首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
ObjectiveTo investigate physiological and sedative/immobilization effects of medetomidine or dexmedetomidine combined with ketamine in free-ranging Chinese water deer (CWD).Study designProspective clinical trial.Animals10 free-ranging adult Chinese water deer (11.0 ± 2.6 kg).MethodsAnimals were darted intramuscularly with 0.08 ± 0.004 mg kg?1 medetomidine and 3.2 ± 0.2 mg kg?1 ketamine (MK) or 0.04 ± 0.01 mg kg?1 dexmedetomidine and 2.9 ± 0.1 mg kg?1 ketamine (DMK) If the animal was still laterally recumbent after 60 minutes of immobilization, atipamezole was administered intravenously (MK: 0.4 ± 0.02 mg kg?1, DMK: 0.2 ± 0.03 mg kg?1). Heart rate (HR) respiratory rate (fR) and temperature were recorded at 5-minute intervals. Arterial blood was taken 15 and 45 minutes after initial injection. Statistical analysis was performed using Student’s t-test or anova. p < 0.05 was considered significant.ResultsAnimals became recumbent rapidly in both groups. Most had involuntary ear twitches, but there was no response to external stimuli. There were no statistical differences in mean HR (MK: 75 ± 14 beats minute?1; DMK: 85 ± 21 beats minute?1), fR (MK: 51 ± 35 breaths minute?1; DMK; 36 ± 9 breaths minute?1), temperature (MK: 38.1 ± 0.7 °C; DMK: 38.4 ± 0.5 °C), blood gas values (MK: PaO2 63 ± 6 mmHg, PaCO2 49.6 ± 2.6 mmHg, HCO3? 30.8 ± 4.5 mmol L?1; DMK: PaO2 77 ± 35 mmHg, PaCO2 45.9 ± 11.5 mmHg, HCO3? 31.0 ± 4.5 mmol L?1) and biochemical values between groups but temperature decreased in both groups. All animals needed antagonism of immobilization after 60 minutes. Recovery was quick and uneventful. There were no adverse effects after recovery.Conclusion and clinical relevanceBoth anaesthetic protocols provided satisfactory immobilisation. There was no clear preference for either protocol and both appear suitable for CWD.  相似文献   

2.
ObjectiveTo evaluate the anaesthetic and cardiorespiratory effects of four anaesthetic protocols in red foxes (Vulpes vulpes).Study designProspective, blinded and randomized complete block design.AnimalsTen adult captive red foxes.MethodsFoxes were anaesthetized by intramuscular (IM) injection using four protocols in random order: medetomidine 40 μg kg?1, midazolam 0.3 mg kg?1 and butorphanol 0.1 mg kg?1 (MMiB), medetomidine 40 μg kg?1 and ketamine 4 mg kg?1 (MK40/4), medetomidine 60 μg kg?1 and ketamine 4 mg kg?1 (MK60/4), medetomidine 40 μg kg?1 and tiletamine/zolazepam 2 mg kg?1 (MTZ). Time to lateral recumbency, induction time and time to recovery following IM administration of atipamezole 0.2 mg kg?1 were recorded. Heart rate (HR), respiratory rate (fR) and rhythm, blood pressure, rectal temperature, end-tidal CO2 tension (Pe′Co2), functional oxygen saturation and presence/absence of interdigital, palpebral and ear reflexes were recorded every 10 minutes, and following administration of atipamezole. Data were analysed using two-way repeated-measures anova with Bonferroni post tests; p < 0.05 was considered significant.ResultsAll protocols produced profound sedation with good muscle relaxation. Only the MMiB protocol diverged significantly from the others. Induction of anaesthesia and recovery time following atipamezole were significantly longer, and fR and initial HR significantly lower with MMiB than with the other protocols. With all protocols, mean arterial blood pressure (MAP) was initially relatively high (140–156 mmHg), and decreased significantly over time. With all protocols, the administration of atipamezole resulted in a rapid, significant decrease in MAP and an increase in HR.Conclusions and clinical relevanceAll four protocols provided anaesthetic conditions suitable for minor procedures and allowed endotracheal intubation. The cyclohexanone protocols provided quicker and more reliable inductions and recoveries than the MMiB protocol.  相似文献   

