首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 734 毫秒
1.
Bimazubute, M., Cambier, C., Baert, K., Vanbelle, S., Chiap, P., Gustin, P. Penetration of oxytetracycline into the nasal secretions and relationship between nasal secretions and plasma oxytetracycline concentrations after oral and intramuscular administration in healthy pigs. J. vet. Pharmacol. Therap. 34 , 176–183. The penetration of oxytetracycline (OTC) in plasma and nasal secretions of healthy pigs was evaluated during the first study, in response to oral dose of 20 mg of OTC per kg of body weight (bwt) per day as a 400 mg/kg feed medication (n = 5) and to intramuscular (i.m.)‐administered formulations at 10 mg/kg bwt (n = 5), 20 mg/kg bwt (n = 5), 40 mg/kg bwt (n = 5). Concentrations of OTC in plasma and nasal secretions were determined by a validated ultra‐high performance liquid chromatography associated to tandem mass spectrometry method (UPLC/MS/MS). The objectives were to select the efficacy treatment and to evaluate the possibility to predict nasal secretions concentrations from those determined in plasma. The animals were housed together in each experiment. In each group, the treatment was administered once daily during 6 consecutive days, and nasal secretions and plasma were collected after 4 and 24 h at day 2 and day 6. For oral administration, only one medicated feed was prepared and distributed to all the animals together and was consumed in approximately 1 h. To meet recommendations of efficacy for OTC in nasal secretions, only the i.m. of 40 mg/kg bwt associated to an inter‐dosing interval of 24 h provides and maintains concentrations in nasal secretions ≥1 μg/mL, appropriate to the MIC 50 and 90 of Pasteurella multocida and Bordetella bronchiseptica, respectively, the main pathological strains in nasal secretions. It has been demonstrated that, using a generalized linear mixed model (GLMM), OTC in the nasal secretions (μg/mL) can be predicted taking into account the OTC concentrations in plasma (μg/mL), according to the following equation: OTCnasal secretions = 0.28 OTCplasma?1.49. In a second study, the pharmacokinetic behaviour of OTC in plasma and nasal secretions of healthy pigs was investigated, after single‐dose i.m. of 40 mg/kg bwt of the drug. Blood samples and nasal secretions were collected at predetermined times after drug administration. The data collected in 10 pigs for OTC were subjected to non‐compartmental analysis. In plasma, the maximum concentration of drug (Cmax), the time at which this maximum concentration of drug (Tmax) was reached, the elimination half‐life (t½) and the area under the concentration vs. time curve (AUC) were, respectively, 19.4 μg/mL, 4.0, 5.1 h and 150 μg·h/mL. In nasal secretions, Cmax, Tmax, t½ and AUC were, respectively, 6.29 μg/mL, 4.0, 6.6 h and 51.1 μg·h/mL.  相似文献   

2.
Griffith, J.E., Higgins, D.P., Li, K.M., Krockenberger, M.B., Govendir, M. Absorption of enrofloxacin and marbofloxacin after oral and subcutaneous administration in diseased koalas (Phascolarctos cinereus). J. vet. Pharmacol. Therap. 33 , 595–604. Koalas (n = 43) were treated daily for up to 8 weeks with enrofloxacin: 10 mg/kg subcutaneously (s.c.), 5 mg/kg s.c., or 20 mg/kg per os (p.o.); or marbofloxacin: 1.0–3.3 mg/kg p.o., 10 mg/kg p.o. or 5 mg/kg s.c. Serial plasma drug concentrations were determined on day 1 and again at approximately 2 weeks, by liquid chromatography. The median (range) plasma maximum concentrations (Cmax) for enrofloxacin 5 mg/kg s.c. and 10 mg/kg s.c. were 0.83 (0.68–1.52) and 2.08 (1.34–2.96) μg/mL and the median (range) Tmax were 1.5 h (1–2) and 1 h (1–2) respectively. Plasma concentrations of orally dosed marbofloxacin were too low to be quantified. Oral administration of enrofloxacin suggested absorption rate limited disposition pharmacokinetics; the median (range) Cmax for enrofloxacin 20 mg/kg p.o. was 0.94 (0.76–1.0) μg/mL and the median (range) Tmax was 4 h (2–8). Oral absorption of both drugs was poor. Plasma protein binding for enrofloxacin was 55.4 ± 1.9% and marbofloxacin 49.5 ± 5.3%. Elevations in creatinine kinase activity were associated with drug injections. Enrofloxacin and marbofloxacin administered at these dosage and routes are unlikely to inhibit the growth of chlamydial pathogens in vivo.  相似文献   

