首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
In Exp. 1, early-weaned Targhee and Polypay crossbred lambs (60 ewes and 66 rams; initial BW 24 +/- 1.0 kg) were used in a 2 x 3 factorial experiment to determine the effects of corn processing (whole shelled corn [WSC] or ground and pelleted corn [GC]) in combination with supplemental fiber (none [control]; soybean hulls, SBH [highly digestible]; or peanut hulls, PH [highly indigestible]) on DMI, ADG, feed efficiency, and visceral organ weight. For the total trial, WSC resulted in a 4% increase (P < .01) in ADG vs GC, and supplemental fiber resulted in increased (P < .01) DMI and ADG vs the control diet. Experiment 2 was conducted using 12 Targhee and Polypay crossbred wether lambs (initial BW 25 +/- 7 kg) to determine the effects of corn processing and fiber source in high-concentrate diets on diet digestibility and N retention using the same diets as in Exp. 1. Lambs fed WSC had greater (P < .001) apparent N digestion, true N digestion, and N retention (P < .01) than those fed GC. The apparent digestibilities of DM, OM, and NDF were greater (P < .001) for WSC than for GC diets. Peanut hulls resulted in decreased (P < .01) DM, OM, and NDF apparent digestibilities compared with the control and SBH diets. Starch digestion was not affected (P > .10) by diet. Whole corn resulted in improved DM, OM, NDF, and N digestibility compared with GC. Overall, both the SBH and PH diets resulted in greater DMI and ADG than the control diet, which lacked supplemental fiber.  相似文献   

2.
Four experiments were conducted to determine the effect of adding corn gluten mean (CGM) or soybean meal (SBM) at 24- or 48-h intervals to diets based on corn stalks. In each experiment corn stalks was the primary diet ingredient fed to wethers or steers. Monensin was also fed to determine whether its effects on ruminal fermentation would improve the efficiency of N utilization under these conditions. Evaluation criteria included ruminal fermentation characteristics, DM intake and utilization, N balance in sheep, and steer feedlot performance. Ruminal ammonia nitrogen (NH3 N) concentrations measured over time were higher (P < .05) when diets contained SBM. Diet did not influence (P > .10) total VFA concentrations in ruminal fluid. Differences in diurnal shifts in ruminal NH3 N and total VFA due to protein source resulted in diet x hour interactions (P < .05). Dry matter intake response to protein source and frequency of supplement feeding was variable. Dry matter digestibility and nitrogen digestibility were not affected (P > .10) by protein source or feeding interval. The 48-h interval feeding of CGM was favorable compared with 24-h interval feeding (P < .05). The opposite response occurred with SBM, resulting in a diet x feeding interval interaction (P < .05). Nitrogen retention was greater (P < .05) when CGM was fed and with alternate day feeding. Diets that contained CGM supported higher (P < .05) ADG and gain/feed than diets that contained SBM when fed to steer calves. Alternate day feeding of supplements that contained monensin was detrimental to steer performance under the conditions of these experiments. Corn gluten meal is an effective substitute for SBM when alternate day protein supplementation is practiced.  相似文献   

3.
We studied the effects of the addition of liquefied vs prilled mostly saturated fatty acids (FA) to the concentrate portion of total mixed diets on ruminal and total tract digestibilities. Four Holstein steers (270 +/- 23 kg) fitted with ruminal and duodenal cannulas were used in a 4 x 4 Latin square design with 21-d periods. Diets contained (DM basis) 30.0% corn silage, 22.2% chopped alfalfa hay, 25.0% ground shelled corn, 12.5% soybean meal, and 5% of one of the following fat sources: 1) prilled FA (PFA), 2) choice white grease (triglycerides) added in liquid form (LTG), 3) 2.5% PFA + 2.5% LTG, or 4) 2.5% liquefied PFA (LFA) + 2.5% LTG. Ad libitum OM intake was not different (P > .10) among diets (mean 7.8 kg/d). Ruminal digestibilities of OM (35.7, 39.9, 42.2, and 37.3% for Diets 1 to 4, respectively) were greatest (P < .10) for the combination of PFA + LTG and lowest for PFA alone. Ruminal digestibilities of NDF, ADF, and starch did not differ (P > .10) among diets. Total tract digestibilities of OM, NDF, and ADF were greater (P < .10) for the diet containing LTG alone than for the diet containing LFA + LTG because of trends for greater postruminal digestibilities. The LFA + LTG diet resulted in a greater proportion of acetate and lower proportion of propionate in ruminal fluid than PFA alone (P < .10). The acetate:propionate ratio (3.53, 2.96, 3.10, and 2.89 for Diets 1 to 4, respectively) was lower (P < .05) for LFA + LTG or LTG alone than for PFA alone. Postruminal and total tract digestibilities of total FA (66.0, 76.0, 71.2, and 68.9% for Diets 1 to 4, respectively) were lower (P < .05) for PFA than for other diets. Addition of saturated FA in liquid form resulted in digestibilities and ruminal effects similar to the same saturated FA added in prilled form.  相似文献   

