共查询到12条相似文献,搜索用时 15 毫秒
1.
J.B. Ohm D.L. Klindworth G.A. Hareland J.D. Faris E.M. Elias S.S. Xu 《Journal of Cereal Science》2010
Triticum turgidum L. var. dicoccoides (DIC) provides a useful source of genes to improve agronomic and quality characteristics of durum wheat. Research was performed to identify DIC chromosomes that carry useful genes for quality improvement. Langdon-T. dicoccoides substitution lines consisting of 13 lines based on DIC accession PI 481521, 10 lines on PI 478742, and 2 lines on Israel A were evaluated for kernel characteristics and protein molecular weight distribution. DIC chromosomes 3A from PI 481521, and 1A and 7A from PI 478742 increased kernel hardness. Chromosome 2A from PI 481521 increased kernel weight, which resulted in increased semolina yield. Some substituted DIC chromosomes also affected grain protein concentration and protein molecular weight distribution. For example, chromosomes 2A, 5B, and 7B from PI 481521, and 6B from Israel A increased total protein concentration, which was primarily attributed to an increase of SDS soluble gliadins. Chromosome 6B from PI 478742 was unique in that it led to an increase in SDS insoluble high molecular weight polymeric proteins, which contributed to increased dough mixing strength. Results from this research indicated that chromosome 6B from PI 478742 is a potential gene source to improve dough characteristics of durum wheat by increasing insoluble high molecular weight polymeric protein concentration. 相似文献
2.
The effect of source reduction on yield and protein content of bread wheat under well-watered and mild drought stress condition in a semi-arid climate was studied. Field experiments were conducted at the Tehran University research farm during 2003–2004 and 2004–2005 growing seasons. Mild drought stress was imposed when plants were at the second node stage by repeatedly withholding watering and re-irrigating when they showed symptoms of wilting or leaf rolling. Partial defoliations (all leaf lamina other than flag leaves were removed) were imposed at booting and anthesis; complete defoliation was imposed at anthesis (defoliation treatments were applied to all plants of each plot). Drought stress caused a significant increase in the remobilization of pre-anthesis reserves to the grain. Defoliation did not significantly affect remobilization. Grain yield and 1000-grain weight was reduced slightly by drought stress, but in most cases it was not significantly reduced by defoliation. Significant changes were not observed for grain protein content between defoliated and control plots. The results suggested that grain yield of the cultivar used under the condition tested is more controlled by sink than source strength. 相似文献
3.
以野生型大豆ZYD00006(供体亲本)与黑龙江省主栽品种绥农14(轮回亲本)所构建的回交导入系(1204株)为研究材料,利用WinQTL2.5的复合区间作图法(CIM)在9个连锁群定位了16个与蛋白质含量相关的QTL(14个正效应,2个负效应);导入系群体经过严格的蛋白质含量筛选鉴定,得到10个蛋白质含量性状明显大于轮回亲本的导入系株行。利用这10个高蛋白含量株行(选择群体)结合随机对照群体,通过基于遗传搭车原理的卡方分析,检测到分布于10个连锁群上的17个与大豆蛋白质含量相关的标记位点,对蛋白质含量表现为正效应。两种方法共同检测到7个QTL。这些材料和位点将为高蛋白含量相关基因克隆及分子辅助育种提供重要的材料基础和标记信息。 相似文献
4.
