首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The objective of this study was to develop a culture system which could support buffalo spermatogonia differentiation into spermatids in vitro. Testes from 3‐ to 5‐month‐old buffaloes were decapsulated and seminiferous tubules were enzymatically dissociated to recover spermatogonia and sertoli cells. The cells were cultured in modified Dulbecco modified Eagle medium supplemented with different concentrations of foetal bovine serum, retinol, testosterone for 2 months at 37°C. Spermatogonia and sertoli cells were identified with an antibody against c‐kit or GATA4, respectively. The viability of spermatogonia in the media supplemented with different concentrations of serum was all significantly higher (p < 0.05) compared with that in the medium without serum. A‐paired or A‐aligned spermatogonia and spermatogonial colonies (AP‐positive) were observed after 7–10 days of culture and spermatid‐like cells with a flagellum (6–8 μm) appeared after 30 days of culture. For cultured conditions, retinol could not significantly promote the formation of spermatid‐like cells (p > 0.05), whereas supplementation of testosterone could significantly promote (p < 0.05) the formation of spermatid‐like cells after 41 days of culture. The expression of the spermatid‐specific marker gene (PRM2) was identified after 30 days of culture by RT‐PCR. Yet, the transition protein 1 (TP1, a haploid makers) was not detected. Meanwhile, spermatids developed in vitro were also confirmed by Raman spectroscopy. These results suggest that buffalo spermatogonia could differentiate into spermatids in vitro based on the analysis of their morphology, PRM2 expression and Raman spectroscopy. Yet, the normality of the spermatid‐like cells was not supported by TP1 expression.  相似文献   

2.
3.
For investigating the effects of physiologically relevant heat shock, buffalo oocytes/embryos were cultured at 38.5°C (control) or were exposed to 39.5°C (Group II) or 40.5°C (Group III) for 2 h once every day throughout in vitro maturation (IVM), fertilization (IVF) and culture (IVC). Percentage of oocytes that developed to 8‐cell, 16‐cell or blastocyst stage was lower (p < 0.05) and the number of apoptotic nuclei was higher (p < 0.05) for Group III > Group II > controls. At both 8–16‐cell and blastocyst stages, relative mRNA abundance of stress‐related genes HSP 70.1 and HSP 70.2 and pro‐apoptotic genes CASPASE‐3, BID and BAX was higher (p < 0.05) in Groups III and II than that in controls with the exception of stress‐related gene HSF1. Expression level of anti‐apoptotic genes BCL‐XL and MCL‐1 was also higher (p < 0.05) in Groups III and II than that in controls at both 8–16‐cell and blastocyst stages. Among the genes related to embryonic development, at 8–16‐cell stage, the expression level of GDF9 was higher (p < 0.05) in Group III than that in controls, whereas that of GLUT1, ZAR1 and BMP15 was not significantly different among the three groups. At the blastocyst stage, relative mRNA abundance of GLUT1 and GDF9 was higher (p < 0.05) in Group II than that in controls, whereas that of ZAR‐1 and BMP15 was not affected. The results of this study demonstrate that exposure of buffalo oocytes and embryos to elevated temperatures for duration of time that is physiologically relevant severely compromises their developmental competence, increases apoptosis and affects stress‐, apoptosis‐ and development‐related genes.  相似文献   

4.
Techniques for in vitro production (IVP) of buffalo embryos adopting the procedures developed in cattle have received increasing interest in the recent times. A high oocyte maturation, fertilization and cleavage rate and a low rate of blastocyst yield and calving following transfer of in vitro produced buffalo embryos have been obtained. The efficiency of IVP in buffalo is much lower than that in cattle. Several problems need to be resolved before IVP technology can be used regularly in buffalo breeding. This review attempts to present an overview of the different techniques used in buffalo to produce transferable embryos in vitro, namely in vitro maturation and fertilization of immature oocytes and in vitro development of the resulting cleaved embryos to the blastocyst stage before transfer. The problems associated with IVP, the possible solutions and the new biotechniques linked to IVP are discussed.  相似文献   