3.
ObjectiveTo evaluate the effects of medetomidine, midazolam and ketamine (MMK) in captive gorillas after premedication with oral zuclopenthixol.Study designCase series.AnimalsSix gorillas, two males and four females, aged 9–52 years and weighing 63–155 kg.MethodsThe gorillas were given zuclopenthixol dihydrochloride 0.2 ± 0.05 mg kg?1 per os twice daily for 3 days for premedication. On the day of anaesthesia the dose of zuclopenthixol was increased to 0.27 mg kg?1 and given once early in the morning. Anaesthesia was induced with medetomidine 0.04 ± 0.004 mg kg?1, midazolam 0.048 ± 0.003 mg kg?1 and ketamine 4.9 ± 0.4 mg kg?1 intramuscularly (IM). Upon recumbency, the trachea was intubated and anaesthesia was maintained on 1–2% isoflurane in oxygen. Physiological parameters were monitored every 10 minutes and arterial blood gas analysis was performed once 30–50 minutes after initial darting. At the end of the procedure, 42–115 minutes after initial darting, immobilisation was antagonized with atipamezole 0.21 ± 0.03 mg kg?1 and sarmazenil 5 ± 0.4 μg kg?1 IM.ResultsRecumbency was reached within 10 minutes in five out of six animals. One animal required two additional darts before intubation was feasible. Heart rate ranged from 60 to 85 beats minute?1, respiratory rate from 17 to 46 breaths minute?1 and temperature from 36.9 to 38.3 °C. No spontaneous recoveries were observed and anaesthetic level was stable. Blood gas analyses revealed mild respiratory acidosis, and mean PaO2 was 24.87 ± 17.16 kPa (187 ± 129 mmHg) with all values being above 13.4 kPa (101 mmHg). Recovery was smooth and gorillas were sitting within 25 minutes.Conclusion and clinical relevanceThe drug combination proved to be effective in anaesthetizing captive gorillas of various ages and both sexes, with minimal cardio-respiratory changes.  相似文献   

4.
ObjectiveTo compare the sedative effects of intramuscular xylazine alone or combined with levomethadone or ketamine in calves before cautery disbudding.Study designRandomized, blinded, clinical trial.AnimalsA total of 28 dairy calves, aged 21 ± 5 days and weighing 61.0 ± 9.3 kg (mean ± standard deviation).MethodsCalves were randomly allocated to three groups: xylazine (0.1 mg kg–1) and levomethadone (0.05 mg kg–1; group XL), xylazine (0.1 mg kg–1) and ketamine (1 mg kg–1; group XK) and xylazine alone (0.2 mg kg–1; group X). Local anaesthesia (procaine hydrochloride) and meloxicam were administered subcutaneously 15 minutes after sedation and 15 minutes before disbudding. The calves’ responses to the administration of local anaesthesia and disbudding were recorded. Sedation was assessed at baseline and at intervals up to 240 minutes postsedation. Times of recumbency, first head lift and first standing were recorded. Drug plasma concentrations were measured.ResultsData were obtained from 27 animals. All protocols resulted in sedation sufficient to administer local anaesthesia and to perform disbudding. Sedation scores significantly correlated with drug plasma concentrations (p ≤ 0.002). Times to recumbency did not differ among protocols (2.8 ± 0.3, 3.1 ± 1.1 and 2.1 ± 0.8 minutes for groups XL, XK and X, respectively), whereas interval from drug(s) administration until first head lift was significantly shorter in group XK than X (47.3 ± 14.1, 34.4 ± 5.3 and 62.6 ± 31.9 minutes for groups XL, XK and X, respectively). The area under the time-sedation curve was significantly greater in group X than XK or XL (754 ± 215, 665 ± 118 and 1005 ± 258 minutes for groups XL, XK and X, respectively).Conclusions and clinical relevanceLevomethadone or ketamine with a low dose of xylazine produced short but sufficient sedation for local anaesthesia and disbudding with minimum resistance.  相似文献   

5.
ObjectiveTo compare post-operative pain in cats after alfaxalone or ketamine- medetomidine anaesthesia for ovariohysterectomy (OHE) and physiologic parameters during and after surgery.Study designProspective ‘blinded’ randomized clinical study.AnimalsTwenty-one healthy cats.MethodsCats were assigned randomly into two groups: Group A, anaesthesia was induced and maintained with alfaxalone [5 mg kg?1 intravenously (IV) followed by boli (2 mg kg?1 IV); Group MK, induction with ketamine (5 mg kg?1 IV) after medetomidine (30 μg kg?1 intramuscularly (IM)], and maintenance with ketamine (2 mg kg?1 IV). Meloxicam (0.2 mg kg?1 IV) was administered after surgery. Basic physiological data were collected. At time T = -2, 0, 0.5, 1, 2, 4, 6, 8, 12, 16, 20, and 24 hours post-operatively pain was assessed by three methods, a composite pain scale (CPS; 0–24 points), a visual analogue scale (VAS 0–100 mm), and a mechanical wound threshold (MWT) device. Butorphanol (0.2 mg kg?1 IM) was administered if CPS was scored =13. Data were analyzed using a general linear model, Kruskal–Wallis analyses, Bonferroni-Dunn test, unpaired t-test and Fisher's exact test as relevant. Significance was set at p < 0.05.ResultsVASs were significantly higher at 0.5, 1, 2, 4, and 20 hours in group A; MWT values were significantly higher at 8 and 12 hours in group MK. Post-operative MWT decreased significantly compared to baseline in both groups. There was no difference in CPS at any time point. Five cats required rescue analgesia (four in A; one in MK).Conclusion and clinical relevanceAnaesthesia with ketamine-medetomidine was found to provide better post-surgical analgesia than alfaxalone in cats undergoing OHE; however, primary hyperalgesia developed in both groups. Alfaxalone is suitable for induction and maintenance of anaesthesia in cats undergoing OHE, but administration of additional sedative and analgesic drugs is highly recommended.  相似文献   