Septoria tritici blotch (STB) caused by Zymoseptoria tritici (Mycosphaerella graminicola) is a major disease of wheat worldwide due to significant losses in grain yield and quality. Disease tolerance is the ability to maintain yield performance in the presence of disease symptoms. Therefore, it could be a useful tool in the management of the disease. Although it is known, that there is disease tolerance to STB in some wheat cultivars, this aspect has not been studied among Argentinean cultivars. The aims of this study were to evaluate genotypic differences in tolerance to STB among Argentinean cultivars, considering the relationship between the area under disease progress curve or the green leaf area or the non-green leaf area duration with the grain yield. In addition the effect of the disease on yield, yield components, test weight, grain protein concentration, wet and dry gluten concentration and the influence of tolerance on these traits was investigated. Field experiments were carried out with ten cultivars in a split-split-plot design during 2010 and 2011. Inoculation treatments were the main plots and cultivars, the subplots. STB significantly reduced grain yield, their components, test weight and increase grain protein and gluten concentration. Cultivar Baguette 10 showed major tolerance to STB, indicated by a consistent low regression slope between the green area duration and yield, while Klein Chaja was non-tolerant due to a high regression slope. However, many cultivars such as Buck Brasil, Buck 75 Aniversario, Klein Escorpion and Klein Flecha had considerably similar regression slopes to Baguette 10, provided good levels of tolerance. Other cultivars presented no significant differences. The correlation coefficient between tolerance and grain yield potential was not significant, suggesting that tolerant high-yielding cultivars can be obtained. No relationship was found between quality group or tolerance with the increase in protein and gluten concentration due to STB either. 相似文献
5.
Agronomic,forage quality and economic advantages of red pea (Lathyrus cicera L.) intercropping with wheat and oat under low‐input farming 下载免费PDF全文
Red pea–cereal intercropping could provide animal feed with agronomic and economic advantages. The growth rate, forage yield, quality, interspecific competition and financial outcome of intercrops of red pea (Lathyrus cicera L.) with wheat (Triticum aestivum L.) and oat (Avena sativa L.) in two different seeding ratios (60:40, 80:20) were estimated. Growth rate of species was lower in the intercrops than in monocrops, especially in red pea–oat intercrops due to the strong competitive ability of oat. Red pea–oat intercrop of 60:40 produced the highest biomass (10.83 Mg/ha) and crude protein yield (1,116 kg/ha). Land equivalent ratio (LER) values were greater for the red pea with wheat (1.13) and oat 60:40 (1.09) indicating an advantage of intercropping in terms of dry‐matter (DM) yield, while red pea:oat 60:40 ranked first for LER for nitrogen yield. Aggressivity and partial actual yield loss indicated cereals as the dominant species. The highest monetary advantage index was recorded for the red pea:wheat 60:40 and the highest intercropping advantage value was recorded for the red pea:oat 80:20. In conclusion, most intercrops of red pea with wheat and oat showed significant advantages relative to their monocrops due to better DM production, resource‐use efficiency and economics under low‐input farming. 相似文献
6.
The effect of low levels of nitrogen, phosphorus and a combination of the two on the distribution of polymeric and monomeric proteins in two high quality spring bread wheat cultivars was investigated for two consecutive seasons. Size exclusion-high performance liquid chromatography (SE-HPLC) was used to determine the quantity and relationships of monomeric and polymeric proteins, and their relationship with flour protein content (FPC) and SDS sedimentation volume (SDSS). The low nitrogen and combined low nitrogen and low phosphorus treatments had a much larger effect on the protein fractions than the low phosphorus treatment alone. The SDS-soluble large monomeric protein fraction and the percentage SDS-insoluble monomeric proteins, were significantly increased under low nitrogen and a combination of low nitrogen and low phosphorus treatments. The percentage SDS-insoluble large and total polymeric proteins was significantly reduced under low nitrogen and a combination of low nitrogen and phosphorus treatments. The SDS-soluble and -insoluble small polymeric proteins were significantly increased under both low nitrogen and a combination of low nitrogen and low phosphorus treatments. The low nitrogen treatment consistently caused the lowest FPC and SDSS values. Under low nitrogen conditions, there was a significant positive correlation between the SDS-soluble gliadins and SDSS, and FPC. 相似文献
7.