4.
Brahman x British crossbred steers were used in growth and digestion trials to evaluate the response of source (corn, sugar cane molasses, or soybean hulls) and feeding rate (0, 1.4, or 2.8 kg DM per steer daily in the growth trials; 0, 15, or 30% of the ration DM in the digestion trial) of energy supplementation in cattle fed ammoniated (4% of forage DM) stargrass (Cynodon nlemfuensis Vanderyst var. nlemfuensis) hay. Cattle on all treatments were fed 0.5 kg cottonseed meal daily. In the growth trials, steers grazed dormant bahiagrass (Paspalum notatum) pasture. Increasing the levels of supplementation decreased hay intake but increased total dietary intake for all diets (P < 0.07). Daily gain and feed efficiency of steers were improved (P < 0.03) with supplementation. Steers supplemented with corn or soybean hulls at 2.8 kg DM/d had a higher ADG (0.92 kg) and gain/feed (0.103) than steers supplemented with molasses (0.78 kg, 0.08, respectively) at the same level. Seven crossbred steers (200 kg) were used in a five-period digestion trial to evaluate apparent OM, NDF, ADF, and hemicellulose digestibility. Apparent OM digestibility of all diets increased linearly (P = 0.02) as the level of supplementation increased. Apparent NDF and ADF digestibility decreased (P < 0.03) as the level of supplementation with corn or molasses increased, whereas increasing the level of soybean hulls in the diet increased (P < 0.06) apparent NDF and ADF digestibility. Four ruminally fistulated crossbred steers (472 kg) were used in a 4 x 4 latin square design to investigate ruminal characteristics with energy supplementation at 30% of ration DM. Ruminal pH in steers supplemented with soybean hulls or corn declined after feeding. Ruminal pH decreased more rapidly with corn supplementation and remained below 6.2 for a longer period of time than with the other diets. Ruminal pH did not change within 24 h after feeding for steers fed the control or molasses diets. No change in total VFA concentration was observed in steers fed molasses or corn. Total ruminal VFA concentration in steers supplemented with soybean hulls increased initially after feeding and then declined within 24 h after feeding. Soybean hulls produced fewer negative associative effects than corn when fed with ammoniated stargrass hay at 2.8 kg DM/d. The reduced gain/feed of steers supplemented with molasses compared to soybean hulls or corn indicates that molasses was not utilized as efficiently as the other energy sources.  相似文献   

5.
Six Hampshire wethers with ruminal and duodenal cannulas were fed three diets in a replicated 3 X 3 latin square to compare phospholipids with triglycerides for their effects on ruminal digestion. The diets (56% concentrate, 44% bermuda-grass hay, air-dried basis) contained either no added fat (control), 5.2% soybean lecithin or 2.4% corn oil on a DM basis. All diets were isonitrogenous and both fat-supplemented diets had similar fatty acid and energy contents. Fat added to the diet, regardless of source, reduced digestibilities of DM, energy, ADF and fatty acids in the rumen but had no effect on total tract digestibility coefficients. Lecithin slightly increased (P = .06) fatty acid digestion in the hindgut compared to corn oil (91.0 and 87.0%, respectively). Both fat sources decreased (P less than .01) ruminal ammonia concentration and increased (P less than .10) N flow to the duodenum. Added fat also reduced ruminal (P less than .01) and total tract (P less than .05) N digestibilities. Microbial N flow to the hindgut was not affected by diet, but adding fat increased (P less than .06) true efficiency of microbial protein synthesis. Overall, phospholipids from soybean lecithin inhibited ruminal fermentation similarly to triglycerides from corn oil. Despite ruminal degradation of lecithin by microbial phospholipases as shown in other studies, feeding lecithin tended to increase fatty acid digestion in the hindgut.  相似文献   

