首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The objective of this study was to demonstrate the efficacy of a modified-live virus (MLV) vaccine in protecting fetuses from infection with type 1 or type 2 Bovine viral diarrhea virus (BVDV) when pregnant heifers were challenged at approximately 170 d of gestation with noncytopathic field isolates. The 83 pregnant heifers had been bred naturally 4 wk after vaccination. Fetuses were collected 60 d after BVDV type 2 challenge, and newborn calves were collected before colostrum intake after BVDV type 1 challenge. Protection was determined by measuring the serum neutralizing (SN) antibody response in the fetus or calf and by virus isolation from thymus, lung, spleen, and kidney tissue samples. There was a measurable SN antibody response to BVDV in all the fetuses and calves of the control heifers, which had received a placebo vaccine. However, only 4 of 22 calves and 7 of the 28 fetuses of the MLV-vaccinated heifers demonstrated SN antibody after BVDV challenge. Type 1 BVDV was isolated from tissue samples of 5 of the 12 calves of control heifers and none of 22 calves of the MLV-vaccinated heifers challenged with type 1 BVDV. Type 2 BVDV was isolated from tissue samples of 17 of the 18 fetuses of the control heifers and 2 of the 28 fetuses of the MLV-vaccinated heifers challenged with type 2 BVDV. The results of this study demonstrate that the MLV vaccine reduces the fetal infection rate by at least 82% for BVDV type 1 and by 75% for BVDV type 2 when heifers are exposed to highly fetotrophic BVDV at 170 d of gestation.  相似文献   

2.
Objective-To determine whether administration of 2 doses of a multivalent, modified-live virus vaccine prior to breeding of heifers would provide protection against abortion and fetal infection following exposure of pregnant heifers to cattle persistently infected (PI) with bovine viral diarrhea virus (BVDV) and cattle with acute bovine herpesvirus 1 (BHV1) infection. Design-Randomized controlled clinical trial. Animals-33 crossbred beef heifers, 3 steers, 6 bulls, and 25 calves. Procedures-20 of 22 vaccinated and 10 of 11 unvaccinated heifers became pregnant and were commingled with 3 steers PI with BVDV type 1a, 1b, or 2 for 56 days beginning 102 days after the second vaccination (administered 30 days after the first vaccination). Eighty days following removal of BVDV-PI steers, heifers were commingled with 3 bulls with acute BHV1 infection for 14 days. Results-After BVDV exposure, 1 fetus (not evaluated) was aborted by a vaccinated heifer; BVDV was detected in 0 of 19 calves from vaccinated heifers and in all 4 fetuses (aborted after BHV1 exposure) and 6 calves from unvaccinated heifers. Bovine herpesvirus 1 was not detected in any fetus or calf and associated fetal membranes in either treatment group. Vaccinated heifers had longer gestation periods and calves with greater birth weights, weaning weights, average daily gains, and market value at weaning, compared with those for calves born to unvaccinated heifers. Conclusions and Clinical Relevance-Prebreeding administration of a modified-live virus vaccine to heifers resulted in fewer abortions and BVDV-PI offspring and improved growth and increased market value of weaned calves.  相似文献   

3.
Identifying reservoirs and transmission routes for bovine viral diarrhea virus (BVDV) are important in developing biosecurity programs. The aim of this study was to evaluate BVDV transmission by the hematophagous horn fly (Haematobia irritans). Flies collected from four persistently infected cattle were placed in fly cages attached to principal (n?=?4) and control (n?=?4) BVDV-naïve calves housed individually in isolation rooms. Flies were able to feed on principal calves, but a barrier prevented fly feeding from control calves. Flies were tested for BVDV by RT-PCR and virus isolation at time of collection from PI cattle and after 48 h of exposure on BVDV-naïve calves. Blood samples were collected from calves and tested for BVDV infection. Virus was isolated from fly homogenates at collection from PI animals and at removal from control and principal calves. All calves remained negative for BVDV by virus isolation and serology throughout the study. Bovine viral diarrhea virus may be detected in horn flies collected from PI cattle, but horn flies do not appear to be an important vector for BVDV transmission.  相似文献   