3.
The objective of this study has been to determine the influence of food and ions on the pharmacokinetics of enrofloxacin (ENRO) in turkeys, administered per os at a dose of 10 mg/kg of body weight (b.w.). Co-administration of ENRO with ions or with food significantly retarded its absorption, and the interaction was more pronounced when the drug was given together with food. The bioavailability of ENRO was 65.78 ± 7.81% and 47.99 ± 9.48% with ions and food, respectively. The maximum concentration (Cmax) in plasma of animals exposed to ions reached 0.87 ± 0.26 μg/ml in a tmax of 2.07 ± 0.76 h; in animals which were fed while medicated, the analogous parameters were 0.36 ± 0.13 μg/ml and 8.06 ± 3.08 h. The PK/PD analysis demonstrated that a decrease in the concentration of ENRO in turkeys’ blood due to the interaction with ions or food might impair the drug's clinical efficacy toward some pathogenic microorganisms in turkeys if a routine dose of 10 mg ENRO/kg b.w. is administered.  相似文献   

4.
The pharmacokinetic–pharmacodynamic (PK/PD) modeling of enrofloxacin data using mutant prevention concentration (MPC) of enrofloxacin was conducted in febrile buffalo calves to optimize dosage regimen and to prevent the emergence of antimicrobial resistance. The serum peak concentration (Cmax), terminal half‐life (t1/2K10), apparent volume of distribution (Vd(area)/F), and mean residence time (MRT) of enrofloxacin were 1.40 ± 0.27 μg/mL, 7.96 ± 0.86 h, 7.74 ± 1.26 L/kg, and 11.57 ± 1.01 h, respectively, following drug administration at dosage 12 mg/kg by intramuscular route. The minimum inhibitory concentration (MIC), minimum bactericidal concentration, and MPC of enrofloxacin against Pasteurella multocida were 0.055, 0.060, and 1.45 μg/mL, respectively. Modeling of ex vivo growth inhibition data to the sigmoid Emax equation provided AUC24 h/MIC values to produce effects of bacteriostatic (33 h), bactericidal (39 h), and bacterial eradication (41 h). The estimated daily dosage of enrofloxacin in febrile buffalo calves was 3.5 and 8.4 mg/kg against P. multocida/pathogens having MIC90 ≤0.125 and 0.30 μg/mL, respectively, based on the determined AUC24 h / MIC values by modeling PK/PD data. The lipopolysaccharide‐induced fever had no direct effect on the antibacterial activity of the enrofloxacin and alterations in PK of the drug, and its metabolite will be beneficial for its use to treat infectious diseases caused by sensitive pathogens in buffalo species. In addition, in vitro MPC data in conjunction with in vivo PK data indicated that clinically it would be easier to eradicate less susceptible strains of P. multocida in diseased calves.  相似文献   

