首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Summary Ten hexaploid winter triticale lines were grown for two cropping periods at three locations in western Switzerland. Averaged across the six environments, the differences between lines were statistically significant (P=0.05) for grain yield, above-ground biomass, N uptake, grain N yield, nitrogen harvest index, grain N concentration and straw N concentration. There were significant line x environment interactions for all traits. Grain yield and grain N concentration were inversely related (r=–0.74**). Diagrams in which grain yields were plotted against grain N concentration were used to identify lines with a consistently unusual combination of grain yield and grain N concentration. Despite comparable grain yields, Line 3 had a high grain N concentration, while that of Line 7 was low. Line 3 was superior to Line 7 in both N uptake and N harvest index. Averaged across environments and lines, the N harvest index was 0.73 which corresponds to N harvest indices reported for bread wheat in the same region. We considered the feasibility of developing triticale lines which would outperform the best recent ones in N uptake and partitioning. However, we doubted that this would bring about a marked increase in grain N concentration, because, in the long run, the expected genetic progress in grain yield will lead to a dilution of grain protein by grain carbohydrate increments.Abbreviations GNC grain N concentration - GNY grain N yield - GY grain yield - HI above-ground dry matter harvest index - NHI nitrogen harvest index - SNC straw N concentration - TB total above-ground biomass - TPN total plant N  相似文献   

2.
Nitrogen management for production of bread quality wheat ( Triticum aestivum L.) in eastern Canada has received little research attention. An experiment was conducted for 2 years at each of two sites in Québec to study the effect of level and timing of nitrogen (N) fertilizer application on grain protein concentration, protein content per seed, non-protein seed dry matter, grain protein yield and nitrogen harvest index (portion of plant N in the grain) of four hard red spring wheat cultivars known to have potential as bread wheats in eastern Canada. The soil types were Bearbroock clay (fine, mixed, non-acid, frigid, Humaquept) and Ste-Rosalie clay (typic, non-acid, frigid, Humaquept). The experiment was a 4 × 4 × 2 factorial. Four cultivars were used: Columbus, Katepwa, Max and Hege 155–85. In both years 0, 60, 120 and 180 kg Nha−1 were applied either all at seeding or 60 % at seeding and 40 % at heading. Grain protein concentration and grain protein yield increased consistently with increasing N fertilizer and with split N application. Nitrogen harvest index was not increased by increasing applications of N fertilizer. Protein content per seed was more critical in determining grain protein concentration than non-protein seed dry matter content. The western Canadian cultivars Columbus and Katepwa generally had greater grain protein concentration than the European cultivars Max and Hege 155–85, With reasonable N fertility the grain protein concentration of spring wheats grown in eastern Canada are sufficient for bread production.  相似文献   

3.
Summary Improvements in bread wheat productivity have been related to changes in plant morphology and function associated with a large increase in the harvest index for a more or less constant biological yield. The appearance of short genotypes possessing dwarfism genes may modify markedly the objectives of breeding as the upper limits of the harvest index are approached. The aim of the investigations presented here was to identify some contrasts between short and tall genotypes in terms of the physiological characteristics associated with grain yield, so as to orientate more efficiently the selection of genotypes, with or without dwarfism genes, for productivity. Various parameters of flag leaf functioning (photosynthesis rate, chlorophyll fluorescence index, leaf area duration) were related to the biological and economic yields and the harvest index for two groups of genotypes that were differentiated by their height. For all genotypes, the relationships between the various traits and the grain yield were difficult to ascertain. For the tall genotypes without dwarfism genes, the classical relationships between grain yield, harvest index, flag leaf area duration and net photosynthesis rate were confirmed. Moreover, the rate of chlorophyll fluorescence decrease (Rfd) during the slow Kautsky kinetics phase, which is representative of the leaf photosynthesis at low light, was found to be an excellent marker of economic yield. Chlorophyll fluorescence decrease was closely related to grain yield and also with other factors that are known to be important in its expression (harvest index, flag leaf area duration). In very short genotypes, the biological yield and directly related factors (leaf area, plant height) were the main parameters associated with economic yield, since the harvest index had approached its upper limit. The selection of short genotypes must therefore maintain the biological yield through an increase in the size of the aerial organs to counterbalance the decrease in height.  相似文献   