4.
OBJECTIVE: To evaluate the efficacy of a commercially available killed bovine viral diarrhea virus (BVDV) vaccine to protect against fetal infection in pregnant cattle continually exposed to cattle persistently infected with the BVDV. ANIMALS: 60 crossbred beef heifers and 4 cows persistently infected with BVDV. PROCEDURES: Beef heifers were allocated to 2 groups. One group was vaccinated twice (21-day interval between the initial and booster vaccinations) with a commercially available vaccine against BVDV, and the other group served as nonvaccinated control cattle. Estrus was induced, and the heifers were bred. Pregnancy was confirmed by transrectal palpation. Four cows persistently infected with BVDV were housed with 30 pregnant heifers (15 each from the vaccinated and nonvaccinated groups) from day 52 to 150 of gestation. Fetuses were then harvested by cesarean section and tested for evidence of BVDV infection. RESULTS: 1 control heifer aborted after introduction of the persistently infected cows. Bovine viral diarrhea virus was isolated from 14 of 14 fetuses obtained via cesarean section from control heifers but from only 4 of 15 fetuses obtained via cesarean section from vaccinated heifers; these proportions differed significantly. CONCLUSIONS AND CLINICAL RELEVANCE: A commercially available multivalent vaccine containing an inactivated BVDV fraction significantly reduced the risk of fetal infection with BVDV in heifers continually exposed to cattle persistently infected with BVDV. However, not all vaccinated cattle were protected, which emphasizes the need for biosecurity measures and elimination of cattle persistently infected with BVDV in addition to vaccination within a herd.  相似文献   

5.
OBJECTIVE: To evaluate the efficacy of a modified-live virus (MLV) combination vaccine containing type 1 and type 2 bovine viral diarrhea virus (BVDV) in providing fetal protection against challenge with heterologous type 1 and type 2 BVDV. DESIGN: Prospective study. ANIMALS: 55 heifers. PROCEDURE: Heifers were vaccinated with a commercial MLV combination vaccine or given a sham vaccine (sterile water) and bred 47 to 53 days later. Heifers were challenged with type 1 or type 2 BVDV on days 75 to 79 of gestation. Clinical signs of BVDV infection, presence of viremia, and WBC count were assessed for 14 days after challenge. Fetuses were collected on days 152 to 156 of gestation, and virus isolation was attempted from fetal tissues. RESULTS: Type 1 BVDV was not isolated in any fetuses from vaccinated heifers and was isolated in all fetuses from nonvaccinated heifers challenged with type 1 BVDV. Type 2 BVDV was isolated in 1 fetus from a vaccinated heifer and all fetuses from nonvaccinated heifers challenged with type 2 BVDV. CONCLUSIONS AND CLINICAL RELEVANCE: A commercial MLV combination vaccine containing type 1 and type 2 BVDV given to the dam prior to breeding protected 100% of fetuses against type 1 BVDV infection and 95% of fetuses against type 2 BVDV infection. Use of a bivalent MLV vaccine in combination with a comprehensive BVDV control program should result in decreased incidence of persistent infection in calves and therefore minimize the risk of BVDV infection in the herd.  相似文献   