5.
The in-vitro activity of enrofloxacin against 117 strains of bacteria isolated from bustards was determined. Minimum inhibitory concentrations for 72% of the Proteus spp., E. coli, Salmonella spp. and Klebsiella spp. (n = 61) and for 48% of the Streptococci spp. and Staphylococci spp. (n = 31) were 0.5 μ g/mL. The minimum inhibitory concentration (MIC) of 76% of Pseudomonas spp. (n = 25) was 2 μg/mL. Fourteen strains were resistant to concentrations 128 μg/mL. The elimination half-lives (t½ elim β) (mean± SEM) of 10 mg/kg enrofloxacin in eight houbara bustards (Chlamydotis undulata) were 6.80± 0.79, 6.39± 1.49 and 5.63± 0.54 h after oral (p.o.), intramuscular (i.m.) and intravenous (i.v.) administration, respectively. Enrofloxacin was rapidly absorbed from the bustard gastro-intestinal tract and maximum plasma concentrations of 1.84± 0.16 μg/mL were achieved after 0.66± 0.05 h. Maximum plasma concentration after i.m. administration of 10 mg/kg was 2.75± 0.11 μg/mL at 1.72± 0.19 h. Maximum plasma concentration after i.m. administration of 15 mg/kg in two birds was 4.86 μg/mL. Bioavailability was 97.3± 13.7% and 62.7± 11.1% after i.m. and oral administration, respectively. Plasma concentrations of enrofloxacin 0.5 μg/mL were maintained for at least 12 h for all routes at 10 mg/kg and for 24 h after i.m. administration at 15 mg/kg. Plasma enrofloxacin concentrations were monitored during the first 3 days of treatment in five houbara bustards and kori bustards (Ardeotis kori) with bacterial infections receiving a single daily i.m. injection of 10 mg/kg for 3 days. The mean plasma enrofloxacin concentrations in the clinical cases at 27 and 51 h (3.69 and 3.86 μg/mL) and at 48 h (0.70 μg/mL) were significantly higher compared with the 3 h and 24 h time intervals from clinically normal birds. The maximum plasma concentration (Cmax)/MIC ratio was ranked i.v. (10/mg/kg) > i.m. (15 mg/kg) > i.m. (10 mg/kg) > oral (10 mg/kg), but it was only higher than 8:1 for i.v and i.m. administrations of enrofloxacin at 10 mg/kg and 15 mg/kg, respectively, against a low MIC (0.5 μg/mL). A dosage regimen of 10 mg/kg repeated every 12 h, or 15 mg/kg repeated every 24 h, would be expected to give blood concentrations above 0.5 μg/mL and hence provide therapeutic response in the bustard against a wide range of bacterial infections.  相似文献   

6.
Pharmacokinetics of enrofloxacin and its active metabolite ciprofloxacin were investigated in normal, febrile and probenecid‐treated adult goats after single intravenous (i.v.) administration of enrofloxacin (5 mg/kg). Pharmacokinetic evaluation of the plasma concentration–time data of enrofloxacin and ciprofloxacin was performed using two‐ and one‐compartment open models, respectively. Plasma enrofloxacin concentrations were significantly higher in febrile (0.75–7 h) and probenecid‐treated (5–7 h) goats than in normal goats. The sum of enrofloxacin and ciprofloxacin concentrations in plasma ≥0.1 μg/mL was maintained up to 7 and 8 h in normal and febrile or probenecid‐treated goats, respectively. The t1/2β, AUC, MRT and ClB of enrofloxacin in normal animals were determined to be 1.14 h, 6.71 μg.h/mL, 1.5 h and 807 mL/h/kg, respectively. The fraction of enrofloxacin metabolized to ciprofloxacin was 28.8%. The Cmax., t1/2β, AUC and MRT of ciprofloxacin in normal goats were 0.45 μg/mL, 1.79 h, 1.84 μg.h/mL and 3.34 h, respectively. As compared with normal goats, the values of t1/2β (1.83 h), AUC (11.68 μg ? h/mL) and MRT (2.13 h) of enrofloxacin were significantly higher, whereas its ClB (430 mL/h/kg) and metabolite conversion to ciprofloxacin (8.5%) were lower in febrile goats. The Cmax. (0.18 μg/mL) and AUC (0.99 μg.h/mL) of ciprofloxacin were significantly decreased, whereas its t1/2β (2.75 h) and MRT (4.58 h) were prolonged in febrile than in normal goats. Concomitant administration of probenecid (40 mg/kg, i.v.) with enrofloxacin did not significantly alter any of the pharmacokinetic variables of either enrofloxacin or ciprofloxacin in goats.  相似文献   

7.
The comparative pharmacokinetics of enrofloxacin (ENR) and its metabolite ciprofloxacin (CIP) were investigated in healthy and Aeromonas hydrophila‐infected crucian carp after a single oral (p.o.) administration at a dose of 10 mg/kg at 25 °C. The plasma concentrations of ENR and of CIP were determined by HPLC. Pharmacokinetic parameters were calculated based on mean ENR concentrations by noncompartmental modeling. In healthy fish, the elimination half‐life (T1/2λz), maximum plasma concentration (Cmax), time to peak (Tmax), and area under the concentration–time curve (AUC) values were 64.66 h, 3.55 μg/mL, 0.5 h, and 163.04 μg·h/mL, respectively. In infected carp, by contrast, the corresponding values were 73.70 h, 2.66 μg/mL, 0.75 h, and 137.43 μg·h/mL, and the absorption and elimination of ENR were slower following oral administration. Very low levels of CIP were detected, which indicates a low extent of deethylation of ENR in crucian carp.  相似文献   