6.
ObjectiveTo evaluate medetomidine as a continuous rate infusion (CRI) in horses in which anaesthesia is maintained with isoflurane and CRIs of ketamine and lidocaine.Study designProspective, randomized, blinded clinical trial.AnimalsForty horses undergoing elective surgery.MethodsAfter sedation and induction, anaesthesia was maintained with isoflurane. Mechanical ventilation was employed. All horses received lidocaine (1.5 mg kg?1 initially, then 2 mg kg?1 hour?1) and ketamine (2 mg kg?1 hour?1), both CRIs reducing to 1.5 mg kg?1 hour?1 after 50 minutes. Horses in group MILK received a medetomidine CRI of 3.6 μg kg?1 hour?1, reducing after 50 minutes to 2.75 μg kg?1 hour?1, and horses in group ILK an equal volume of saline. Mean arterial pressure (MAP) was maintained above 70 mmHg using dobutamine. End-tidal concentration of isoflurane (FE′ISO) was adjusted as necessary to maintain surgical anaesthesia. Group ILK received medetomidine (3 μg kg?1) at the end of the procedure. Recovery was evaluated. Differences between groups were analysed using Mann-Whitney, Chi-Square and anova tests as relevant. Significance was taken as p < 0.05.ResultsFE′ISO required to maintain surgical anaesthesia in group MILK decreased with time, becoming significantly less than that in group ILK by 45 minutes. After 60 minutes, median (IQR) FE′ISO in MILK was 0.65 (0.4–1.0) %, and in ILK was 1 (0.62–1.2) %. Physiological parameters did not differ between groups, but group MILK required less dobutamine to support MAP. Total recovery times were similar and recovery quality good in both groups.Conclusion and clinical relevanceA CRI of medetomidine given to horses which were also receiving CRIs of lidocaine and ketamine reduced the concentration of isoflurane necessary to maintain satisfactory anaesthesia for surgery, and reduced the dobutamine required to maintain MAP. No further sedation was required to provide a calm recovery.  相似文献   

7.
ObjectiveTo evaluate the cardiorespiratory effects and plasma concentrations of medetomidine-midazolam-ketamine (MMK) combinations administered by intramuscular (IM) or subcutaneous (SC) injection in sable ferrets (Mustela putorius furo).Study designProspective randomized experimental study.AnimalsEighteen adult ferrets: weight median 1.19 (range 0.81–1.60) kg.MethodsAnimals were allocated to one of three groups: group IM07 received 20 μg kg?1 medetomidine, 0.5 mg kg?1 midazolam and 7 mg kg?1 ketamine IM; group IM10 20 μg kg?1 medetomidine, 0.5 mg kg?1 midazolam and 10 mg kg?1 ketamine IM; and group SC10 20 μg kg?1 medetomidine, 0.5 mg kg?1 midazolam and 10 mg kg?1 ketamine SC. Following instrumentation, cardiorespiratory parameters and plasma drug concentrations were measured every 5 minutes (T5–T30) for 30 minutes Ferrets were then euthanased. Data were analysed using anova for repeated measures. p < 0.05 was considered significant.ResultsResults are mean ± SD. Induction of anaesthesia (minutes) in IM07 and IM10 [2 (1)] was significantly faster than in SC10 [5 (2)]. All groups demonstrated the following: results given as groups IM07, IM10 and SC10 respectively. Mean arterial blood pressures (mmHg) were initially high [186 (13); 174 (33) and 174 (9) at T5] but decreased steadily. Pulse rates were initially 202 (20), 213 (17) and 207 (33) beats minute?1, decreasing with time. PaO2 (mmHg) was low [54.0 (8), 47.7 (10) and 38.5 (1)] at T5, although in groups IM07 and IM10 it increased over time. Plasma concentrations of all drugs were highest at T5 (36, 794 and 8264 nmol L?1 for medetomidine, midazolam and ketamine, respectively) and decreased thereafter: for both midazolam and ketamine, concentrations in IM07 and IM10 were higher than SC10.Conclusions and clinical relevanceMMK combinations containing either 7 or 10 mg kg?1 ketamine and given IM are suitable combinations for anaesthetising ferrets, although the observed degree of hypoxaemia indicates that oxygen administration is vital.  相似文献   