Grain protein concentration (GPC) affects wheat nutritional value and several critical parameters for bread and pasta quality. A gene designated Gpc-B1, which is not functional in common and durum wheat cultivars, was recently identified in Triticum turgidum ssp. dicoccoides. The functional allele of Gpc-B1 improves nitrogen remobilization from the straw increasing GPC, but also shortens the grain filling period resulting in reduced grain weight in some genetic backgrounds. We developed isogenic lines for the Gpc-B1 introgression in six hexaploid and two tetraploid wheat genotypes to evaluate its effects on bread-making and pasta quality. In common wheat, the functional Gpc-B1 introgression was associated with significantly higher GPC, water absorption, mixing time and loaf volume, whereas in durum wheat, the introgression resulted in significant increases in GPC, wet gluten, mixing time, and spaghetti firmness, as well as a decrease in cooking loss. On the negative side, the functional Gpc-B1 introgression was associated in some varieties with a significant reduction in grain weight, test weight, and flour yield and significant increases in ash concentration. Significant gene × environment and gene × genotype interactions for most traits stress the need for evaluating the effect of this introgression in particular genotypes and environments. 相似文献
8.
Nimesha Fernando Joe Panozzo Michael Tausz Robert M. Norton Glenn J. Fitzgerald Samuel Myers Marc E. Nicolas Saman Seneweera 《Journal of Cereal Science》2014
In order to investigate the intra-specific variation of wheat grain quality response to elevated atmospheric CO2 concentration (e[CO2]), eight wheat (Triticum aestivum L.)cultivars were grown at two CO2 concentrations ([CO2]) (current atmospheric, 389 CO2 μmol mol−1vs. e[CO2], FACE (Free-Air CO2 Enrichment), 550 ± 10% CO2 μmol mol−1), at two water levels (rain-fed vs. irrigated) and at two times of sowing (TOS1, vs. TOS2). The TOS treatment was mainly imposed to understand whether e[CO2] could modify the effects of timing of higher grain filling temperatures on grain quality. When plants were grown at TOS1, TKW (thousand kernel weight), grain test weight, hardness index, P, Ca, Na and phytate were not significantly changed under e[CO2]. On the other hand, e[CO2] increased TKW (16%), hardness index (9%), kernel diameter (6%), test weight (2%) but decreased grain protein (10%) and grain phytate (11%) at TOS2. In regard to grain Zn, Mn and Cu concentrations and some flour rheological properties, cultivar specific responses to e[CO2] were observed at both sowing times. Observed genetic variability in response to e[CO2] in terms of grain minerals and flour rheological properties could be easily incorporated into future wheat breeding programs to enable adaptation to climate change. 相似文献
9.
The effect of additives on the quality of white lupin–wheat silage assessed by fermentation pattern and qPCR quantification of clostridia 下载免费PDF全文
W. König M. Lamminen K. Weiss T. T. Tuomivirta S. Sanz Muñoz H. Fritze K. Elo L. Puhakka A. Vanhatalo S. Jaakkola 《Grass and Forage Science》2017,72(4):757-771
The efficacy of different silage additives on different mixtures of white lupin and spring wheat was investigated in four separate trials. The bicrop was harvested 96 days (trials 1 and 2) and 110 days (trials 3 and 4) after sowing. For each maturity stage, two mixtures of white lupin and spring wheat were reformed in the ratios of 1:2 and 2:1 on fresh matter (FM) basis respectively. The crops were treated with formic acid (FA), sodium nitrite–hexamine mixture (NaHe) or homofermentative lactic acid bacteria (LAB). The control silage was made without additive. Additives were not able to improve the quality of white lupin–wheat silage in all trials, compared with untreated silage. The treatment with LAB showed good results only at the first stage of crop maturity with sufficient amounts of water‐soluble carbohydrate in the pre‐ensiling crops. The FA treatment showed elevated butyric acid levels in all trials, which suggests that the FA application level used (4 L t?1 FM, 100% FA) was insufficient to decrease pH enough for preventing the growth of clostridia and butyric acid fermentation. NaHe was the only additive that was able to inhibit the activity of clostridia in all trials. 相似文献
10.