6.
OBJECTIVE: To compare the efficacy of modified-live virus (MLV) vaccines containing either type 1 bovine viral diarrhea virus (BVDV) or types 1 and 2 BVDV in protecting heifers and their offspring against infection associated with heterologous noncytopathic type 2 BVDV challenge during gestation. DESIGN: Randomized controlled study. ANIMALS: 160 heifers and their offspring. PROCEDURES: After inoculation with a placebo vaccine, 1 or 2 doses of an MLV vaccine containing type 1 BVDV, or 1 dose of an MLV vaccine containing both types 1 and 2 BVDV, heifers were bred naturally and challenge exposed with a type 2 BVDV field isolate between 62 and 104 days of gestation. Pregnancies were monitored; after parturition, virus isolation and immunohistochemical analyses of ear-notch specimens were used to determine whether calves were persistently infected. Blood samples were collected at intervals from heifers for serologic evaluation and virus isolation. RESULTS: Persistent infection was detected in 18 of 19 calves from heifers in the control group and in 6 of 18 calves and 7 of 19 calves from heifers that received 1 or 2 doses of the type 1 BVDV vaccine, respectively. None of the 18 calves from heifers that received the type 1-type 2 BVDV vaccine were persistently infected. CONCLUSIONS AND CLINICAL RELEVANCE: Results suggest that the incidence of persistent BVDV infection among offspring from dams inoculated with 1 dose of the MLV vaccine containing types 1 and 2 BVDV was decreased, compared with 1 or 2 doses of the MLV vaccine containing only type 1 BVDV.  相似文献   

7.
8.
Both cytopathic and noncytopathic bovine viral diarrhea virus (BVDV) were isolated from 16 of 17 bovine spleens representing 11 herds that had experienced acute BVD and from 12 of 21 bovine spleens from 1 herd affected with chronic BVD. It was concluded that isolation of cytopathic and noncytopathic BVDV from the same spleen probably indicates that an animal with a persistent, noncytopathic BVDV infection was superinfected with a cytopathic BVDV. The prevalence (greater than 70%) of 2 viruses in the spleen of cattle with acute or chronic BVD suggested that persistent infection with noncytopathic BVDV may be an important factor in the pathogenesis of BVD.  相似文献   

9.
The prevalence of bovine viral diarrhea virus (BVDV) infections was determined in 2 groups of stocker calves with acute respiratory disease. Both studies used calves assembled after purchase from auction markets by an order buyer and transported to feedyards, where they were held for approximately 30 d. In 1 study, the calves were mixed with fresh ranch calves from a single ranch. During the studies, at day 0 and at weekly intervals, blood was collected for viral antibody testing and virus isolation from peripheral blood leukocytes (PBLs), and nasal swabs were taken for virus isolation. Samples from sick calves were also collected. Serum was tested for antibodies to bovine herpesvirus-1 (BHV-1), BVDV1a, 1b, and 2, parainfluenza 3 virus (PI3V), and bovine respiratory syncytial virus (BRSV). The lungs from the calves that died during the studies were examined histopathologically, and viral and bacterial isolation was performed on lung homogenates. BVDV was isolated from calves in both studies; the predominant biotype was noncytopathic (NCP). Differential polymerase chain reaction (PCR) and nucleic acid sequencing showed the predominant subtype to be BVDV1b in both studies. In 1999, NCP BVDV1b was detected in numerous samples over time from 1 persistently infected calf; the calf did not seroconvert to BVDV1a or BVDV2. In both studies, BVDV was isolated from the serum, PBLs, and nasal swabs of the calves, and in the 1999 study, it was isolated from lung tissue at necropsy. BVDV was demonstrated serologically and by virus isolation to be a contributing factor in respiratory disease. It was isolated more frequently from sick calves than healthy calves, by both pen and total number of calves. BVDV1a and BVDV2 seroconversions were related to sickness in selected pens and total number of calves. In the 1999 study, BVDV-infected calves were treated longer than noninfected calves (5.643 vs 4.639 d; P = 0.0902). There was a limited number of BVDV1a isolates and, with BVDV1b used in the virus neutralization test for antibodies in seroconverting calves' serum, BVDV1b titers were higher than BVDV1a titers. This study indicates that BVDV1 strains are involved in acute respiratory disease of calves with pneumonic Mannheimia haemolytica and Pasteurella multocida disease. The BVDV2 antibodies may be due to cross-reactions, as typing of the BVDV strains revealed BVDV1b or 1a but not BVDV2. The BVDV1b subtype has considerable implications, as, with 1 exception, all vaccines licensed in the United States contain BVDV1a, a strain with different antigenic properties. BVDV1b potentially could infect BVDV1a-vaccinated calves.  相似文献   