8.
ObjectiveTo characterise four different intramuscular (IM) anaesthetic protocols, two with alfaxalone and two with alfaxalone in combination with medetomidine in terrestrial tortoises.Study designBlinded, randomized, cross‐over experimental study.AnimalsNine healthy adult male Horsfield's tortoises (Agrionemys horsfieldii).MethodsEach tortoise was randomly assigned to one of four different protocols: 1) 10 mg kg?1 alfaxalone; 2) 10 mg kg?1 alfaxalone + 0.10 mg kg?1 medetomidine; 3) 20 mg kg?1 alfaxalone; and 4) 20 mg kg?1 alfaxalone + 0.05 mg kg?1 medetomidine. During the experiment, the following variables were recorded: heart rate; respiratory rate; peripheral nociceptive responses; muscle strength; ability to intubate; palpebral, corneal and tap reflexes; and cloacal temperature.ResultsProtocols 1 and 2 resulted in moderate sedation with no analgesia, and moderate to deep sedation with minimal analgesia, respectively. Protocols 3 and 4 resulted in deep sedation or anaesthesia with variable analgesic effect; these two protocols had the longest total anaesthetic time and allowed intubation in 6/9 and 8/9 tortoises respectively. The total anaesthesia/sedation time produced by alfaxalone was significantly increased (p <0.05) by the addition of medetomidine. There were no significant differences regarding time to plateau phase and duration of plateau phase. Baseline heart rate of 53 ± 6 beats minute?1 decreased significantly (p <0.05) with all protocols, and was lower (p <0.05) in protocols 3 and 4. Heart rate increased after atipamezole administration, but the increase was transient. In two tortoises, extreme bradycardia with no cardiac activity for 10 minutes was observed with protocols 3 and 4.Conclusion and clinical relevanceAlfaxalone 10 and 20 mg kg?1 IM can be used for sedation for non‐painful procedures. Alfaxalone in combination with medetomidine can be used for deeper sedation or anaesthesia, but the observed respiratory and cardiovascular depression may limit its use.  相似文献   

9.
10.
ObjectiveTo test if the addition of butorphanol by constant rate infusion (CRI) to medetomidine–isoflurane anaesthesia reduced isoflurane requirements, and influenced cardiopulmonary function and/or recovery characteristics.Study designProspective blinded randomised clinical trial.Animals61 horses undergoing elective surgery.MethodsHorses were sedated with intravenous (IV) medetomidine (7 μg kg?1); anaesthesia was induced with IV ketamine (2.2 mg kg?1) and diazepam (0.02 mg kg?1) and maintained with isoflurane and a CRI of medetomidine (3.5 μg kg?1 hour?1). Group MB (n = 31) received butorphanol CRI (25 μg kg?1 IV bolus then 25 μg kg?1 hour?1); Group M (n = 30) an equal volume of saline. Artificial ventilation maintained end-tidal CO2 in the normal range. Horses received lactated Ringer’s solution 5 mL kg?1 hour?1, dobutamine <1.25 μg kg?1 minute?1 and colloids if required. Inspired and exhaled gases, heart rate and mean arterial blood pressure (MAP) were monitored continuously; pH and arterial blood gases were measured every 30 minutes. Recovery was timed and scored. Data were analyzed using two way repeated measures anova, independent t-tests or Mann–Whitney Rank Sum test (p < 0.05).ResultsThere was no difference between groups with respect to anaesthesia duration, end-tidal isoflurane (MB: mean 1.06 ± SD 0.11, M: 1.05 ± 0.1%), MAP (MB: 88 ± 9, M: 87 ± 7 mmHg), heart rate (MB: 33 ± 6, M: 35 ± 8 beats minute?1), pH, PaO2 (MB: 19.2 ± 6.6, M: 18.2 ± 6.6 kPa) or PaCO2. Recovery times and quality did not differ between groups, but the time to extubation was significantly longer in group MB (26.9 ± 10.9 minutes) than in group M (20.4 ± 9.4 minutes).Conclusion and clinical relevanceButorphanol CRI at the dose used does not decrease isoflurane requirements in horses anaesthetised with medetomidine–isoflurane and has no influence on cardiopulmonary function or recovery.  相似文献   

11.
History Medical knowledge of pygmy hippopotami is limited. Anaesthesia has been considered a challenge because of the anatomy, semi‐aquatic life style and aggressive behaviour. Polycystic kidney disease (PKD) has been described and can contribute to active kidney disease potentially affecting anaesthesia. Physical examination and Management Fourteen pygmy hippopotami were anaesthetized for general health assessment and reproductive procedures. Animals (estimated bodyweight 250 kg) were darted intramuscularly with 0.08 mg kg?1 medetomidine and 1.2 mg kg?1 ketamine. After endotracheal intubation, anaesthesia was maintained with isoflurane delivered either by circle system (100% oxygen) or by Triservice apparatus (air or air/oxygen admixture). Heart rate (HR) respiratory rate (fR), oxygen saturation (SpO2) and end tidal CO2 were recorded at 5‐minute intervals. Atipamezole was administered intramuscularly (0.4 mg kg?1) at the end of the procedure. Statistical analysis was performed using anova (p < 0.05). Most animals rapidly became recumbent although five hippopotami needed additional drugs to assure acceptable immobilization. There were no statistical differences in mean HR between animals with or without PKD (PKD: 34 ± 8 beats minutes?1; no PKD: 33 ± 6 beats minutes?1), fR (PKD: 15 ± 7 breaths minutes?1; no PKD; 12 ± 5 breaths minutes?1) and end tidal CO2 (PKD: 7.1 ± 1.3 kPa; no PKD: 7.8 ± 1.4 kPa). SpO2 was higher in animals receiving 100% oxygen or air with oxygen (92 ± 8% and 91 ± 9% respectively) compared with animals receiving air only (77 ± 5%) (p = 0.003). Recovery was uneventful after atipamezole administration. Follow‐up There were no apparent adverse effects after anaesthesia during a 24‐hour follow‐up period. Discussion and conclusions Medetomidine‐ketamine‐isoflurane induced satisfactory anaesthesia in this species. Incremental induction doses were related to remote injection and the animals’ thick skin. There were no differences in anaesthetic parameters in animals with or without PKD. Supplemental oxygen should be mandatory during anaesthesia in this species.  相似文献   

