNA was strong in skeletal muscle, but was either absent or barely detectable in coronary band and lamellar tissue. Conclusions: The results do not support a glucose deprivation model for laminitis, in which glucose uptake in the hoof is impaired by reduced insulin sensitivity. Hoof lamellae rely on a GLUT1‐mediated glucose transport system, and it is unlikely that GLUT4 proteins play a substantial role in this tissue. Potential relevance: Laminitis associated with insulin resistance is unlikely to be due to impaired glucose uptake and subsequent glucose deprivation in lamellae.  相似文献   

16.
Sustained dexamethasone administration to horses results in insulin resistance, which may predispose them to laminitis. A single dose of dexamethasone is commonly used as a diagnostic aid, yet the effect of a single dose of dexamethasone on glucose homeostasis in horses is not well defined. The objective of this study was to characterize the change in glucose dynamics over time in response to a single dose of dexamethasone. A combined glucose-insulin tolerance test (CGIT) was performed on 6 adult geldings before and at 2, 24, and 72 h postdexamethasone (40 microg/kg of BW, i.v.); a minimum of 1 wk of rest was allowed between treatments. Before any treatment, the CGIT resulted in a hyperglycemic phase followed by a hypoglycemic phase. Dexamethasone affected glucose dynamics in 3 ways: 1) at 2 h, dexamethasone shortened the ascending branch of the negative phase (P < 0.001) of the test, indicating moderate insulin resistance; 2) at 24 h, dexamethasone impaired glucose clearance by extending the positive phase and eliminating the negative phase while insulin was elevated before the CGIT, indicating a decreased response to insulin; and 3) at 72 h, dexamethasone caused a deeper nadir value (P < 0.001) compared with predexamethasone, indicating an increased response to insulin. It was concluded that dexamethasone decreased the response to insulin as early as 2 h and maximally at 24 h. At 72 h, dexamethasone caused an increased response to insulin, which was unexpected.  相似文献   

17.
18.
REASONS FOR PERFORMING STUDY: The mechanisms underlying the increased risk of laminitis in horses with equine Cushing's disease (ECD) are poorly understood. HYPOTHESIS: That abnormalities in glucose homeostasis, similar to those which cause microvascular dysfunction in human diabetics, contribute to development of laminitis in horses with ECD. METHODS: Thirty-one aged horses were divided into 3 groups based on clinical signs and dexamethasone suppression testing (DST). Group 1 (n = 12) had clinical ECD as evidenced by hirsutism. Group 2 (n = 10) had a positive DST but no hirsutism. Group 3 (n = 9) were controls without ECD, with a negative DST and no clinical evidence of ECD. Biochemical indices of glucose metabolism, vascular function and oxidative stress were determined in single morning blood samples. RESULTS: Group 1 had abnormalities in glucose homeostasis, including increased levels of glucose and insulin, compared to Groups 2 and 3. Groups 1 and 2 had significantly lower plasma thiol (PSH) levels and nonsignificantly lower albumin-corrected PSH levels than Group 3, consistent with oxidative stress. CONCLUSIONS AND POTENTIAL RELEVANCE: The observed abnormalities in glucose metabolism and oxidative stress could potentially contribute to development of laminitis in horses with ECD, by similar mechanisms to those that cause microvascular dysfunction in human diabetics. The absence of inter-group differences in the biochemical indices of vascular function precludes their use as preclinical diagnostic indicators of vascular dysfunction. The study also highlighted limitations in the premortem diagnosis of ECD.  相似文献   

19.
Endocrinopathic laminitis is frequently associated with hyperinsulinaemia but the role of glucose in the pathogenesis of the disease has not been fully investigated. This study aimed to determine the endogenous insulin response to a quantity of glucose equivalent to that administered during a laminitis-inducing, euglycaemic, hyperinsulinaemic clamp, over 48 h in insulin-sensitive Standardbred racehorses. In addition, the study investigated whether glucose infusion, in the absence of exogenous insulin administration, would result in the development of clinical and histopathological evidence of laminitis. Glucose (50% dextrose) was infused intravenously at a rate of 0.68 mL/kg/h for 48 h in treated horses (n=4) and control horses (n=3) received a balanced electrolyte solution (0.68 mL/kg/h). Lamellar histology was examined at the conclusion of the experiment. Horses in the treatment group were insulin sensitive (M value 0.039±0.0012 mmol/kg/min and M-to-I ratio (100×) 0.014±0.002) as determined by an approximated hyperglycaemic clamp. Treated horses developed glycosuria, hyperglycaemia (10.7±0.78 mmol/L) and hyperinsulinaemia (208±26.1 μIU/mL), whereas control horses did not. None of the horses became lame as a consequence of the experiment but all of the treated horses developed histopathological evidence of laminitis in at least one foot. Combined with earlier studies, the results showed that laminitis may be induced by either insulin alone or a combination of insulin and glucose, but that it is unlikely to be due to a glucose overload mechanism. Based on the histopathological data, the potential threshold for insulin toxicity (i.e., laminitis) in horses may be at or below a serum concentration of ~200 μIU/mL.  相似文献   

20.
OBJECTIVE: To evaluate whether the leukotriene (LT) D4 receptor antagonist L-708,738 is therapeutically beneficial in treating horses with recurrent airway obstruction (heaves). ANIMALS: 12 adult horses with heaves and healthy lung lobes from 20 slaughtered horses. PROCEDURE: Lung lobes were used for smooth muscle tension and radioligand binding studies. Horses with heaves were given a placebo for 14 days and administered L-708,738 (n = 6; 2.5 mg/kg PO, q 12 h) or dexamethasone (6; 0.04 mg/kg, IV, q 24 h) from days 14 to 28. Pulmonary function was measured weekly for 36 days, and bronchoalveolar cells were collected on days 0,14, and 29 for cytologic examination. RESULTS: Nanomolar concentrations of L-708,738 were effective at antagonizing LTD4-induced bronchoconstriction and LTD4-receptor binding in lung lobes. Mean peak and trough L708,738 plasma concentrations during the treatment period were 1.54 and 0.28 microM, respectively. On days 21 and 29, lung mechanics were significantly improved in the dexamethasone-treated horses but not in the L-708,738-treated horses. Neither dexamethasone nor L-708,738 had a significant effect on cytologic findings. CONCLUSIONS AND CLINICAL RELEVANCE: L-708,738 was bioavailable after oral administration and sustained concentrations in plasma during the dosing period that exceeded in vitro efficacy values. However, airway function did not improve, suggesting that either drug concentrations in the lungs were subtherapeutic or that cysteinyl LT may not be important mediators of airway inflammation in heaves. Results provide the first evidence of cysteinyl LT1 receptors in airways of horses.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号