6.
Five ruminally fistulated 3-yr-old mature Holstein steers (average BW 691+/-23 kg) were used in a 5 x 5 Latin square experiment with a 2 x 2 + 1 fact orial arrangement of treatments. Effects of protein concentration and protein source on nutrient digestibility, excretion of DM and fecal N, ruminal fluid volume and dilution rate, ruminal characteristics, and in situ DM disappearance of whole shelled corn, ground corn, and orchardgrass hay were measured in steers limit-fed high-concentrate diets at 1.5% of BW. A negative control basal diet (NC; 9% CP) was supplemented to achieve either 11 or 14% CP; supplemental CP was either from soybean meal (11 and 14% SBM) or a 50:50 ratio of CP from urea and soybean meal (11 and 14% U). Dry matter and OM digestibilities were 5% greater (P < .07) for steers fed the SBM diets than for those fed the U diets. Starch digestibility did not differ (P > .10) among steers fed any of the diets. Nitrogen source did not affect (P > .10) apparent N digestibility or fecal N excretion; however, steers fed the NC diet had the lowest (P < .10) apparent N digestibility compared with those fed all other diets. Ruminal fluid volume was lower (P < .06) when steers were fed the NC diet compared with all other diets; there were no differences (P > .74) among diets for ruminal fluid dilution rate. In general, ruminal ammonia N and VFA molar proportions were not affected by protein source or concentration. Although CP concentration affected (P < .06) in situ DM disappearance of ground corn, CP concentration did not (P > .48) affect total tract digestion of DM or OM. This indicates that CP concentration may have affected site of digestion, but not extent of digestion. When mature ruminants were limit-fed a corn-based diet to meet primarily a maintenance function, protein source and concentration had little effect on measures of nutrient digestion.  相似文献   

7.
An in situ protein degradation trial and two growth trials were conducted to evaluate the use of fish meal (FM) as a protein supplement in feeder lamb diets. Finn cross and Hampshire lambs were given ad libitum access to corn diets, minerals, and water. In Growth Trial 1, four isonitrogenous (12.6% CP on a DM basis) and isocaloric (77% TDN) diets were supplemented with the following: a) 100% soybean meal (SBM); b) 70% SBM + 30% FM; c) 40% SBM + 60% FM; and d) 100% FM on a DM basis. Diets were fed to 144 lambs for 56 d in a randomized complete block (initial BW) design. In Growth Trial 2, four diets were fed to 80 lambs for 42 d in a completely randomized design with treatments arranged as a 2 x 2 factorial. Main effects in Growth Trial 2 were dietary CP level (13.3 or 14.9%) and source (SBM or SBM + FM). Alfalfa hay was used as the roughage part of each diet. In situ CP degradation (determined in cattle) of SBM, FM, and corn fed in both growth trials were 77.8, 52.3, and 56.8%, respectively. In neither growth trial was ADG affected (P greater than .05) by dietary CP source. Lambs gained faster (P less than .05) when the CP level was increased from 13.3 to 14.9% in Growth Trial 2. In both trials, protein efficiency ratio (grams of gain/grams of protein intake) and energy efficiency ratio (grams of gain/kilograms of TDN intake) were not different (P greater than .05) among diets. Because of the low ruminal degradation of corn protein, the relative value of SBM and FM in full-fed, high-corn diets was comparable.  相似文献   