12.
Objective To evaluate the sedative effects of medetomidine, and a medetomidine–midazolam combination, in Japanese macaques and the antagonism of medetomidine–midazolam with atipamezole. Study design Prospective randomized study. Animals Thirteen healthy Japanese macaques between 3 and 21 years old and weighing between 4.3 and 15.1 kg. Methods Medetomidine (120 µg kg?1) alone or a medetomidine (30 µg kg?1) plus midazolam (0.3 mg kg?1) mixture were injected intramuscularly in the hind limb of 12 animals (n = 6 for each group) and their effects, particularly behavioural changes, response to external stimuli, sedative onset time, time to lateral recumbency and time in lateral recumbency, were monitored for 120 minutes. Another group (n = 7) were given medetomidine–midazolam and injected 30 minutes later with atipamezole (120 µg kg?1). Behavioural changes and responses to external stimuli were assessed as before. Results Animals given medetomidine became sedated but could be aroused by external stimuli. Despite the lower (25%) dose of medetomidine involved, the effects of medetomidine–midazolam were more marked. Macaques given this combination became sedated in 4 ± 2 minutes (mean ± SD) and remained unresponsive to external stimuli for at least 60 minutes. Five out of six macaques became laterally recumbent for 74 ± 37 minutes. Intramuscular atipamezole effectively reversed sedation, shortening the arousal and total recovery time. The recovery from sedation was rapid and smooth, being completed 19 ± 11 minutes after antagonism. Conclusions The medetomidine–midazolam combination described provided useful chemical restraint and may prove useful in macaques undergoing some experimental, diagnostic or therapeutic procedures. The use of atipamezole as an antagonist increases the value of this technique in macaques.  相似文献   

13.
This clinical study analysed the anaesthetic sparing effect of a medetomidine constant rate infusion (CRI) during isoflurane anaesthesia in horses. Forty healthy horses undergoing different types of orthopaedic and soft tissue surgeries were studied in a randomized trial. Orthopaedic surgeries were primarily arthroscopies and splint bone extractions. Soft tissue surgeries were principally castrations with one ovariectomy. All horses received 0.03 mg kg?1 acepromazine IM 1 hour prior to sedation. Group A (11 orthopaedic and nine soft tissue surgeries), was sedated with 1.1 mg kg?1 xylazine IV, group B (13 orthopaedic and seven soft tissue surgeries) with 7 µg kg?1 medetomidine IV. Anaesthesia was induced in both groups with 2.2 mg kg?1 ketamine and diazepam 0.02 mg kg?1 IV. Maintenance of anaesthesia was with isoflurane (ISO) in 100% oxygen, depth of anaesthesia was always adjusted by the first author. Group B received an additional CRI of 3.5 µg kg?1 hour?1 medetomidine. Respiratory rate (RR), heart rate (HR), mean arterial blood pressure (MAP), Fe ′ISO and Fe ′CO2 were monitored with a methane insensitive monitor (Cardiocap 5, Ohmeda, Anandic, Diessenhofen) and noted every 5 minutes. Arterial blood was withdrawn for gas analysis (PaO2, PaCO2) 5 minutes after the induction of anaesthesia and every 30 minutes thereafter. Dobutamine (DOB) was given as a CRI to maintain mean arterial blood pressure above 70 mm Hg. Data were averaged over time (sum of measurements/number of measurements) and tested for differences between groups by unpaired t‐tests. There were no significant differences between the groups in terms of body mass (group A, 508 ± 73.7 kg; group B, 529.25 ± 78.4 kg) or duration of anaesthesia (group A, 125.5 ± 36 minutes; group B, 121.5 ± 48.4 minutes). The mean Fe ′ISO required to maintain a surgical plane of anaesthesia was significantly higher in group A (1.33 ± 0.13%) than in group B (1.07 ± 0.19%; p = 2.78 × 10?5). Heart rate was different between the two groups (group A, 42.2 ± 8.3; group B, 32.6 ± 3.5; p = 8.8 × 10?5). Dobutamine requirements were higher in group A (group A, 0.72 ± 0.24 μg kg?1 minute?1; group B, 0.53 ± 0.23 μg kg?1 minute?1; p = 0.023). Respiratory rate, Fe ′CO2, PaO2, PaCO2 were not different between the groups. Adjustment of anaesthetic depth subjectively was easier with the medetomidine infusion and isoflurane (group B) than with isoflurane as a sole agent (group A). In group A 12 horses and in group B five horses showed purposeful movements on 27 (A) and 12 (B) occasions. They were given thiopental (group A, 0.0114 mg kg?1 minute?1; group B, 0.0023 mg kg?1 minute?1). In group A, a further 17 horses were given ketamine to deepen anaesthesia (52 occasions, 0.00426 mg kg?1 minute?1) whereas in group B only nine horses needed ketamine (34 occasions, 0.00179 mg kg?1 minute?1). An infusion of 3.5 µg kg?1 MED during ISO anaesthesia resulted in a significantly reduced ISO requirement.  相似文献   

14.