10.
Nineteen pregnant cows were experimentally infected with bovine viral diarrhoea virus (BVDV) between day 74 and 81 of pregnancy. All cows became infected and developed serum antibodies. Sixteen of the cows delivered persistently infected (PI) offspring, whereas the remaining three gave birth to calves with detectable serum antibodies and free from BVDV. The 16 cows with PI foetuses developed higher levels of antibodies in serum during pregnancy than did their three peers carrying non-PI calves. Multivariate analysis showed that the antibody levels in these two groups of cows were significantly different from day 135 of pregnancy. Foetal fluid was successfully collected from 18 of the 19 infected cows and from five uninfected control cows between 10 and 24 days before delivery by use of a percutaneous, blind puncture technique. No negative effects were observed in the cows or their offspring. BVDV was isolated and detected with an immunoperoxidase test in foetal fluid from 13 of the 16 cows carrying PI foetuses, and from 15 of the cows when a quantitative fluorescent polymerase chain reaction (PCR) technique was used. The negative sample in the PCR assay was positive for BVDV antibodies. The number of viral copies per microlitre in foetal fluids varied between 103 and 1080 in the positive samples. All samples taken from the cows carrying non-PI foetuses were negative for BVDV in both assays. In this experiment, examination of either serum or foetal fluids could identify the cows carrying a PI foetus. Examination of serum for BVDV antibodies was a reliable indicator of a PI foetus if the serum was collected during the last 2 months of pregnancy. For examination of foetal fluids, both viral and serological analyses should be performed. For viral analysis, PCR should be the test of choice. High levels of BVDV antibodies in conjunction with a negative result in the PCR may be indicative of a false-negative virus result. Further experience with the method of collection of foetal fluids is necessary for evaluation of its safety. Investigation of pregnant cows in order to discover a PI offspring before it is born could be a useful tool in control and eradication of BVDV.  相似文献   

11.
Nineteen pregnant cows were experimentally infected with bovine viral diarrhoea virus (BVDV) between day 74 and 81 of pregnancy. All cows became infected and developed serum antibodies. Sixteen of the cows delivered persistently infected (PI) offspring, whereas the remaining three gave birth to calves with detectable serum antibodies and free from BVDV. The 16 cows with PI foetuses developed higher levels of antibodies in serum during pregnancy than did their three peers carrying non‐PI calves. Multivariate analysis showed that the antibody levels in these two groups of cows were significantly different from day 135 of pregnancy. Foetal fluid was successfully collected from 18 of the 19 infected cows and from five uninfected control cows between 10 and 24 days before delivery by use of a percutaneous, blind puncture technique. No negative effects were observed in the cows or their offspring. BVDV was isolated and detected with an immunoperoxidase test in foetal fluid from 13 of the 16 cows carrying PI foetuses, and from 15 of the cows when a quantitative fluorescent polymerase chain reaction (PCR) technique was used. The negative sample in the PCR assay was positive for BVDV antibodies. The number of viral copies per microlitre in foetal fluids varied between 103 and 1080 in the positive samples. All samples taken from the cows carrying non‐PI foetuses were negative for BVDV in both assays. In this experiment, examination of either serum or foetal fluids could identify the cows carrying a PI foetus. Examination of serum for BVDV antibodies was a reliable indicator of a PI foetus if the serum was collected during the last 2 months of pregnancy. For examination of foetal fluids, both viral and serological analyses should be performed. For viral analysis, PCR should be the test of choice. High levels of BVDV antibodies in conjunction with a negative result in the PCR may be indicative of a false‐negative virus result. Further experience with the method of collection of foetal fluids is necessary for evaluation of its safety. Investigation of pregnant cows in order to discover a PI offspring before it is born could be a useful tool in control and eradication of BVDV.  相似文献   