8.
This experiment used indirect calorimetry to determine the net energy (NE) content of five corn distillers dried grains with solubles (corn DDGS) containing different oil levels and to compare the NE obtained using indirect calorimetry with that calculated using previously published prediction equations. There were two samples of high‐oil DDGS, one sample of medium‐oil DDGS and two samples of low‐oil DDGS. Twelve barrows (initial BW of 32.8 ± 2.0 kg) were used in a repeated 3 × 6 Youden square design with three periods and six diets. The diets were comprised of a corn–soybean meal basal diet and five diets containing 29.25% of one of the corn DDGS added at the expense of corn and soybean meal. During each period, the pigs were individually housed in metabolism crates for 16 days which included 7 days for adaption to feed and environmental conditions. On day 8, the pigs were transferred to respiration chambers and fed one of the six diets at 2300 kJ ME/kg BW0.6/day. Faeces and urine were collected from day 9 to 13 and heat production (HP) was also measured. From day 14 to 15, the pigs were fed 893 kJ ME/kg BW0.6/day to allow them to adapt from the fed to the fasted state. On the last day of each period (day 16), the pigs were fasted and fasting HP was measured. The digestible energy value was 16.0, 17.1 and 15.3 MJ/kg DM, the metabolizable energy value was 14.6, 15.5 and 13.7 MJ/kg DM and the NE value was 10.7, 11.0 and 9.4 MJ/kg DM, for the high‐oil, medium‐oil and low‐oil corn DDGS, respectively. The NE obtained with indirect calorimetry in the present study did not differ from values calculated using previously published prediction equations.  相似文献   

9.
Twelve ruminally cannulated crossbred Angus steers were used to evaluate ruminal fermentation characteristics and diet digestibility when 30% (DM) corn dried distillers grains with solubles (DDGS) containing 0.42 or 0.65% (DM) of dietary S was incorporated into finishing diets based on steam-flaked corn (SFC) or dry-rolled corn (DRC). The study was a replicated, balanced randomized incomplete block design with a 2 × 2 factorial arrangement of treatments. Factors consisted of dietary S concentration (0.42 and 0.65% of DM; 0.42S and 0.65S, respectively) and grain processing method (SFC or DRC). The 0.65S concentration was achieved by adding H(2)SO(4) to DDGS before mixing rations. Steers were assigned randomly to diets and individual, slatted-floor pens, and fed once daily for ad libitum intake. Two 15-d experimental periods were used, each consisting of a 12-d diet adaptation phase and a 3-d sample collection phase. Samples were collected at 2-h intervals postfeeding during the collection phase. Ruminal pH was measured immediately after sampling, and concentrations of ruminal ammonia and VFA were determined. Fecal samples were composited by steer within period and used to determine apparent total tract digestibilities of DM, OM, NDF, CP, starch, and ether extract. Feeding 0.65S tended (P = 0.08) to decrease DMI but resulted in greater apparent total tract digestibilities of DM (P = 0.04) and ether extract (P = 0.03). Ruminal pH increased (P < 0.05) in steers fed 0.65S diets, which may be attributable, in part, to decreased (P = 0.05) VFA concentrations and greater (P < 0.01) ruminal ammonia concentrations when 0.65S was fed, compared with feeding 0.42S. These effects were more exaggerated in steers fed DRC (interaction, P < 0.01), compared with steers fed SFC. Steers fed DRC-0.65S had greater (P < 0.01) acetate concentration than steers fed DRC-0.42S, but acetate concentration was not affected by S concentration when SFC was fed. Propionate concentration was decreased (P < 0.01) in steers fed SFC-0.65S compared with steers fed SFC-0.42S, but dietary S concentration had no effect on propionate concentration when DRC was fed. Butyrate concentration was less (P < 0.01) in steers fed 0.65S diets than in steers fed 0.42S. Lactate concentrations tended (P = 0.06) to decrease in steers fed 0.65S diets. Feeding DDGS with increased S concentration may decrease feed intake and ruminal VFA concentration but increase ruminal ammonia concentration.  相似文献   

10.
Effects of niacin or niacinamide in diets containing either soybean meal, raw whole soybeans or whole soybeans extruded at 132 and 149 C on ruminal bacterial fermentation were examined with a dual-flow continuous culture system. In Exp. 1, soybean sources each provided 50% of total crude protein in diets comprised of 52% concentrate mix, 36% corn silage and 12% alfalfa hay (dry-matter basis). Each diet was supplemented with 0 or 100 mg/kg niacin. Niacin supplementation increased (P less than .05) total nonstructural carbohydrate digestibility and lowered (P less than .05) butyrate concentration. There was also an increase (P less than .10) in amino acid effluent flow from 8,413.3 to 8,665.3 mg/d with addition of niacin to the diet. In Exp. 2, diets were supplemented with 0 or 100 mg/kg of niacin or niacinamide. The total mixed diet was comprised of 60% concentrate mix, 20% corn silage and 20% alfalfa hay (dry matter basis). Acid detergent fiber and cellulose digestibilities and total amino acid effluent flow were higher (P less than .10) with niacinamide supplementation. Niacin or niacinamide had no effect on dry matter and organic matter digestibilities, ammonia-N, total VFA concentration or crude protein degradation. Contrary to results found in other studies, niacin or niacinamide supplementation had no effect on bacterial protein synthesis.  相似文献   