Objective

To characterize a propofol–medetomidine-ketamine total intravenous anaesthetic in impala (Aepyceros melampus).

Study design

Prospective clinical study.

Animals

Ten adult female impala.

Materials and methods

Impala were immobilized at 1253 m above sea level with 2.0 mg thiafentanil and 2.2 mg medetomidine via projectile darts. Propofol was given to effect (0.5 mg kg?1 boluses) to allow endotracheal intubation, following which oxygen was supplemented at 2 L minute?1. Anaesthesia was maintained with a constant-rate infusion of medetomidine and ketamine at 5 μg kg?1 hour?1 and 1.5 mg kg?1 hour?1, respectively, and propofol to effect (initially 0.2 mg kg?1 minute?1) for 120 minutes. The propofol infusion was titrated according to reaction to nociceptive stimuli every 15 minutes. Cardiopulmonary parameters were monitored continuously and arterial blood gas samples were analysed intermittently. After 120 minutes' maintenance, the thiafentanil and medetomidine were antagonized using naltrexone (10:1 thiafentanil) and atipamezole (5:1 medetomidine), respectively.

Results

All impala were successfully immobilized. The median dose [interquartile range (IQR)] of propofol required for intubation was 2.7 (1.9–3.3) mg kg?1. The propofol–medetomidine–ketamine combination abolished voluntary movement and ensured anaesthesia for the 120 minute period. Propofol titration showed a generally downward trend. Median (IQR) heart rate [57 (53–61) beats minute?1], respiratory rate [10 (9–12) breaths minute?1] and mean arterial blood pressure [101 (98–106) mmHg] were well maintained. Arterial blood gas analysis indicated hypoxaemia, hyper- capnia and acidaemia. Butorphanol (0.12 mg kg?1) was an essential rescue drug to counteract thiafentanil-induced respiratory depression. All impala regurgitated frequently during the maintenance period. Recovery was calm and rapid in all animals. Median (IQR) time to standing from antagonist administration was 4.4 (3.2–5.6) minutes.

Conclusions and clinical relevance

A propofol–medetomidine–ketamine combination could provide adequate anaesthesia for invasive procedures in impala. The propofol infusion should begin at 0.2 mg kg?1 minute?1 and be titrated to clinical effect. Oxygen supplementation and airway protection with a cuffed endotracheal tube are essential.  相似文献   

15.

Objective

To describe the anaesthetic, physiological and side effects of intramuscular (IM) medetomidine and ketamine, followed by inhalational anaesthesia with sevoflurane, in Nile crocodiles (Crocodylus niloticus).

Study design

Observational trial.

Animals

Ten juvenile captive-bred Nile crocodiles undergoing surgical implantation of skeletal beads and muscular electrodes.

Methods

During preanaesthetic examination, the following variables were assessed: heart (HR) and respiratory (fR) rates, and response to palpebral, corneal and toe- and tail-pinch withdrawal reflexes. The crocodiles were injected IM with an initial combination of medetomidine and ketamine and re-evaluated at 5 minute intervals for 20 minutes, or until they appeared unresponsive. If that did not occur, the drugs were redosed according to a decision tree based on the observed effects. The righting, biting and palatal valve reflexes were assessed in the unresponsive crocodiles, and used to confirm anaesthetic induction. Anaesthesia was maintained with sevoflurane in oxygen. At the end of surgery, medetomidine was antagonized with IM atipamezole.

Results

The decision tree identified 0.3 mg kg?1 medetomidine and 15 mg kg?1 ketamine as a useful drug combination, which resulted in anaesthetic induction and surgical anaesthesia 16 ± 8 and 16 (25–20) minutes after injection, respectively. Compared to baseline, HR and fR significantly decreased after anaesthetic induction (p < 0.001), but then remained stable throughout surgery. Intraoperatively, cloacal temperature [27 (26–30) °C] did not change over time (p = 0.48). The total dose of atipamezole was 2 (1–3) mg kg?1 and time to recovery was 36 (20–60) minutes. Perioperative complications were not observed.