4.
It is necessary to clarify the nitrogen (N) demand characteristics with yield levels for wheat after rice in the middle and down reaches of the Yangtze River, which could provide theoretical basis for N fertilizer management. Based-on the multi-years and multi-sites wheat experiments in Jiangsu province, this study constructed the datasets of different yield levels derived from different varieties, N rates, densities, and sowing date experiments. N indicators including N requirement per ton grain (Nreq), dry matter accumulation (DMA), plant N accumulation (PNA), plant N concentration (PNC), straw N concentration (SNC), grain N concentration (GNC), harvest index (HI), N harvest index (NHI) and N nutrition index (NNI) were analyzed. The results showed that there were not significant differences in Nreq among the different yield levels, and the highest Nreq was middle-low yield with 27.8 kg t-1, while the lowest value was 24.8 kg t-1for low yield level. With the increase of yield levels, DMA, PNA and PNC all showed a gradually increasing trend during maturity stage, and there were significant differences among the different yield levels. There was a significant positive correlation between grain yield and PNA, the DMA and PNA increased with the increase of yield in the sowing-jointing stage, jointing-flowering stage and flowering-maturing stage, but the DMA and PNA proportion in different growth stages showed different trends. The SNC and GNC increased with the increase of yield levels. For SNC, there was no significant difference between the high yield and middle yield level, but it was significantly higher than the low-middle and low yield level. For GNC, there were significant differences among different yield levels except for the middle and low-middle yield level. The HI increased gradually with the increase of the yield levels, and its range was 0.39-0.49. The HI for low-middle and low yields were significantly lower than that of middle and high yield levels, while there were not significant differences in NHI among different yield levels. Its variation range was 0.60-0.96. The NNI gradually increased with the increase of the yield levels, and there was significant difference between different yield levels. The NNI of the high-yield level was higher, and some of the values were greater than 1 which indicating that some experiments had excessive nitrogen fertilizer supply. With the increase of the yield level, the Nreq increased first and then decreased, while the DMA, PNA, PNC, SNC, and GNC were gradual increased. The increase of SNC was higher than the GNC, therefore, the extravagant absorption of N by wheat should be avoided in field management. The variation ranges of the HI and NHI were consistent with previous studies. The higher DMA and PNA in the late growth stages were the main reasons for the high yield of wheat. The NNI could be a promising indictor in the field N management of wheat.  相似文献   

5.
Summary The response to phosphate fertilizer by modern wheat genotypes was examined in the field under natural rainfall in three seasons. Models were developed which show that grain yield was positively correlated with biological yield and harvest index. In one of the seasons, which was relatively dry, shorter statured wheats gave higher yields at each level of applied phosphate. Higher levels of phosphate tended to offset the reduction in yield associated with late heading and the importance of biological yield on grain yield. The genotypes which produced the largest number of grains m-2 produced the highest yields.Implications for plant breeding programs are discussed.  相似文献   

6.
Grain yield and yield components of winter wheat were recorded during 2-year field trials in Southern Bavaria, Germany. The impact of single ear sink size on the efficiency of grain production was studied in plants differing in single ear weight. While total grain yield showed only slight differences between N fertiliser treatments, significant variations were detected in harvest index and N harvest index. For single culms, a decrease in ear weight was related to decreasing values of harvest index and N harvest index. This correlation could not be altered by means of N fertilisation. The most efficient grain production, i.e. high value of harvest index and N harvest index, was regularly recorded in plant stands developing large single ear weights. The study confirms that with increasing sink size, the efficiency of grain production in winter wheat is improved. A N fertilisation strategy, favouring the formation of a large sink size, is described. In this respect, lower N rates in early spring and emphasis on N fertilisation during stem elongation proved to be decisive. This strategy favoured the generative growth at the expense of vegetative growth without excessively decreasing the corresponding source size.  相似文献   