11.
Eight multicannulated heifers (average BW 415 +/- 34 kg) were used in a replicated 4 x 4 Latin square to evaluate fluid milk processing wash water solids (WWS) as a dietary N source. Heifers were fed corn/cottonseed hull-based diets containing soybean meal (control, 0% WWS N) or WWS replacing soybean meal at 33, 67, or 100% of supplemental dietary N. Total tract and ruminal DM and OM digestibilities decreased linearly or cubically (P less than .05) as dietary WWS N increased. Total ruminal VFA concentration (P less than .05) and propionic acid molar proportion (P less than .10) were greater in heifers fed 0 vs 100% WWS N. Heifers fed 0% WWS N had the greatest (P less than .05) ruminal ammonia concentration at all sampling times. Dietary WWS did not affect (P greater than .10) ruminal pH, fluid dilution rate, fluid flow, fluid volume, or turnover time. Total tract N digestibility decreased quadratically (P less than .10) with increasing WWS N in the diet. Supplemental WWS N did not affect (P greater than .10) flow of duodenal ammonia N or bacterial N, or efficiency of microbial N synthesis. Diets containing WWS N resulted in a cubic increase (P less than .10) in duodenal flow of essential amino acids compared with 0% WWS N; however, there were no differences in small intestinal amino acid disappearance. Data indicate that WWS can replace 33% of the soybean meal N in a corn/cottonseed hull-based diet without decreasing ruminal fermentation, fluid digesta kinetics, microbial efficiency, or small intestinal amino acid utilization.  相似文献   

12.
A laboratory silo trial, two lamb metabolism trials and a lamb growth trial were conducted to compare the nitrogen (N) value of swine methane digester effluent (MDE) to that of urea. Using laboratory silos (four/treatment), fermentation characteristics were measured for silages containing cracked corn, ground wheat straw and MDE added at levels of 0, 4, 8 or 12% of silage dry matter (DM). Lactic acid concentration increased linearly with up to 8% MDE addition, but then decreased (P less than .05; quadratic) with 12% MDE. Butyric acid was highest (P less than .05; linear) with 12% MDE, indicating an undesirable fermentation. In a metabolism study, DM, organic matter and N digestibilities and N balance were similar (P greater than .10) between urea and MDE, but DM digestibility was lower (P less than .05) for ensiled diets (52%) than diets fed fresh daily (59.4%). Mean ruminal volatile fatty acid, ruminal ammonia-N and plasma urea-N concentrations were similar (P greater than .10) between urea- and MDE-fed lambs. Plasma urea-N was higher (P less than .05) and ruminal isovaleric acid lower (P less than .05) in animals fed ensiled than fresh diets. In the second metabolism trial, digestibility of N was lowest (P less than .05) for MDE (51.2%) and highest for soybean meal (SBM; 71.8%), but N balance was similar among all diets.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

13.
Eight rumen-cannulated steers (initial wt 330kg) were adapted to a mixed alfalfa-grass hay diet for 30 d and abruptly changed to complete mixed diets of corn silage, snapped ear corn and a corn-based supplement to determine the effects of buffers on diet adaptation, digestion and ruminal metabolism. The diets contained: 1) no buffer, 2) .5% magnesium oxide (MgO), 3) 1.0% sodium bicarbonate (NaHCO3) and 4) .5% MgO and 1.0% NaHCO3, as a percentage of diet dry matter (DM). Digestion, metabolism and ruminal characteristics were measured in each of 2 wk immediately after the diet change. The animals were then adapted to the mixed alfalfa-grass hay diet, re-randomized and assigned to the four diets, thus four steers consumed each diet. Intakes and digestibilities of DM were generally greater for the diets containing buffers. The most notable differences were a greater DM intake with added NaHCO3 and an improved DM digestibility with added MgO. The higher DM digestibility with MgO was apparently related to improved neutral detergent fiber (NDF) and starch digestion. Fecal pH was significantly increased with MgO addition. Because of the greater intake and digestibilities, the amount of DM, NDF, and starch digested tended to be greater for the buffered diets. There were no diet X week interactions for intake and digestibilities, thus the responses observed existed during both wk 1 and 2 after the change in diets. In general, intake and digestibilities were greater in wk 2 than in wk 1 for all diets.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