Conclusions

and clinical relevance Medetomidine and ketamine, injected IM and followed by sevoflurane anaesthesia, may be regarded as a useful anaesthetic technique for juvenile Nile crocodiles undergoing minimally invasive experimental surgery.  相似文献   

16.
ObjectiveTo develop a safe and effective immobilization protocol in rhesus monkeys, which is not based on dissociative anaesthetic agent.Study designProspective, randomised, experimental trial.AnimalsTwenty rhesus monkeys, weighing 2.6–8.0 kg, 1–3 years of age, of both sexes.MethodsThe monkeys received 50 μg kg?1 medetomidine, 0.25 mg kg?1 midazolam and 5 μg kg?1 fentanyl with 150 IU hyaluronidase intramuscularly (IM). The animals were closely observed for behavioural changes and reaction to sound stimulus. Pulse rate and oxygen saturation of haemoglobin (SpO2) were monitored every 5 minutes, for 20 minutes. After this period, 250 μg kg?1 atipamezole or a placebo was administered IM and behavioural changes were closely observed.ResultsFull immobilization was observed after mean 269 ± SD 116 seconds. Ten minutes after injection mean arterial oxygen saturation of haemoglobin was 94 ± 4%, but did not fall significantly further. The median pulse rate was 116 beats minute?1 5 minutes after the administration of the drug. This level further decreased to a median level of 108 beats minute?1 20 minutes after the drug's administration. The median time to recover from immobilization was significantly shorter after atipamezole administration when compared to placebo (2.7 versus 55 minutes). All animals awoke smoothly and no side effects such as vomiting or agitation were observed.ConclusionsShort term and reversible pharmacological immobilization was achieved using combination of midazolam, medetomidine, and fentanyl.Clinical relevanceThe present study demonstrates that 20-minute pharmacological immobilization with a combination of midazolam, medetomidine, and fentanyl is feasible in rhesus monkeys with minimal effect on heart rate.  相似文献   

17.
ObjectiveTo determine the effects of age, sevoflurane and isoflurane on atracurium-induced neuromuscular blockade in 3–16 week-old lambs.Study designProspective randomized experimental trial.AnimalsTwenty-six Scottish blackface ewe-lambs were anaesthetized for spinal surgery when either 3–6 (mean age 4.6 weeks; n = 18) or 12–16 weeks (mean age 13.7 weeks; n = 15) of age; seven animals were anaesthetized at both ages.MethodsAfter intramuscular injection of medetomidine (10 μg kg?1) anaesthesia was induced in the younger lambs either with isoflurane or sevoflurane in oxygen delivered by mask, and in the older lambs with ketamine (4 mg kg?1), and midazolam (0.2 mg kg?1) administered intravenously (IV). In both groups anaesthesia was maintained with fixed end-tidal concentrations of either sevoflurane (2.8%) or isoflurane (1.8%) delivered in oxygen. Before surgery meloxicam (0.6 mg kg?1), morphine (0.5 mg kg?1) and ketamine (1 mg kg?1 followed by 10 μg kg?1 minute?1) were administered IV. The lungs were ventilated mechanically to maintain normocapnia. Neuromuscular block was achieved with a loading dose (LD) of atracurium (0.5 mg kg?1 IV). The peroneal nerve was stimulated (train-of-four every 12 seconds). Evoked responses in the digital extensor muscles were evaluated by palpation and observation. Maintenance doses (MD) of atracurium (0.17 mg kg?1 IV) were administered when the first twitch (T1) returned. The onset and duration of LD action (T1 absent) and the duration of MD were recorded. Data were analysed using Student's t test, Mann–Whitney U test, repeated–measures anova, Wilcoxon's matched pairs test or Pearson correlation coefficient as relevant (p < 0.05).ResultsOnset of LD action developed significantly (p < 0.05) more rapidly in isoflurane compared with sevoflurane-anaesthetized lambs (55 ± 18 cf. 80 ± 37 seconds). Duration of action of LDs and MDs was longer (p < 0.05) in lambs aged 12–16 than 3–6 weeks (33 ± 5.4 cf. 25 ± 6.4 and 26 ± 4.2 cf. 18 ± 5.5 minutes) but were independent of the anaesthetic used.Conclusions and clinical relevanceThe effect of atracurium is age-dependent in lambs being prolonged in older animals. The onset of neuromuscular blockade is more rapid in isoflurane compared with sevoflurane-anaesthetized lambs.  相似文献   

18.
Objective To compare the characteristics of anaesthesia induced with four dose combinations of ketamine/medetomidine. Design Prospective randomized study. Animals Five female New Zealand White (NZW) rabbits of approximately 2.3 kg. Methods Rabbits were given one of four drug combinations (25/0.25; 15/0.5; 15/0.25 and 10/0.5 mg kg?1 IM) on four successive occasions with a four day interval. Response to injection and then arterial blood gas and cardiovascular parameters were recorded at predetermined time points. Toe and ear pinch reflexes gave measures of total duration of surgical anaesthesia and total sleep time. Analyses used repeated measures analysis of variance. Results Induction was smooth with little reaction to injection and intubation achieved easily. Two combinations (15/0.25, 10/0.5) produced moderate hypoxaemia (mean pO2 < 8.0 kPa) and two (25/0.25, 15/0.5) very marked hypoxaemia (mean pO2 < 5.3 kPa). This was reversed within 15 minutes of oxygen administration and all rabbits recovered uneventfully. Heart rates fell in all cases, with only minimal effects on arterial blood pressure and no cardiac arrhythmias. Mean duration of surgical anaesthesia was significantly longer for dose groups 25/0.25 (57 ± 12 minutes) and 15/0.5 (59 ± 17 minutes, p = 0.01) compared to dose group 15/0.25 (27 ± 8 minutes). Only three animals in the 10/0.5 mg kg?1 group achieved surgical anaesthesia. Mean duration of loss of the ear pinch reflex was similar between doses, being, respectively, 64 ± 13, 81 ± 7, 60 ± 22 and 62 ± 24 minutes. Sleep time was significantly longer for the 15/0.5 dose (112 ± 10 minutes) compared to 15/0.25 (86 ± 22 minutes, p = 0.04). Sleep times for the 25/0.25 and 10/0.5 mg kg?1 doses were, respectively, 103 ± 23 and 108 ± 12 minutes. Conclusions Ketamine/medetomidine reliably produces smooth induction and recovery in the NZW rabbit, but due to the degree of hypoxaemia produced, should only be used with simultaneous provision of oxygen. Clinical relevance Currently recommended dose rates of ketamine/medetomidine for minor procedures such as ovariohysterectomy in rabbits (25 mg/0.5 mg kg?1) are unnecessarily high; a dose of 15/0.25 mg kg?1 should be adequate for 15–30 minutes of surgical anaesthesia.  相似文献   