5.
Trichostatin A (TSA), a histone deacetylase inhibitor, has been widely used to improve the cloning efficiency in several species. This brings our attention to investigation of the effects of TSA on developmental potential of swamp buffalo cloned embryos. Swamp buffalo cloned embryos were produced by electrical pulse fusion of male swamp buffalo fibroblasts with swamp buffalo enucleated oocytes. After fusion, reconstructed oocytes were treated with 0, 25 or 50 nM TSA for 10 h. The results showed that there was no significant difference in the rates of fusion (82–85%), cleavage (79–84%) and development to the 8-cell stage (59–65%) among treatment groups. The highest developmental rates to the morula and blastocyst stages of embryos were found in the 25 nM TSA-treated group (42.7 and 30.1%, respectively). We also analyzed the DNA methylation level in the satellite I region of donor cells and in in vitro fertilized (IVF) and cloned embryos using the bisulfite DNA sequencing method. The results indicated that the DNA methylation levels in cloned embryos were significantly higher than those of IVF embryos but approximately similar to those of donor cells. Moreover, there was no significant difference in the methylation level among TSA-treated and untreated cloned embryos. Thus, TSA treatments at 25 nM for 10 h could enhance the in vitro developmental potential of swamp buffalo cloned embryos, but no beneficial effect on the DNA methylation level was observed.  相似文献   

6.
The objective of this study was to explore the possibility of producing wild buffalo embryos by interspecies somatic cell nuclear transfer (iSCNT) through handmade cloning using wild buffalo somatic cells and domestic buffalo (Bubalus bubalis) oocytes. Somatic cells derived from the ear skin of wild buffalo were found to express vimentin but not keratin and cytokeratin‐18, indicating that they were of fibroblast origin. The population doubling time of skin fibroblasts from wild buffalo was significantly (p < 0.05) higher, and the cell proliferation rate was significantly (p < 0.05) lower compared with that of skin fibroblasts from domestic buffalo. Neither the cleavage (92.6 ± 2.0% vs 92.8 ± 2.0%) nor the blastocyst rate (42.4 ± 2.4% vs 38.7 ± 2.8%) was significantly different between the intraspecies cloned embryos produced using skin fibroblasts from domestic buffalo and interspecies cloned embryos produced using skin fibroblasts from wild buffalo. However, the total cell number (TCN) was significantly (p < 0.05) lower (192.0 ± 25.6 vs 345.7 ± 42.2), and the apoptotic index was significantly (p < 0.05) higher (15.1 ± 3.1 vs 8.0 ± 1.4) for interspecies than that for intraspecies cloned embryos. Following vitrification in open‐pulled straws (OPS) and warming, although the cryosurvival rate of both types of cloned embryos, as indicated by their re‐expansion rate, was not significantly different (34.8 ± 1.5% vs 47.8 ± 7.8), the apoptotic index was significantly (p < 0.05) higher for vitrified–warmed interspecies than that for corresponding intraspecies cloned embryos (48.9 ± 7.2 vs 23.9 ± 2.8). The global level of H3K18ac was significantly (p < 0.05) lower in interspecies cloned embryos than that in intraspecies cloned embryos. The expression level of HDAC1, DNMT3a and CASPASE3 was significantly (p < 0.05) higher, that of P53 was significantly (p < 0.05) lower in interspecies than in intraspecies embryos, whereas that of DNMT1 was similar between the two types of embryos. In conclusion, these results demonstrate that wild buffalo embryos can be produced by iSCNT.  相似文献   

7.
8.
9.
The objective of this study was to examine the telomerase activity in swamp buffalo oocytes and pre-implantation stage embryos derived from in vitro fertilization (IVF), somatic cell nuclear transfer (NT) and parthenogenetic activation (PA). Immature and mature oocytes, and embryos at the 2-4 cell, 8-16 cell, morula and blastocyst stages produced by IVF, NT and PA were collected and the telomerase activity was assayed by using a Telomerase PCR ELISA kit. Telomerase activity was detected in all developmental stages evaluated from immature oocytes to blastocyst stage embryos. Telomerase activity was detected in higher amounts in immature as compared with mature oocytes (p < 0.05). Embryos derived from NT showed a profile of telomerase activity similar to that of IVF. In IVF and NT embryos, telomerase activity was low in the 2-4 cell and 8-16 cell stages, but the activity significantly increased (p < 0.05) at the morula stage, reaching its highest level at the blastocyst stage. In PA embryos, low levels of telomerase activity were detected from the 2-4 cell to the morula stage, and the highest level of telomerase activity was found at the blastocyst stage. Telomerase activity in NT blastocysts is higher than that derived from IVF and the activity is highest in PA blastocysts. These results suggest that the successful reprogramming of telomerase activity in buffalo NT embryos follow a pattern similar to that in embryos derived from IVF and PA.  相似文献   