8.
The intramuscular (i.m.), oral (p.o.), and bath immersion disposition of enrofloxacin were evaluated following administration to a cultured population of red pacu. The half-life for enrofloxacin following i.m. administration was 28.9 h, considerably longer than values calculated for other animals such as dogs, birds, rabbits, and tortoises. The 4 h maximum concentration ( C max) of 1.64 μg/mL following a single 5.0 mg/kg dosing easily exceeds the in vitro minimum inhibitory concentration (MIC) for 20 bacterial organisms known to infect fish. At 48 h post i.m. administration, the mean plasma enrofloxacin concentration was well above the MIC for most gram-negative fish pathogens. The gavage method of oral enrofloxacin administration produced a C max of 0.94 μg/mL at 6–8 h. This C max was well above the reported in vitro MIC. A bath immersion concentration of 2.5 mg/L for 5 h was used in this study. The C max of 0.17 μg/mL was noted on the 2 hour post-treatment plasma sample. Plasma concentrations of enrofloxacin exceeded published in vitro MIC's for most fish bacterial pathogens 72 h after treatment was concluded. Ciprofloxacin, an active metabolite of enrofloxacin, was detected and measured after all methods of drug administration. It is possible and practical to obtain therapeutic blood concentrations of enrofloxacin in the red pacu using p.o., i.m., and bath immersion administration. The i.m. route is the most predictable and results in the highest plasma concentrations of the drug.  相似文献   

9.
[Correction added on 23 March 2015, after first online publication: Terminal half‐life values of enrofloxacin is corrected in the fourth sentence of the abstract] Clinically healthy common ringtail possums (= 5) received single doses of 10 mg/kg enrofloxacin orally and then 2 weeks later subcutaneously. Serial plasma samples were collected over 24 h for each treatment phase, and enrofloxacin concentrations were determined using a validated HPLC assay. Pharmacokinetic parameters were determined by noncompartmental analysis. Following oral administration, plasma concentrations were of therapeutic relevance (Cmax median 5.45 μg/mL, range 2.98–6.9 μg/mL), with terminal‐phase half‐life (t½) shorter than in other species (median 3.09 h, range 1.79–5.30 h). In contrast, subcutaneous administration of enrofloxacin did not achieve effective plasma concentrations, with plasma concentrations too erratic to fit the noncompartmental model except in one animal. On the basis of the AUC:MIC, enrofloxacin administered at 10 mg/kg orally, but not subcutaneously, is likely to be effective against a range of bacterial species that have been reported in common ringtail possums.  相似文献   

10.
The objective of this study was to determine the pharmacokinetics (PK) of enrofloxacin in pigs and compare to the tissue interstitial fluid (ISF). Six healthy, young pigs were administered 7.5 mg/kg enrofloxacin subcutaneously (SC). Blood and ISF samples were collected from preplaced intravenous catheters and ultrafiltration sampling probes placed in three different tissue sites (intramuscular, subcutaneous, and intrapleural). Enrofloxacin concentrations were measured using high-pressure liquid chromatography with fluorescence detection, PK parameters were analyzed using a one-compartment model, and protein binding was determined using a microcentrifugation system. Concentrations of the active metabolite ciprofloxacin were negligible. The mean ± SD enrofloxacin plasma half-life, volume of distribution, clearance, and peak concentration were 26.6 ± 6.2 h (harmonic mean), 6.4 ± 1.2 L/kg, 0.18 ± 0.08 L/kg/h, and 1.1 ± 0.3 μg/mL, respectively. The half-life of enrofloxacin from the tissues was 23.6 h, and the maximum concentration was 1.26 μg/mL. Tissue penetration, as measured by a ratio of area-under-the-curve (AUC), was 139% (± 69%). Plasma protein binding was 31.1% and 37.13% for high and low concentrations, respectively. This study demonstrated that the concentration of biologically active enrofloxacin in tissues exceeds the concentration predicted by the unbound fraction of enrofloxacin in pig plasma. At a dose of 7.5 mg/kg SC, the high tissue concentrations and long half-life produce an AUC/MIC ratio sufficient for the pathogens that cause respiratory infections in pigs.  相似文献   