7.
不同氮收获指数水稻基因型的氮代谢特征   总被引:4,自引:0,他引:4  
采用土培盆栽试验,以3个氮收获指数(NHI)有显著差异的水稻基因型4434(低NHI)、滇瑞302(中NHI)和余赤23(高NHI)为材料,研究了灌浆期叶片、穗颈和籽粒的氮代谢特点及与NHI的关系。结果表明,各基因型的籽粒产量、收获指数和籽粒氮积累量与NHI的变化一致,均以余赤231最大。花后植株氮素转运量表现为4434<滇瑞302<余赤231,基因型间差异极显著,而氮素转运率和转运氮的贡献率差异较小。成熟期水稻茎叶和籽粒的全氮含量、蛋白氮和非蛋白氮含量均表现为4434<滇瑞302<余赤231,全氮含量和蛋白氮含量存在显著差异,而非蛋白氮无显著差异;余赤231茎叶蛋白氮积累量显著低于4434和滇瑞302,而籽粒蛋白氮积累量显著升高,是高NHI水稻氮积累的主要特征。余赤231灌浆期叶片和籽粒谷氨酰胺合成酶(GS)和谷氨酸合成酶(GOGAT)活性显著高于4434和滇瑞302,有利于叶片游离氨基酸合成及外运,使得穗颈节伤流强度和游离氨基酸含量升高,为籽粒氮素积累提供了物质基础;同时,较高的籽粒GS和GOGAT活性促进了籽粒蛋白质合成,提高了NHI。逐步回归表明,灌浆期较高的穗颈伤流游离氨基酸含量是高NHI水稻氮代谢的主要生理特征,与较高的花后氮转运量和籽粒蛋白氮积累量可共同作为水稻氮素高效管理和遗传改良的可靠指标。  相似文献   

8.
小麦收获指数与主要农艺性状的相关性探析?   总被引:1,自引:0,他引:1  
小麦收获指数是指籽粒产量占地上部生物产量的百分率。研究小麦品种主要农艺性状和经济性状间与其产量的相互关系,采用相关性分析与回归方法,对影响收获指数的10个主要农艺性状及因素进行了研究分析。结果表明:供试小麦HI具有较大的改良空间;HI与穗颈长、株高、穗长、小穗数、主茎生物产量有显著负相关,与单穗质量、产量呈正相关,与生物产量没有显著相关性;主成分分析结果显示,3个主成分累积贡献率达 87.427%,表明 3 个主成分已覆盖所有性状的主要信息;通过回归分析,小麦HI与单穗籽粒产量、生物产量、千粒质量有显著回归关系。结论: 通过对10份小麦材料农艺性状的统计分析,得出如下结论。HI受单穗质量、生物产量、千粒重影响较为明显有显著回归关系,与单穗质量、产量和穗粒数有明显正效应,生物产量对其有负效应。小麦HI提高可通过选育生物产量不宜过大,而穗粒数较高、单穗重较大的小麦品种。  相似文献   

9.
Summary Two hundred genotypes of Coriandrum sativum L. exhibited genetic variation for plant height, primary and effective branches, days to flowering and maturity, umbels and umbellets per plant, grains per umbellet, thousand seed weight, straw yield and grain yield per plant and harvest index. Heritability estimates were high for days to flowering, thousand seed weight and days to maturity; moderate for plant height, straw yield, umbels per plant, umbellets per plant and number of primary branches; and low for harvest index, effective branches, grain yield per plant and grains per umbellet. Phenotypic correlations of grain yield per plant were highly significant and positive with umbellets per plant, umbels per plant, number of effective branches, straw yield per plant, number of primary branches, plant height, number of grains per umbellet and harvest index. Maximum direct contribution to grain yield per plant was made by umbellets per plant, followed by straw yield per plant, umbels per plant and grains per umbellet. Umbellets per plant made sizeable indirect effect via straw yield per plant. Straw yield per plant made sizeable indirect contribution via umbellets per plant.  相似文献   

10.
K. Takeda  K. J. Frey 《Euphytica》1985,34(1):33-41
Summary Most variation in grain yield of oats is due to variation in harvest index and vegetative growth index, but the latter traits are negatively associated. Therefore we used independent culling levels to select oat genotypes with high levels of vigor traits and a desirable level of harvest index in an attempts to maximize grain yield. Harvest index and vegetative growth index or harvest index and unit straw weight were selected at various culling levels. Intensive selection for harvest index resulted in high harvest index but no grain yield improvement, because the selected lines had poor vigor. Intensive selection for vegetative growth index or unit straw weight resulted in high biomass but low harvest index.The most effective combination of culling levels was to select 25% of the original population for harvest index and, subsequently, to select for vegetative growth index or unit straw weight at an 8% intensity in the remnant population.Journal Paper No. J-11272 of the Iowa Agric. and Home Econ. Exp. Stn., Ames, IA 50011. Project 2447. This work was supported in part by the World Food Institute, Iowa State Univ., in the form of a Senior Fellowship for the senior author.  相似文献   