Aili Wang Liyan Gao Xiaohui Li Yanzhen Zhang Zhonghu He Xianchun Xia Yong Zhang Yueming Yan 《Journal of Cereal Science》2008,47(3):528-535
Gliadin proteins of 113 common or bread wheat (Triticum aestivum L.) cultivars and advanced lines from China and other countries, were analyzed by high performance capillary electrophoresis (HPCE) and reversed-phase high performance liquid chromatography (RP-HPLC). A major protein peak migrating at 3 min by HPCE and eluting at about 20 min by RP-HPLC was identified in the ω-gliadin region. It was present in cultivars with good pan bread-making quality, whereas most cultivars with poor bread-making quality lacked this protein peak. Quality testing and statistical analysis showed that this ω-gliadin peak was significantly related to dough strength, loaf volume and loaf score. It was separated into two apparent protein components by one-dimensional SDS-PAGE and two-dimensional electrophoresis (2-DE). According to their relative mobilities on the gels, the proteins were designated ω-15 and ω-16, and their accurate molecular masses (42590.5 Da for ω-15 and 41684.1 Da for ω-16) were determined by MALDI-TOF-MS. The ω-15 and ω-16 gliadins possessed the N-terminal amino acid sequences of ARELNPSNKELQQQQ and KELQSPQQQF, and therefore they belonged to 1D-encoded ω-2 type and ω-1 type gliadins, respectively. Both gliadin subunits were always present together among the 86 cultivars analyzed, suggesting that they were encoded by two closely linked genes at Gli-D1 locus. The accumulative characteristics of gliadins during grain development indicated possible additive quantitative effects of ω-15+16 on dough strength. The ω-15 and ω-16 gliadins could be used as valuable genetic markers for wheat quality improvement. 相似文献
11.
Glutamine synthetase (GS) plays a central role in plant nitrogen (N) metabolism, which improves crops grain protein content. A pot experiment in field condition was carried out to evaluate GS expression and activity, and grain protein content in high (Wanmai16) and low grain protein (Loumai24) wheat cultivars under two N levels (0.05 and 0.15 g N kg−1 soil). High nitrogen (HN) resulted in significant increases in GS1 and GS2 expression at 10 days after anthesis (DAA), and higher GS activity during the entire grain filling stage. HN also significantly increased yield, grain protein content and protein fraction (except for glutenin of Luomai24) in two wheat cultivars, which indicated that it increased grain yield and protein content by improving nitrogen metabolism. Wanmai16 showed higher grain protein content, gliadin and glutenin content, and had higher expression level of GS2 both in flag leaves and grains at early grain filling stage. However, Luomai24 had greater yield and higher expression level of GS1. The difference expression of GS2 and GS1 genes indicates they had various contributions to the accumulation of protein and starch in wheat grains, respectively. The results suggest that GS2 would be serving as a potential breeding target for improving wheat quality. 相似文献
12.
To provide food and nutrition security for a growing world population, continued improvements in the yield and nutritional quality of agricultural crops will be required. Wheat is an important source of calories, protein and micronutrients and is thus a priority to breed for improvements in these traits. The GRAIN PROTEIN CONTENT-B1 (GPC-B1) gene is a positive regulator of nutrient translocation which increases protein, iron and zinc concentration in the wheat grain. In the ten years since it was cloned, the impacts of GPC-B1 allelic variation on quality and yield traits have been extensively analyzed in diverse genetic backgrounds in field studies spanning forty environments and seven countries. In this review, we compile data from twenty-five studies to summarize the impact of GPC-B1 allelic variation on fifty different traits. Taken together, the results demonstrate that the functional copy of the GPC-B1 gene is associated with consistent positive effects on grain protein, Fe and Zn content with only marginally negative impacts on yield. We conclude that the GPC-B1 gene has the potential to increase nutritional and end use quality in a wide range of modern cultivars and environments and discuss the possibilities for its application in wheat breeding. 相似文献