11.
The pharmacokinetics of enrofloxacin (EF) was investigated after single intravenous (i.v.) and oral (p.o.) dose of 10 mg/kg body weight (b.w.) in snakehead fish at 24–26 °C. The plasma concentrations of EF and its metabolite ciprofloxacin (CF) were determined by high‐performance liquid chromatography. The plasma concentration–time data were described by an open two‐compartment model for both routes. After intravenous administration, the elimination half‐life (T1/2β), area under the concentration–time curve (AUC) and total body clearance of EF were 19.82 h, 75.79 μg h/mL and 0.13 L/h/kg, respectively. Following p.o. administration, the maximum plasma concentration (Cmax), T1/2β and AUC of EF were 1.86 μg/mL, 35.8 h and 49.98 μg h/mL, respectively. Absorption of EF was good with a bioavailability (F) of 65.82%, which was higher than that calculated in most seawater fish. CF, an active metabolite of EF, was detected occasionally in this study, which indicates a low extent of deethylation of EF in snakehead fish.  相似文献   

12.
The pharmacokinetics of enrofloxacin (ENR) was studied in crucian carp (Carassius auratus gibelio) after single administration by intramuscular (IM) injection and oral gavage (PO) at a dose of 10 mg/kg body weight and by 5 mg/L bath for 5 hr at 25°C. The plasma concentrations of ENR and ciprofloxacin (CIP) were determined by HPLC. Pharmacokinetic parameters were calculated based on mean ENR or CIP concentrations using WinNonlin 6.1 software. After IM, PO and bath administration, the maximum plasma concentration (Cmax) of 2.29, 3.24 and 0.36 μg/ml was obtained at 4.08, 0.68 and 0 hr, respectively; the elimination half‐life (T1/2β) was 80.95, 62.17 and 61.15 hr, respectively; the area under the concentration–time curve (AUC) values were 223.46, 162.72 and 14.91 μg hr/ml, respectively. CIP, an active metabolite of enrofloxacin, was detected and measured after all methods of drug administration except bath. It is possible and practical to obtain therapeutic blood concentrations of enrofloxacin in the crucian carp using IM, PO and bath immersion administration.  相似文献   

13.
The objective of this study was to evaluate the pharmacokinetic characteristics of enrofloxacin (ENR) injectable in situ gel we developed in dogs following a single intramuscular (i.m.) administration. Twelve healthy dogs were randomly divided into two groups (six dogs per group), then administrated a single 20 mg/kg body weight (b.w.) ENR injectable in situ gel and a single 5 mg/kg b.w. ENR conventional injection, respectively. High‐performance liquid chromatography (HPLC) was used to determine ENR plasma concentrations. The pharmacokinetic parameters of ENR injectable in situ gel and conventional injection in dogs are as follows: MRT (mean residence time) (45.59 ± 14.05) h verse (11.40 ± 1.64) h, AUC (area under the blood concentration vs. time curve) (28.66 ± 15.41) μg·h/mL verse (11.06 ± 3.90) μg·h/mL, cmax (maximal concentration) (1.59 ± 0.35) μg/mL verse (1.46 ± 0.07) μg/mL, tmax (time needed to reach cmax) (1.25 ± 1.37) h verse (1.40 ± 0.55) h, t1/2λz (terminal elimination half‐life) (40.27 ± 17.79) h verse (10.32 ± 0.97) h. The results demonstrated that the in situ forming gel system could increase dosing interval of ENR and thus reduced dosing frequency during long‐term treatment. Therefore, the ENR injectable in situ gel seems to be worth popularizing in veterinary clinical application.  相似文献   