11.
Summary Correlation and path coefficient analyses were conducted to find out the characters associated with grain yield and dry matter production and the ways to improve harvest index in lentil.Correlation studies revealed positive association of harvest index with grain yield but no association with plant dry matter. Grain yield and plant dry matter showed positive correlation with pod number, plant height, and number of primary and secondary branches but negative correlation with 100-seed weight. Generally, the genotypic correlations were in agreement with phenotypic correlations, though the magnitude of the values was higher in the former case. In path analysis, plant height and pod number showed the highest direct effect and, therefore, seem to be the main characters influencing grain yield and plant dry matter. Number of primary and secondary branches, on the other hand, showed negative direct effect on grain yield and plant dry matter. Use of phenotypic or genotypic correlations in path analysis resulted in similar conclusions. It is, therefore, suggested that either phenotypic or genotypic correlations may be used in path analysis with equal efficiency. Based on this study it is suggested to develop tall varieties with good pod bearing but with low number of branches.  相似文献   

12.
K. Takeda  K. J. Frey 《Euphytica》1977,26(2):309-317
Summary Improved grain yields in lines of oats from matings of Avena sativa x A. sterilis were found to be due to increased plant growth rate. Growth rates of oats were quantitatively inherited, with the minimum number of effective factor pairs segregating in the interspecific matings ranging from 3 to 9. Heritability values for this trait averaged 0.4. Growth rate was highly and positively correlated with bundle weight, straw yield, grain yield, and unit straw weight, but it was uncorrelated with heading date and harvest index. Correlations with plant height were low. Thus, it should be possible for oat breeders to combine the high growth rates from A. sterilis with any combination of agronomic traits.Journal Paper No. J-8608 of the Iowa Agriculture and Home Economics Experiment Station, Ames, Iowa 50011. Project 1752. Supported in part by a grant from the Graduate College.Hirosaki University, Hirosaki, Japan (formerly Visiting Scientist at Iowa State University).  相似文献   

13.
Crosses between vulgare wheat genotypes with different spike architecture were examined for total biomass per plant, grain mass per plant, and harvest index. The genotypes with branched spikes (turgidum type) and tetrastichon spikes were equal or superior to those with normal spikes in total biomass per plant but inferior in grain mass per plant. Consequently, they had significantly lower harvest indices. In the F1 and F2 generation, high heterosis for total biomass per plant occurred in all crosses between the genotypes with branched and normal spikes. There was heterosis for grain mass per spike in most crosses, but it was not as high as for total biomass. This investigation confirmed earlier findings that genetic changes towards the branched or the tetrastichon spike do not increase the potential for grain yield. Since, however, the crosses between the genotypes with branched and normal spikes showed high heterosis for grain mass per plant, lines with highly fertile but normal spikes may be expected in the segregating generations as a result of a genetic change in sink capacity. The genotypes with branched and tetrastichon spikes produced higher biomass per spike but lower spike index than the genotypes with normal spike. This may be an indication that the increase in vegetative area of the spike does not necessarily have a positive effect on grain mass per spike.  相似文献   

14.
甘蓝型杂交油菜收获指数与植株性状的相关分析   总被引:2,自引:0,他引:2  
[目的]为了研究收获指数与植株性状的相关关系及回归关系,[方法]通过测定649个甘蓝型杂交油菜新组合的收获指数、单株产量、株高、千粒重、角粒数、主花序角果长度、单株角果数、有效分枝位、一次分枝数、主序长度。[结果]不同甘蓝型杂交油菜新组收获指数差异较大,变幅为(0.1292-0.3358),平均为22.47%,收获指数在0.30以上的组合仅占0.31%;收获指数与单株产量、角粒数、单株角果数、一次分枝数、主序长度、株高均呈极显著正相关;回归分析表明,株高、单株角果数、主花序角果长度、千粒重、角粒数5个性状对收获指数的影响较大。利用性状间的相关性,选育长角果和主花序长的材料,来提高育成材料的角粒数和千粒重;选育植株相对较高、主花序较长、一次分枝数较多的个体,来提高育成材料的单株角果数,最终育成单株产量较高的组合(或品种)。[结论]协调产量构成三要素,提高单株产量,协调好高产与高收获指数间的关系,育成收获指数较高的组合(或品种)。  相似文献   