12.
A noncytopathic bovine viral diarrhea virus (BVDV), BVDV-890, isolated from a yearling heifer that died with extensive internal hemorrhages, was compared for virulence in calves with noncytopathic BVDV-TGAN, isolated from an apparently healthy persistently infected calf. After challenge exposure with BVDV-890, nonimmune calves (n = 7) developed fever > 40 C, diarrhea, leukopenia, lymphopenia, neutropenia, and thrombocytopenia. Most calves (n = 6) died or were euthanatized by 19 days after challenge exposure. Challenge exposure with BVDV-890 did not induce disease in 2 calves that had congenital persistent infection with BVDV or in 3 calves that had neutralizing antibody titer > 4 against BVDV-890. After challenge exposure with BVDV-TGAN, nonimmune calves (n = 7) developed fever > 40 C and, rarely, diarrhea or lymphopenia. All of those calves survived challenge exposure. The average maximal titer of BVDV-890 isolated from serum was 1,000 times that of BVDV-TGAN. In calves infected with BVDV-890, the average maximal percentages of lymphocytes and platelets associated with virus were greater than those found in calves infected with BVDV-TGAN. Additional findings of epidemiologic significance were prolonged shedding of virus and delayed production of viral-neutralizing antibody in 1 calf challenge-exposed with BVDV-890. Also, after production of neutralizing antibody, mutant virus that was refractory to neutralization was isolated from calves challenge-exposed with BVDV-TGAN.  相似文献   

13.
As a result of a BVDV infection in a herd consisting of 95 adult cattle 17 cows aborted their calves within a period of 3.5 months, one third got severe diarrhoea, 3 cows died and an increased percentage of the cattle got lochiometra after calving or abortion. The disease was diagnosed by paired serological testing of cattle with diarrhoea or abortion and post mortem examination of several aborted calves. From one foetus BVDV virus was isolated and subsequently subtyped by sequencing. Of aborting cattle, the testing results were influenced by the interval between infection and abortion. These results indicate that a primary infection with BVDV subtype 1b can cause severe clinical symptoms in a dairy herd.  相似文献   

14.
Studies covering all aspects of bovine viral diarrhoea virus (BVDV) have been conducted in several countries in Europe, Asia and America. In southern Africa, more information is required about the nature of BVDV infection, the prevalence of different strains and the economic importance of the disease. The presence of BVDV in southern Africa has been known since the early 1970s through serological surveys but few reports confirming its presence by virus isolation and correlation with clinical disease are available. Specimens (n = 312) collected in 1998/99, from live and dead cattle from different farming systems, were obtained from private practitioners, feedlot consultants and abattoirs throughout the country. Specimens (n = 37) from African buffaloes (Syncerus caffer) in the Kruger National Park were also included. All specimens were processed for virus isolation in cell culture with confirmation by means of immunofluorescent antibody tests and some also by means of an antigen capture ELISA. BVDV was isolated from 15 (4.7%) cattle and were all noncytopathic biotypes. BVDV was not detected in 37 lymph nodes obtained from buffaloes in the Kruger National Park. Of the clinical signs in cattle from which virus were isolated, respiratory signs was the most frequent (10/15), followed by diarrhoea (5/15). Abortion, congenital malformations, haemorrhagic diarrhoea and poor growth were also included as criteria for selection of animals for specimen collection, but no BVD viruses were isolated from cattle manifesting these clinical signs.  相似文献   