14.
The present study was conducted to determine the net energy (NE) values and energy efficiency of wheat bran (WB), sugar beet pulp (SBP), corn gluten feed (CGF), soybean hulls (SBH), and defatted rice bran (DFRB) fed to pregnant sows. Thirty‐six multiparous pregnant sows were randomly assigned to six dietary treatments with six replicates per treatment. Each period lasted for 21 days including 14 days for adaptation. On day 15, sows were moved into respiration chambers for heat production (HP) measurement and provided feed at 544 kJ/kg BW0.75/day. On day 20, sows were fasted to measure the fasting heat production (FHP). Experimental diets included corn‐soybean meal basal diet and five diets containing 29.20% WB, SBP, CGF, SBH, and DFRB, respectively. Results showed that inclusion of WB, SBP, CGF, SBH, and DFRB to basal diet decreased (p < 0.05) the apparent total tract digestibility of energy and nutrients. The average adjusted total HP and FHP were 418 kJ/kg BW0.75/day and 326 kJ/kg BW0.75/day, respectively. The average NE:ME ratio of experiment diets was 82.5%. In conclusion, the NE values of WB, SBP, CGF, SBH, and DFRB were 9.05, 8.59, 8.37, 7.64, and 7.93 MJ/kg DM, respectively.  相似文献   

15.
Nutritive characteristics of pearl millet grain in beef cattle diets   总被引:1,自引:0,他引:1  
Two trials were conducted to compare pearl millet grain with corn and grain sorghum in cattle diets. Grain portions of diets in metabolism and feedlot experiments contained 73% corn and 6% soybean meal (C); 76.2% grain sorghum and 2.8% soybean meal (GS); and 79% pearl millet (PM). In the metabolism trial (replicated 3 x 3 latin squares; six steers), apparent digestibilities of DM and OM were higher (P less than .05) for C than for GS or PM diets. Ether extract and CP digestibilities were higher (P less than .05) for C and PM than GS. Dietary TDN was higher (P less than .05) for C compared with GS or PM diets. Fecal N was higher (P less than .05) for GS than for C or PM, urinary N was higher (P less than .05) for PM than C or GS, but retained N was similar (P greater than .05) for C, GS and PM diets. In a 90-d feedlot trial (18 individually fed heifers), a trend was observed for higher (P less than .20) ADG on C compared with PM; however, feed/gain was similar for C, GS and PM diets (8.2, 9.1 and 8.5 kg feed/kg gain, respectively). Ruminal fluid acetate:propionate ratios were lower (P less than .05) at 3.5 and 7 h postfeeding for PM compared with C or GS diets on d 83. Pearl millet grain may be used as a feed grain for beef cattle, but diets should be formulated to efficiently utilize the high quantity of protein (about 14% of DM) in this grain as a substitute for supplemental protein.  相似文献   