15.
B. Ehdaie  J. G. Waines 《Euphytica》1989,41(3):183-190
Summary Nine pure lines of bread wheat collected from landraces of southwestern Iran and one local Iranian cultivar from the same area were used to estimate genetic variation and heritability for 12 developmental and yield component characters. Path-analysis was used to partition the genetic correlations between some of the characters into direct and indirect effects. Mean values for these lines were also compared with those of five improved cultivars from Iran and California. The goal of the experiment is to breed improved landraces and/or modern cultivars for areas of low input agriculture in southern California, southwestern Iran, and regions with similar environmental and agronomic conditions.Moderate genetic variation was displayed by the number of effective heads per plant, number of grains per head, and grain weight in the landrace genotypes. The heritability estimates ranged from 43 to 97%. Expected genetic advance with selection of the highest 5%, expressed as percent of the mean, was around 20% for number of heads per plant, number of grains per head, and 1000-grain weight.Days to booting, to heading, and to anthesis were positively correlated but none of them were significantly associated with days to maturity. Plant height had a negative genetic correlation with number of grains per head, 1000-grain weight, grain yield, and harvest index. The genetic correlation between number of heads per plant and number of grains per head, 1000-grain weight, and harvest index was also significantly negative. Harvest index had a negative genetic correlation with days to booting, to maturity, plant height, number of heads per plant, and straw yield and a positive correlation with number of grains per head, 1000-grain weight, and grain yield.Days to maturity, plant height, number of heads per plant, number of grains per head, 1000-grain weight, and harvest index each had a positive direct effect on grain yield. The first two characters exhibited the highest and lowest direct effects, respectively. The positive direct effects of days to maturity, plant height, and number of heads per plant, however, were partially or completely counter-balanced by their strong negative indirect effects through number of grains per head, 1000-grain weight, and harvest index. Pathanalysis indicated that late and tall landrace genotypes tend to produce more heads per plant, but with fewer number of grains per head, smaller grains, and lower harvest index.Comparisons between the local lines and the improved cultivars revealed that, in general, the former were much taller and produced a larger number of non-effective tillers. Mean number of grains per head, grain weight, harvest index, and grain yield of local lines were smaller than those of improved cultivars.Our observations indicate that the landraces could be improved by selecting for shorter genotypes with smaller numbers of tillers per plant, but with larger numbers of grains per head and heavier grains.  相似文献   

16.
Nitrogen Partitioning in Entire Plants of Different Spring Wheat Cultivars   总被引:1,自引:0,他引:1  
The aim of this study was to investigate nitrogen partitioning in entire plants, including roots, of spring wheat in two temperature regimes during grain filling. Six cultivars, genetically different and with varying grain protein concentration, were grown in solution culture to full maturity. After anthesis, half the plants were grown in high temperature (23/17 °C, day/night) and half in low temperature (18/12 °C). Root nitrogen concentration was genetically influenced. The roots had ability to redistribute nitrogen to aboveground plant parts. At maturity the roots contained 10–20 % of the total nitrogen amount in the plants. Harvest index (HI) and harvest index for the entire plant (HItot) for cv. Heta were significantly higher at low temperature than at high. Cv. Heta had a rapid development rate from planting to maturity. Due to slow senescence at low temperature, cv. Kärn II showed lower HI and nitrogen harvest index (NHI) at low, compared with high, temperature. Cvs Kärn II and Sport showed higher nitrogen amount in the roots and shoots at low, compared with high, temperature. A negative correlation was found between NHI and NHItot vs. root weight, total shoot weight and root N amount. Because of the latter correlation, breeding for low root N concentration is suggested.  相似文献   