15.
OBJECTIVE: To evaluate antiviral activity and toxicity of recombinant human interferon alfa-2a in calves persistently infected with noncytopathic type 1 bovine viral diarrhea virus (BVDV). ANIMALS: 5 Holstein heifers, 4 to 12 months of age. PROCEDURES: Calves persistently infected with noncytopathic type 1 BVDV were treated with recombinant human interferon alfa-2a every other day for 12 weeks. Viral loads were measured during the treatment period and compared with pre- and post-treatment values. Complete physical examinations were performed weekly, and calves were observed daily for signs of systemic illness. Complete blood counts and serum biochemical analyses were performed before, during, and after the treatment period. Because calves developed anemia during the treatment period, bone marrow biopsy specimens were collected. Antirecombinant human interferon alfa-2a antibody concentrations in serum samples obtained before, during, and after the treatment period were measured by use of an ELISA. RESULTS: Recombinant human interferon alfa-2a had no antiviral activity against noncytopathic type 1 BVDV in persistently infected calves. All calves developed microcytic anemia during the treatment period that persisted for up to 13 weeks after cessation of treatment. Anti-interferon antibodies were detected during the treatment period and persisted for at least 2 weeks after cessation of treatment. CONCLUSIONS AND CLINICAL RELEVANCE: Because of lack of in vivo antiviral activity against BVDV, recombinant human interferon alfa-2a has little promise as a therapeutic agent for the treatment of BVDV infection, at least in persistently infected cattle. Furthermore, treatment was associated with adverse immunologic and hematologic effects.  相似文献   

16.
Some isolates of type II bovine viral diarrhea virus (BVDV) are capable of causing severe clinical disease in cattle. Bovine viral diarrhea virus infection has been reported in pigs, but the ability of these more virulent isolates of type II BVDV to induce severe clinical disease in pigs is unknown. It was our objective to compare clinical, virologic, and pathologic findings between type I and type II BVDV infection in pigs. Noninfected control and BVDV-infected 2-month-old pigs were used. A noncytopathic type I and a noncytopathic type II BVDV isolate were chosen for evaluation in feeder age swine based upon preliminary in vitro and in vivo experiments. A dose titration study was performed using 4 groups of 4 pigs for each viral isolate. The groups were inoculated intranasally with either sham (control), 10(3), 10(5), or 10(7) TCID50 of virus. The pigs were examined daily and clinical findings were recorded. Antemortem and postmortem samples were collected for virus isolation. Neither the type I nor type II BVDV isolates resulted in clinical signs of disease in pigs. Bovine viral diarrhea virus was isolated from antemortem and postmortem samples from groups of pigs receiving the 10(5) and the 10(7) TCID50 dose of the type I BVDV isolate. In contrast, BVDV was only isolated from postmortem samples in the group of pigs receiving the 10(7) TCID50 dose of the type II BVDV isolate. Type I BVDV was able to establish infection in pigs at lower doses by intranasal instillation than type II BVDV. Infection of pigs with a type II isolate of BVDV known to cause severe disease in calves did not result in clinically apparent disease in pigs.  相似文献   

17.
Nine pregnant heifers, in early gestation (63 to 107 days), were infected intranasally or in utero with cytopathic bovine virus diarrhoea virus (BVDV) and each dam seroconverted. All nine calves developed to full term; four were stillborn, of which one had seroconverted but virus was not recovered from their tissues. One of the five liveborn calves appeared to have seroconverted in utero to an adventitious BVDV infection in late pregnancy but the remaining four were not viraemic and showed a normal secondary antibody response to BVDV infection at about six months old. Thus, in contrast to results with noncytopathic virus there was no evidence that infection in utero with cytopathic virus could result in a persistent viraemia or immunotolerance. It is suggested that cells able to support a persistent viraemia with cytopathic virus may not be developed in the young fetus.  相似文献   