14.
San Martin, B., Cornejo, J., Lapierre, L., Iragüen, D., Pérez, F., Hidalgo, H., Andre, F. Withdrawal time of four pharmaceutical formulations of enrofloxacin in poultry according to different maximum residues limits. J. vet. Pharmacol. Therap. 33 , 246–251. To ensure delivery of safe animal products to consumers, the withdrawal time (WDT) of drugs must be respected. Property differences among pharmaceutical formulations, for the same drugs, can lead to differences in the WDTs estimation. The WDTs of four commercial formulations of enrofloxacin (ENRO) in broiler chickens, considering MRLs established by different countries, were studied. Two hundred‐thirty‐four broiler chicks were allotted among four groups; the formulations were orally administered daily with 10 mg/kg bw. After treatment, six chickens of each group and two controls were slaughtered daily until day 9 post‐treatment. Samples of muscle and liver were collected, and analyzed using HPLC‐MS‐MS. The WDTs among formulations of ENRO showed differences of 24 and 48 h. Based on the European Community and Chile MRLs of 100 μg/kg (muscle) and 200 μg/kg (liver), the WDTs did not exceed 5 days. When Japan MRL was considered (10 μg/kg,), the WDTs increased up to 8 days. These results indicate that for WDTs determination, the differences among pharmaceutical formulations of a drug must be considered as well as the MRLs.  相似文献   

15.
Concentrations of enrofloxacin equivalent activity were determined (by microbiological assay) in the serum of normal camels and camels at the end of a 14-day water-deprivation period following single intravenous (i.v.), intramuscular (i.m.) and subcutaneous (s.c.) administrations at 2.5 mg/kg. Also, normal camels were given an oral drench of the drug at 5 mg/kg. Pharmacokinetic variables were determined using compartmental and non-compartmental analytical methods. Camels lost on average 12.5% of body weight at the end of the water-deprivation period. The disposition kinetics of i.v. administered drug in normal and water-deprived camels were very similar. The t1/2β was 3.0–3.5 h; MRT was 4.0–4.5 h; Ve was 0.3 L/kg; V38 was 1.0 L/kg and Cl8 was 4.0–4.6 mL/min/kg. The effect of water deprivation on the rate of drug absorption and elimination after i.m. administration was inconsistent, and there was also a large degree of variability in the normal animals that precluded statistical significance. After s.c. administration, the mean absorption half-life (t1/2she in the water-deprived camels was significantly longer than in the normal camels. Systemic availability (F) was similar in both normal and water-deprived camels after i.m. dosing but was significantly greater (P < 0.05) in normal camels (0.92 compared with 0.65 in water-deprived camels) after s.c. treatment In normal camels, urinary recovery at 12 h after l.v. and s.c. dosing was 25% and 15%, respectively, and the extent of serum protein binding ranged between 1.7% at 1.8 μg/mL and 24% at 0.33 μg/mL. The drug was not detected in serum after oral administration. Serum and milk enrofloxacin equivalent activities were determined after i.v. (one camel) and i.m. (one camel) drug administration. Serum drug concentrations were consistently higher than in the milk. The AUCmilk/AUCserust ratios were 0.27 and 0.39 after i.v. and i.m. drug administration, respectively. An i.m. or s.c. treatment regimen of 2.5 mg/kg q. 12 h is suggested for clinical and bacteriological efficacy trials with enrofloxacin in normally hydrated and dehydrated camels.  相似文献   

16.
The objective of this study was to evaluate the disposition kinetics of enrofloxacin (ENR) in the plasma and its distribution in the muscle tissue of Nile tilapia (Oreochromis niloticus) after a single oral dose of 10 mg/kg body weight via medicated feed. The fish were kept at a temperature between 28 and 30 °C. The collection period was between 30 min and 120 h after administration of the drug. The samples were analyzed by high‐performance liquid chromatography with a fluorescence detector (HPLC‐FLD). The ENR was slowly absorbed and eliminated from the plasma (Cmax = 1.24 ± 0.37 μg/mL; Tmax = 8 h; T1/2Ke = 19.36 h). ENR was efficiently distributed in the muscle tissue and reached maximum values (2.17 ± 0.74 μg/g) after 8 h. Its metabolite, ciprofloxacin (CIP), was detected and quantified in the plasma (0.004 ± 0.005 μg/mL) and muscle (0.01 ± 0.011 μg/g) for up to 48 h. After oral administration, the mean concentration of ENR in the plasma was well above the minimum inhibitory concentrations (MIC50) for most bacteria already isolated from fish except for Streptococcus spp. This way the dose used in this study allowed for concentrations in the blood to treat the diseases of tilapia.  相似文献   