17.
Variation of harvest index in several wheat crosses   总被引:2,自引:0,他引:2  
G. M. Bhatt 《Euphytica》1976,25(1):41-50
Summary Harvest index was studied in F1 and F2 generations of eight wheat (Triticum aestivum L.) crosses and their reciprocals. The parental varieties involved in the crosses represented a fairly wide range of character expression for plant height, tillering potential, grain yield per plant and harvest index. Differences between reciprocal crosses were not evident for the expression of harvest index of the crosses under study. Means and degrees of dominance of F1 and F2 populations suggested partial dominance of high harvest index over low harvest index. The pattern of variation among F2 segregates was quantitative and the distribution was normal. The gene action governing the expression of harvest index was largely additive. Evidence was obtained for non-additive gene action in some crosses. There was complete absence of high parent heterosis for harvest index in the F1's but midparent heterosis was found to be present in all crosses. Estimates of heritability and genetic advance were moderate to high. Usefulness of selecting for harvest index as a measure of yield efficiency particularly in early generations is discussed.  相似文献   

18.
Summary Alternative strategies of multi-site testing of advanced lines in the northern wheat belt of New South Wales have been evaluated, using genetic parameters for large plot grain yield and hill plot harvest index estimated from dryland and irrigated trials at regional sites during 1975–1981. The average pairwise genetic correlation of large plot grain yields recorded at different sites within years was 0.45±.03, with a mean repeatability within trials of 0.56±.05. Harvest index measured in 20-grain hill plots in 1978 showe genetic correlations of 0.98±.08 with plot yield at the same site, and 0.39±0.06 with plot yield assessed at other sites in the same year.The genetic correlation between harvest index in hill plots and total biological yield in large plots at the same site was 0.84±.13, the relationship showing no evidence of curvilinearity. Selection for harvest index in hill plots is therefore expected to lead to an increase in biological yield as well as grain yield in the breeding populations studied. Quantitative genetic theory suggests that the response to selection for grain yield can be increased by approximately 40% with an initial screening using hill plot harvest index at three sites instead of one, and reallocation of resources in the first stage of large plot yield assessment to include 6–8 sites, rather than dryland and irrigated trials at a single location.  相似文献   

19.
Summary Crosses of wild barley (Hordeum vulgare ssp. spontaneum and Hordeum vulgare ssp. agriocrithon) with Hordeum vulgare ssp. vulgare were used to select high yielding grain types under dryland Mediterranean conditions. No special difficulties were faced in making the crosses, in eliminating the brittle rachis genes from the grain types or in selecting 6-rowed types in crosses between 2-rowed wild barley and 6-rowed ssp. vulgare varieties. Brittle rachis genotypes, present in the segregating populations were used in developing self-reseeding permanent pastures for dry areas. The best selections were tested in seven trials during 1989–92 and some of them outyielded their parents and also the best improved check variety by 13–22%. Indications for transgressive segregation were obtained for grain yield, straw yield, total biological yield, harvest index and volume weight. The crude protein content of some of the selections was significantly higher than that of the checks. For breeding programs aiming at large seeds, special ssp. spontaneum lines should be used as parents. High grain yield was positively correlated with high straw yield, total biological yield, earliness in heading date, high harvest index and negatively with volume weight. It was concluded that unexploited useful genes, even when not directly observed in wild barley, could be transfered easily into high yielding genotypes by breeding.  相似文献   

20.
Two field experiments were carried out with seven wheat cultivars (three of them, including a commercial hybrid, released during the last 10 years) representing different eras of plant breeding, to evaluate genetic improvement over the last century in grain yield, height, biomass, harvest index and grain yield components. Plots were fertilized and irrigated, and lodging and diseases were prevented. Main culm height was negatively correlated with the year of release of the cultivars, probably as a consequence of selection for increased lodging resistance. There was no significant association between total above-ground biomass and year of release of the cultivars. On the other hand, grain yield increased as newer cultivars were released. Results indicate that during recent years harvest index has been kept as the main attribute responsible for increases in grain yield. In general, number of grains/m2 was associated with increases in grain yield during the century. However, the newest cultivars showed an increased grain weight. In both growing seasons, cultivars released before 1980 showed a trend towards reduced grain weight, but cultivars released after 1987 had a similar number of grains per m2 with a higher grain weight than their predecessors. This was probably because the most modern cultivars have a longer grain-filling duration with a similar length of growth cycle.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号