19.
ObjectiveTo determine the efficacy of medetomidine for immobilisation of captive juvenile crocodiles over a range of temperatures, and its reversibility with atipamezole.Study designProspective experimental study.AnimalsForty male estuarine crocodiles (body weight 2.0 to 4.8 kg).MethodsEach crocodile was randomly assigned to one of four temperature groups: Group 1:32 °C; Group 2:27 °C; Group 3:22 °C; and Group 4:17 °C (n = 10 for each group). Medetomidine (0.5 mg kg?1) was administered intramuscularly (IM) into the thoracic limb of all crocodiles. After 50 minutes, all animals from each group received 2.5 mg kg?1 atipamezole IM in the opposite thoracic limb and time to recovery was documented. Heart and respiratory rates and the degree of immobilisation were monitored every 5 minutes until recovery, and behaviour monitored for 7 subsequent days.ResultsOnset of immobilisation occurred at 15 ± 10 minutes in Group 1, and at 30 ± 10 minutes in Groups 2 and 3. In Group 4, animals were not immobilised. Recovery following atipamezole was 10 ± 5 minutes at all temperatures. One-way analysis of variance (anova) demonstrated a significant difference in induction times between groups (p < 0.01) but not in recovery times following atipamezole administration (p < 0.25). Heart and respiratory rates decreased markedly following medetomidine administration and increased markedly following atipamezole reversal.Conclusions and clinical relevanceMedetomidine administered in the thoracic limb of juvenile captive estuarine crocodiles provides profound sedation or immobilisation at temperatures of 22 °C and above. Atipamezole administered in the contralateral thoracic limb results in consistent reversal of the effects of medetomidine and a return to normal behaviour within 15–20 minutes regardless of temperature. Even though immobilisation is not induced at 17 °C, profound reversible sedation does occur reliably and repeatably.  相似文献   

20.
ObjectiveTo investigate the impact of intramuscular (IM) co-administration of the peripheral α2-adrenoceptor agonist vatinoxan (MK-467) with medetomidine and butorphanol prior to intravenous (IV) ketamine on the cardiopulmonary and anaesthetic effects in dogs, followed by atipamezole reversal.Study designRandomized, masked crossover study.AnimalsA total of eight purpose-bred Beagle dogs aged 3 years.MethodsEach dog was instrumented and administered two treatments 2 weeks apart: medetomidine (20 μg kg–1) and butorphanol (100 μg kg–1) premedication with vatinoxan (500 μg kg–1; treatment MVB) or without vatinoxan (treatment MB) IM 20 minutes before IV ketamine (4 mg kg–1). Atipamezole (100 μg kg–1) was administered IM 60 minutes after ketamine. Heart rate (HR), mean arterial (MAP) and central venous (CVP) pressures and cardiac output (CO) were measured; cardiac (CI) and systemic vascular resistance (SVRI) indices were calculated before and 10 minutes after MVB or MB, and 10, 25, 40, 55, 70 and 100 minutes after ketamine. Data were analysed with repeated measures analysis of covariance models. A p-value <0.05 was considered statistically significant. Sedation, induction, intubation and recovery scores were assessed.ResultsAt most time points, HR and CI were significantly higher, and SVRI and CVP significantly lower with MVB than with MB. With both treatments, SVRI and MAP decreased after ketamine, whereas HR and CI increased. MAP was significantly lower with MVB than with MB; mild hypotension (57–59 mmHg) was recorded in two dogs with MVB prior to atipamezole administration. Sedation, induction, intubation and recovery scores were not different between treatments, but intolerance to the endotracheal tube was observed earlier with MVB.Conclusions and clinical relevanceHaemodynamic performance was improved by vatinoxan co-administration with medetomidine–butorphanol, before and after ketamine administration. However, vatinoxan was associated with mild hypotension after ketamine with the dose used in this study. Vatinoxan shortened the duration of anaesthesia.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号