18.
Bovine viral diarrhea virus (BVDV) persistently infected (PI) calves represent significant sources of infection to susceptible cattle. The objectives of this study were to determine if PI calves transmitted infection to vaccinated and unvaccinated calves, to determine if BVDV vaccine strains could be differentiated from the PI field strains by subtyping molecular techniques, and if there were different rates of recovery from peripheral blood leukocytes (PBL) versus serums for acutely infected calves. Calves PI with BVDV1b were placed in pens with nonvaccinated and vaccinated calves for 35 d. Peripheral blood leukocytes, serums, and nasal swabs were collected for viral isolation and serology. In addition, transmission of Bovine herpes virus 1 (BHV-1), Parainfluenza-3 virus (PI-3V), and Bovine respiratory syncytial virus (BRSV) was monitored during the 35 d observation period. Bovine viral diarrhea virus subtype 1b was transmitted to both vaccinated and nonvaccinated calves, including BVDV1b seronegative and seropositive calves, after exposure to PI calves. There was evidence of transmission by viral isolation from PBL, nasal swabs, or both, and seroconversions to BVDV1b. For the unvaccinated calves, 83.2% seroconverted to BVDV1b. The high level of transmission by PI calves is illustrated by seroconversion rates of nonvaccinated calves in individual pens: 70% to 100% seroconversion to the BVDV1b. Bovine viral diarrhea virus was isolated from 45 out of 202 calves in this study. These included BVDV1b in ranch and order buyer (OB) calves, plus BVDV strains identified as vaccinal strains that were in modified live virus (MLV) vaccines given to half the OB calves 3 d prior to the study. The BVDV1b isolates in exposed calves were detected between collection days 7 and 21 after exposure to PI calves. Bovine viral diarrhea virus was recovered more frequently from PBL than serum in acutely infected calves. Bovine viral diarrhea virus was also isolated from the lungs of 2 of 7 calves that were dying with pulmonary lesions. Two of the calves dying with pneumonic lesions in the study had been BVDV1b viremic prior to death. Bovine viral diarrhea virus 1b was isolated from both calves that received the killed or MLV vaccines. There were cytopathic (CP) strains isolated from MLV vaccinated calves during the same time frame as the BVDV1b isolations. These viruses were typed by polymerase chain reaction (PCR) and genetic sequencing, and most CP were confirmed as vaccinal origin. A BVDV2 NCP strain was found in only 1 OB calf, on multiple collections, and the calf seroconverted to BVDV2. This virus was not identical to the BVDV2 CP 296 vaccine strain. The use of subtyping is required to differentiate vaccinal strains from the field strains. This study detected 2 different vaccine strains, the BVDV1b in PI calves and infected contact calves, and a heterologous BVDV2 subtype brought in as an acutely infected calf. The MLV vaccination, with BVDV1a and BVDV2 components, administered 3 d prior to exposure to PI calves did not protect 100% against BVDV1b viremias or nasal shedding. There were other agents associated with the bovine respiratory disease signs and lesions in this study including Mannheimia haemolytica, Mycoplasma spp., PI-3V, BRSV, and BHV-1.  相似文献   

19.
Eight healthy cattle that were persistently infected with noncytopathic bovine viral diarrhea virus (BVDV) were inoculated with cell culture fluids that contained noncytopathic or cytopathic BVDV. A severe disease occurred after inoculation with cytopathic BVDV. The clinical signs, lesions, and immune response were consistent with those of clinical BVDV infections.  相似文献   

20.
Two outbreaks of border disease occurred on farms with sheep flocks and breeding cattle. The infection of the pregnant sheep was probably caused by transmission of virus from calves persistently infected with non-cytopathic bovine virus diarrhoea virus (BVDV) which were kept in close confinement with the ewes during mid-pregnancy. Border disease was also induced experimentally in eight lambs by exposing their dams at 38 to 78 days of gestation to a heifer persistently infected with BVDV. Both the natural and the experimental infections were characterised by typical signs such as 'hairy-shaker' lambs and high lamb mortality. The diagnosis was confirmed by virus isolations from live-born lambs, seroconversion and pathology. The study supports the assertion that cattle persistently infected with BVDV and in close contact with pregnant sheep, are an important source of strains of virus capable of causing border disease.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号