17.
A tulathromycin concentration and pharmacokinetic parameters in plasma and lung tissue from healthy pigs and Actinobacillus pleuropneumoniae (App)‐infected pigs were compared. Tulathromycin was administered intramuscularly (i.m.) to all pigs at a single dose of 2.5 mg/kg. Blood and lung tissue samples were collected during 33 days postdrug application. Tulathromycin concentration in plasma and lung was determined by high‐performance liquid chromatography with tandem mass spectrometry (LC‐MS/MS) method. The mean maximum plasma concentration (Cmax) in healthy pigs was 586 ± 71 ng/mL, reached by 0.5 h, while the mean value for Cmax of tulathromycin in infected pigs was 386 ± 97 ng/mL after 0.5 h. The mean maximum tulathromycin concentration in lung of healthy group was calculated as 3412 ± 748 ng/g, detected at 12 h, while in pigs with App, the highest concentration in lung was 3337 ± 937 ng/g, determined at 48 h postdosing. The higher plasma and lung concentrations in pigs with no pulmonary inflammation were observed at the first time points sampling after tulathromycin administration, but slower elimination with elimination half‐life t1/2el = 126 h in plasma and t1/2el = 165 h in lung, as well as longer drug persistent in infected pigs, was found.  相似文献   

18.
Probiotics are routinely used in poultry husbandry due to health benefit on the host. The gut microbiota is now recognized to exert an important influence on the absorption and pharmacokinetics of many compounds. Therefore, this study was designed to evaluate the effect of candidate probiotics belonging to the species Lactobacillus brevis, L. plantarum and L. bulgaricus on pharmacokinetics of enrofloxacin in healthy chickens. The probiotic administration leads to higher degree of metabolism of enrofloxacin to ciprofloxacin in liver. The antibacterial drug was significantly faster absorbed (kab of 0.61 ± 0.54 h?1 and Tmax 7.81 ± 3.52 h) at lower concentrations (Cmax of 1.34 ± 0.18 μg·g?1) during the first 24 h of treatment in the probiotic's group. The values of kab, Tmax, and Cmax for the group, treated solely with enrofloxacin, were 0.10 ± 0.065 h?1, 15.42 ± 3.07 h, and 1.61 ± 0.24 μg·g?1, respectively. A significantly higher concentration of enrofloxacin and its metabolite ciprofloxacin in the liver was observed in the group with the probiotic treatment. Disposition of both drugs was not significantly changed in the duodenum and in the jejunum. The selected dose is appropriate for treatment of infections caused by pathogens with MIC < 0.06 μg·mL?1 irrespective of antibiotic administration alone or in combination with probiotics.  相似文献   

19.
The disposition of spiramycin and lincomycin was measured after intravenous (i.v.) and oral (p.o.) administration to pigs. Twelve healthy pigs (six for each compound) weighing 16–43 kg received a dose of 10 mg/kg intravenously, and 55 mg/kg (spiramycin) or 33 mg/kg (lincomycin) orally in both a fasted and a fed condition in a three-way cross-over design. Spiramycin was detectable in plasma up to 30 h after intravenous and oral administration to both fasted and fed pigs, whereas lincomycin was detected for only 12 h after intravenous administration and up to 15 h after oral administration. The volume of distribution was 5.6 ± 1.5 and 1.1 ± 0.2 L/kg body weight for spiramycin and lincomycin, respectively. For both compounds the bioavailability was strongly dependent on the presence of food in the gastrointestinal tract. For spiramycin the bioavailability was determined to be 60% and 24% in fasted and fed pigs, respectively, whereas the corresponding figures for lincomycin were 73% and 41%. The maximum plasma concentration of spiramycin (Cmax) was estimated to be 5 μg/mL in fasted pigs and 1 μg/mL only in fed pigs. It is concluded that an oral dose of 55 mg/kg body weight is not enough to give a therapeutically effective plasma concentration of spiramycin against species of Mycoplasma, Streptoccocus, Staphylococcus and Pasteurella multocida. The maximum plasma concentration of lincomycin was estimated to be 8 μg/mL in fasted pigs and 5 μg/mL in fed pigs, but as the minimum inhibitory concentration for lincomycin against Actinobacillus pleuropneumoniae and P. multocida is higher than 32 μg/mL a therapeutically effective plasma concentration could not be obtained following oral administration of the drug. For Mycoplasma the MIC90 is below 1 μg/mL and a therapeutically effective plasma concentration of lincomycin was thus obtained after oral administration to both fed and fasted pigs.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号