16.
The experiment was conducted to investigate the influence of maize (Zea mays), sorghum (Sorghum bicolor) and millet (Pennisetum americannum) silages with or without concentrate on nutrients intake, digestibility, nitrogen balance and weight gain in Sipli sheep. Six experimental diets were formulated having 100% maize silage (MS), maize silage and concentrate as 50:50 (MSC), 100% sorghum silage (SS), sorghum silage and concentrate as 50:50 (SSC), 100% millet silage (MiS) and millet silage and concentrate as 50:50 (MiSC), respectively. For this purpose, 24 Sipli lambs were randomly allotted to six experimental diets in a completely randomized design for 90 days, four lambs per diet. The results indicated that among various silage diets, lambs fed MS diet consumed higher dry matter (DM) than those fed SS and MiS diets. Likewise, lambs offered MSC had higher dry matter intake than those fed SSC and MiSC diets. Crude protein (CP) and neutral detergent fibre (NDF) consumed by the lambs also followed the similar trend. Higher DM, CP and NDF digestibilities were also observed in lambs fed MS and MSC diets than those fed SS, SSC, MiS and MiSC diets. Overall digestibilities of DM, CP and NDF were higher in experimental diets containing silage with concentrate. Lambs fed MS diet had 2.79 g/day and 4.45 g/day higher N retention than those fed SS and MiS, respectively. Similarly, lambs fed MSC diet had 2.24 g/day and 5.12 g/day higher N retention than those fed SSC and MiSC diets, respectively. The results showed that lambs fed MSC gained more daily weight gain had better feed conversion ratio than those fed MS, SS, SSC, MiS and MiSC diets. The findings of the present study indicated that lambs fed MSC diet had higher nutrients intake, digestibility, nitrogen balance and weight gain.  相似文献   

17.
The effect of ruminal degradable protein source in roughage diets on nutrient digestibility and animal growth was evaluated in two trials using lambs. In trial 1, two qualities of alfalfa and smooth brome hays replaced 0, 15, 30 or 100% of an ammonia (NH3)-treated corn cob negative control diet in a digestion trial using 26 mixed breed wethers (31.8 kg). Fifteen or 30% inclusion of hay increased (P less than .01) dry matter (DM) intake, regardless of hay type or quality. Cell wall intake was highest for 100% high quality brome hay. Positive associative action on digestibility of DM and cell walls occurred with 30% of each hay tested when diets were fed ad libitum. Measured at equal intakes, DM and cell wall digestibilities were affected by forage type X level and forage quality X level interactions (P less than .01), which showed that the magnitude of associative action was greater for 30% of high vs low quality and alfalfa vs brome hay, respectively. Magnitude of associative response on cell wall digestibility was more highly correlated to degradable N (r = .88) than cell solubles (r = .64) content of hay. In trial 2, 72 young growing lambs were allotted to three sources of supplemental ruminal degradable N (NH3, casein, corn steep liquor) superimposed upon two levels of alfalfa hay (0 or 30% of diet DM). Diets containing 0% alfalfa were supplemented with ruminal escape protein equivalent to that supplied by 30% alfalfa hay.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

18.
Two trials were conducted to evaluate effects of, and interactions between, level and source of fiber in the diet on ruminal environment, microbial protein synthesis, nutrient digestion and flow of digesta through the gastrointestinal tract of multiple-fistulated sheep (trial 1; 4 X 4 Latin square design) and on ruminal, digestive and metabolic characteristics of early-weaned lambs (trial 2; randomized complete block design; 3 periods). All diets tested were pelleted and were formulated to contain either 39% or 25% neutral detergent fiber (NDF), with corncobs or cottonseed hulls (CSH) as the major NDF (roughage) sources. In trial 1, dry-matter (DM) and organic-matter (OM) digestibilities were not different (P greater than .05) among treatments. Digestibility of NDF was higher (P less than .05) with high-fiber. Bacterial N synthesis (g N/kg OM truly digested) was not different (P greater than .05) among treatments. Molar proportion acetate was higher (P less than .05) and molar proportion propionate lower (P less than .05) when sheep were fed high-fiber diets. In trial 2, apparent DM digestibility was higher (P less than .05) for lambs fed diets containing corncobs. Energy digestibility was higher (P less than .05) at the low-fiber level and for lambs fed diets containing corncobs. Apparent NDF digestibility by lambs was higher (P less than .05) at the high-fiber level and for lambs fed diets containing corncobs. Nitrogen retained (percentage of N intake) was higher (P less than .05) for lambs fed diets containing CSH. Ruminal pH and molar proportion acetate were higher (P less than .05) and molar proportion propionate lower (P less than .05) for lambs fed high-fiber diets. Although responses to corncob vs CSH inclusion in high-energy pelleted diets differ, both roughages are effective as fiber sources in sheep diets.  相似文献   