10.
When buffalo embryonic stem (ES) cell–like cells that expressed surface markers SSEA‐4, TRA‐1‐60, TRA‐1‐81, CD9 and CD90 and intracellular markers OCT4, SOX2 and FOXD3, as shown by immunofluorescence, and that expressed REX‐1 and NUCLEOSTEMIN as confirmed by RT‐PCR, were subjected to suspension culture in hanging drops in absence of LIF and buffalo foetal fibroblast feeder layer support, they differentiated to form three‐dimensional embryoid bodies (EBs). Of 231 EBs examined on Day 3 of suspension culture, 141 (61.3 ± 3.09%) were of compact type, whereas 90 (38.4 ± 3.12%) were of cystic type. The cells obtained from EBs were found to express NF‐68 and NESTIN (ectodermal lineage), BMP‐4 and α‐skeletal actin (mesodermal lineage), and α‐fetoprotein, GATA‐4 and HNF‐4 (endodermal lineage). When these EBs were cultured on gelatin‐coated dishes, they spontaneously differentiated to several cell types such as epithelial‐ and neuron‐like cells. When EBs were cultured in the presence of 1 or 2% DMSO or 10?8 m or 10?7 m retinoic acid for 25 days, ES cells could be directed to form muscle cell–like cells, the identity of which was confirmed by expression of α‐actinin by immunofluorescence and of MYF‐5, MYOD and MYOGENIN genes by RT‐PCR. MYOD was first detected on Day 10 in both treatment groups and on Day 15 in controls, whereas MYOGENIN was first detected on Day 10, Day 15 and Day 25 in the presence of retinoic acid, in the presence of DMSO and in controls, respectively. The present study demonstrates the ability of buffalo ES cell–like cells to undergo directed differentiation to cells of skeletal myogenic lineage.  相似文献   

11.
Ovarian Follicular Dynamics in Buffalo Cows (Bubalus bubalis)   总被引:1,自引:0,他引:1  
Follicular growth in Egyptian buffalo cows was monitored using genital tracts from 200 buffalo cows collected immediately after slaughter. According to the morphological appearance of the corpus luteum (CL), the corresponding oestrous cycle was divided into four stages: A (days 1–4), B (days 5–10), C (days 11–17) and D (days 18–21). Within these stages the follicular population on the ovaries was evaluated and the dominant follicle (DF) determined in all recovered ovaries. The functional status of the DF and the largest sub‐dominant follicles was examined by histological examination in 31 cases, and Radio Immunoassay (RIA) analyses for estradiol‐17β (E2) and progesterone (P4) was performed in the follicular fluid in 23 of the DF. The results showed that DFs changed their endocrine character within the stages of the oestrous cycle. The DFs between days 5 and 10 were functionally active (E2‐dominant; non‐atretic) in most of the cases. Between days 11 and day 17 half of the DFs became functionally inactive (P4‐dominant; atretic). At days 18–21 all of the DF became functionally active and non‐atretic. In the specimens that carried two large follicles one of them was regularly atretic and P4‐dominant whereas the other was non‐atretic and E2‐dominant. Between days 18 and 21 all ovaries examined showed at least one large follicle. These findings suggest that in most of the cases follicular dynamics occurs in two wave‐like patterns in the Egyptian buffalo cows.  相似文献   

12.
The objective of this study was to optimize the activation protocol for buffalo oocytes after intracytoplasmic sperm injection (ICSI). The release of the second polar body (PB) at 3, 6 and 9 h after ICSI of in‐vitro matured oocytes activated either with 5 μm ionomycin (Io) or with 7% ethanol (EtOH) was preliminary examined. The highest rate of second PB extrusion occurred at 3 h of activation, and the second PB extrusion in EtOH group was significantly higher than that in Io group. Oocytes that extruded the second PB were selected and cultured either with 1.9 mm 6‐dimethylaminopurine (6‐DMAP) for 3 h or with 10 μg/ml cycloheximide (CHX) for 5 h. Significantly higher rate of oocytes formed 2 pronuclei in EtOH combined with CHX (EtOH + CHX) (62%) group compared to those of Io + CHX (42%) and EtOH + 6‐DMAP (48%) groups (p < 0.01) whereas Io + 6‐DMAP group showed intermediate value (58%). Significantly higher blastocyst formation rates were obtained in Io + 6‐DMAP (29%) and EtOH + CHX (24%) groups than in Io + CHX (6%) and EtOH + 6‐DMAP (17%) groups. Our results indicate that buffalo ICSI oocytes are effectively activated by combination treatment of Io with 6‐DMAP and EtOH with CHX resulting in the highest cleavage and blastocyst formation rates.  相似文献   