19.
Two experiments were conducted to compare the nutritional adequacy of a genetically improved high-lysine, high-oil corn (HLHOC; .408% lysine, 6.21% fat, as-fed basis) and a high-oil corn (HOC; .289% lysine, 5.97% fat, as-fed basis) for young growing pigs. Experiment 1 used four non-littermate barrows (initially 20.0 kg BW) fitted with ileal T-cannulas in a crossover-designed digestion study. The .75% total lysine diets contained 8.5% casein and an equal amount of lysine (.25%) from the test corn. Apparent ileal digestibilities of amino acids, GE, DM, and CP were similar (P > .10) between diets. Apparent ileal lysine digestibilities were 65 and 71% for the HOC and HLHOC, respectively, assuming the lysine in casein to be 100% digestible. Experiment 2 used 100 barrows reared in a segregated early-weaning environment (initially 8.3 kg BW and 27 d of age) to evaluate five corn-soybean meal-based diets in a 2 x 2 factorial arrangement with main effects being corn type and dietary lysine (.80 or 1.15% digestible lysine). The fifth diet consisted of the .80% digestible lysine HOC diet supplemented with .23% additional L-lysine x HCl (.975% digestible lysine) to verify that lysine was the limiting amino acid in the low-lysine diets. Increasing digestible lysine from .80 to 1.15% increased (P < .001) ADG and gain/feed (G/F) regardless of corn variety. Combined ADG and G/F were .347 kg and .641 and .443 kg and .790 for the .80 and 1.15% digestible lysine diets, respectively. Within lysine level, corn type did not affect ADG, ADFI, or G/F (P > .10). The results of these studies indicate that the lysine in HLHOC is as available as the lysine in HOC and that HLHOC can be used successfully in swine diets.  相似文献   

20.
Two experiments were conducted to determine effects of oilseeds or soybean hulls on growth and reproductive performance of heifers and utilization of corn silage diets by growing beef cattle. In Exp. 1, 96 beef heifers (249 kg of BW) were used in a randomized complete block design. Treatments were as follows: 1) corn and soybean meal (CON) at 56% of the DMI; 2) whole linted cottonseed at 15% of the DMI (COT); 3) whole raw soybeans at 15% of the DMI (SB); or 4) pelleted soyhulls at 30% of the DMI (SH). Diets were formulated to be isonitrogenous (13.8% CP) and fed to achieve target weights equal to 65% of expected mature BW at the time of AI. Estrus was synchronized and heifers were inseminated by AI in response to detected estrus. Because the energy value for SH was underestimated, cumulative ADG for SH (1.03 kg/d) was greater (P < or = 0.03) than for CON (0.89 kg/d), COT (0.87 kg/d), or SB (0.86 kg/d). Treatment did not affect (P > 0.10) the proportion of pubertal heifers at the beginning of the breeding season: CON (60%), COT (53%), SB (69%), SH (71%), or first-service conception rates: CON (37%); COT (38%); SB (57%); SH (42%). In Exp. 2, crossbred steers (387 kg) were used in a 6 x 6 Latin square design to evaluate the effects of supplemental nutrient source on utilization of corn silage diets. Treatments included diets used in Exp. 1, plus a negative control (soybean meal at 10% of the DMI; SIL) and whole raw soybeans at 25% of the DMI (SB25). Diets were formulated to be isonitrogenous (13.8% CP) except SB25 (17% CP), and were fed twice daily at 1.8 x NEm. Oilseed inclusion decreased (P < 0.10) acetate:propionate ratios and (P < 0.10) apparent ruminal OM and ruminal and total tract NDF digestibilities. The CON and SH diets had the greatest (P < 0.10) total-tract OM digestibilities. Microbial efficiencies were greatest (P < 0.10), and long chain fatty acid flow to the duodenum increased (P < 0.10) with oilseeds. Biohydrogenation averaged 90.4% and increased slightly (P < 0.10) when oilseeds were added to the diet. Adding oilseeds or soybean hulls to corn silage-based diets did not affect reproductive performance of heifers. Although oilseed additions increased total fatty acid flow to the duodenum, a high degree of biohydrogenation occurred, greatly increasing C18:0, with only marginal increases in unsaturated fatty acid flow. Depending on diet and feeding conditions, inclusion of whole oilseeds may not be an effective means of increasing linoleic acid supply for ruminant animals.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号