13.
14.
Cells are blessed with a group of stress protector molecules known as heat shock proteins (HSPs), amongst them HSP70, encoded by HSPA‐1A gene, is most abundant and highly conserved protein. Variety of stresses hampers the developmental competence of embryos under in vivo and in vitro conditions. Present work was designed to study the quantitative expression of HSPA‐1A mRNA in immature oocytes (IMO), matured oocytes (MO), in vitro produced (IVP) and in vivo‐derived (IVD) buffalo embryos to assess the level of stress to which embryos are exposed under in vivo and in vitro culture conditions. Further, HSPA‐1A gene sequence was analysed to determine its homology with other mammalian sequences. The mRNA expression analysis was carried out on 72 oocytes (40 IMO; 32 MO), 76 IVP and 55 IVD buffalo embryos. Expression of HSPA‐1A was found in oocytes and throughout the developmental stages of embryos examined irrespective of the embryo source; however, higher (p < 0.05) expression was observed in 8–16 cell, morula and blastocyst stages of IVP embryos as compared to IVD embryos. Phylogenetic analysis of bubaline HSPA‐1A revealed that it shares 91–98% identity with other mammalian sequences. It can be concluded that higher level of HSPA‐1A mRNA in IVP embryos in comparison with in vivo‐derived embryos is an indicator of cellular stress in IVP system. This study suggests need for further optimization of in vitro culture system in which HSPA‐1A gene could be used as a stress biomarker during pre‐implantation development.  相似文献   

15.
16.
17.
18.
将从绵羊卵巢采集的卵母细胞成熟培养22~24h;成熟卵母细胞去除颗粒细胞,选择排出第一极体的卵母细胞,用5μmol/L A23187(5min)联合2mmol/L 6-DMAP(4h)进行孤雌激活;激活后的卵母细胞在培养液中进行培养。研究氨基酸和半胱胺对绵羊胚胎早期体外发育的影响。结果显示:(1)氨基酸能促进胚胎体外发育,0~24h培养添加抑制卵母细胞的卵裂,24h后培养添加比全过程培养添加更能促进胚胎体外发育;(2)24~72h培养添加必需氨基酸(EAA),能促进胚胎体外发育;(3)半胱胺添加量0~100μmol/L,随浓度增高各项发育指标呈增高趋势,添加100~200μmol/L,随浓度增高各项发育指标呈下降趋势。  相似文献   

19.
氨基酸和半胱胺对绵羊胚胎体外发育的影响   总被引:2,自引:0,他引:2  
将从绵羊卵巢采集的卵母细胞成熟培养22-24h;成熟卵母细胞去除颗粒细胞,选择排出第一极体的卵母细胞,用5μmol/LA23187(5min)联合2mmol/L 6-DMAP(4h)进行孤雌激活;激活后的卵母细胞在培养液中进行培养。研究氨基酸和半胱胺对绵羊胚胎早期体外发育的影响。结果显示:(1)氨基酸能促进胚胎体外发育,0-24h培养添加抑制卵母细胞的卵裂,24h后培养添加比全过程培养添加更能促进胚胎体外发育;(2)24~72h培养添加必需氨基酸(EAA),能促进胚胎体外发育;(3)半胱胺添加量0~100μmol/L,随浓度增高各项发育指标呈增高趋势,添加100~200μmol/L,随浓度增高各项发育指标呈下降趋势。  相似文献   

20.
Histological sections were studied from 4 sites of the rumen of 22 buffaloes, aged from 1 day to over 18 years of age. The sections were stained with Masson's trichrome stain. A definite layer of smooth muscle cells, representing the lamina muscularis mucosae separating the propria from the submucosa and extending into the ruminai papillae, was observed in buffaloes over 1.5 years of age. In animals over 10 years, the smooth muscle cells were very thin and elongated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号