首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Spotted wilt, caused by tomato spotted wilt virus (TSWV), is a major disease of peanut (Arachis hypogaea ) in the south‐eastern United States. Cultivar resistance is the most important factor in disease control. However, spotted wilt resistance in current cultivars still carries risk in the absence of other practices when disease is severe. In contrast, a newly developed cultivar, Florida‐EP? “113,” has demonstrated excellent resistance even when spotted wilt is severe. Information on heritability of this resistance can help breeders better utilize it in breeding. F2‐derived populations from the cross Florida‐EP? “113”/Georgia Valencia were developed and tested in field experiments in Florida from 2012 to 2014. Disease symptoms were evaluated visually, and the frequency of TSWV infection was measured by ImmunoStrip®. Heritability estimated from ImmunoStrip® was higher (0.66) compared to visual ratings (0.48). Genetic correlations among evaluation methods (r A = 0.92–0.99) and environments (r B = 0.86–0.99) were high. These results indicate that resistance in Florida‐EP? “113” is highly heritable and that selection in a high disease risk environment is feasible without significant erosion of genetic gain.  相似文献   

2.
Summary To assess the possibilities offered by isozymes to locate resistance genes against barley mild mosaic virus (BaMMV), the isozyme patterns of 19 barley (Hordeum vulgare L.) genotypes carrying genes different from ym4 were determined. Of the 15 isozyme systems tested, only three were polymorphic, namely aconitate hydratase, esterase, phosphogluconate dehydrogenase, providing markers on four of the seven barley chromosomes. Studies of F2 progenies derived from three crosses between resistant genotypes and susceptible varieties failed to reveal linkage between resistance genes and isozymes. Another goal of the experiment was to study the linkage relationships between ym4 and the esterase locus (Est1-Est2-Est4). Our estimates of the recombination rate between these two loci (3.41 and 8.32%) were in the range of those reported between these esterases and one of the resistance genes of the Chinese variety Mokusekko 3.  相似文献   

3.
4.
5.
Barley yellow mosaic virus disease caused by different strains of BaYMV and BaMMV is a major threat to winter barley cultivation in Europe. Different resistance genes against these viruses have been mapped and suitable PCR-based markers have been developed. In this respect doubled haploid (DH) populations proved to be advantageous as they facilitate a repeated test for resistance against all agents of the barley yellow mosaic virus complex and besides this, dominant marker systems are as informative as co-dominant ones in DHs due to the lack of heterozygous genotypes. Using DH populations resistance genes rym4, rym5, rym11, rym13, rym15 and the BaYMV/BaYMV-2 resistance of the barley cultivar ‘Chikurin Ibaraki 1’ have been mapped. DHs are also well suited to pyramiding resistance genes against BaMMV and BaYMV. Since homozygous recessive genotypes are more frequent in DHs than in segregating F2 populations, DHs can be efficiently used to create broad-spectrum resistance and to extend the usability of partly overcome resistance genes. Results from employing two different strategies for pyramiding, based on one and two DH-steps, respectively, combining three recessive resistance genes, i.e. rym4/rym5, rym9 and rym11, are presented. The faster strategy based on one haploidy step resulted in the identification of all three and two-way combinations of the respective resistance genes.  相似文献   

6.
Plant 14‐3‐3 proteins are involved in signal transduction pathways of nitrogen and carbohydrate metabolism. An Eg14‐3‐3 ω gene was isolated from the mesocarp of oil palm. The 1055‐bp cDNA had an open reading frame of 774 bp that encoded for 258 amino acids, and the cDNA had 113‐bp and 195‐bp 5′‐ and 3′‐untranslated regions, respectively. The calculated molecular weight was 28.06 kDa, with a pI of 5.04. The palm 14‐3‐3 showed closest identity to 14‐3‐3 proteins of the omega group. The entire sequence of Eg14‐3‐3 ω showed 83% identity with 14‐3‐3 protein isoform 16R from Solanum tuberosum. Phylogenetic analysis showed that the Eg14‐3‐3 isoform was within the omega (ω) subgroup and, thus, was designated Eg14‐3‐3 ω. The Eg14‐3‐3 ω expression patterns were strong in the mesocarp as compared to the root. When Eg14‐3‐3 ω cDNA was overexpressed in transgenic calli, there was higher accumulation of oil in the transgenic calli than in the controls. Therefore, Eg14‐3‐3 ω has potential for applications in the breeding of oil palms in the future.  相似文献   

7.
S. Tuvesson    L. V Post    R. Öhlund    P. Hagberg    A. Graner    S. Svitashev    M. Schehr  R. Elovsson 《Plant Breeding》1998,117(1):19-22
The aim of this investigation was to develop a procedure for the largescale molecular breeding for ym4, allowing resistance to BaMMV/BaYMV to be fixed in early breeding generations of winter barley. A codominant STS marker derived from the restriction fragment length polymorphism marker MWG838 for the ym4 resistance gene was combined with a new and easy procedure for preparing leaf samples for polymerase chain reaction (PCR), theoretically allowing one person to extract DNA from 5000 samples in a single day. In the procedure for molecular breeding for ym4, all steps, including leaf sampling, DNA extraction, PCR amplification and digestion with restriction enzyme were assembled in microtitre plates allowing multipipetting throughout the procedure, including the loading of gels. The method is amenable to further automation with the aid of a robot arm. Double haploid (DH) lines, as well as F2 and F4 breeding lines were analysed and, based on markers, homozygous and heterozygous BaMMV/BaYMV resistant plants were identified for further breeding. The winter barley breeding programmes were modified to include marker-based selection for BaMMV/BaYMV resistance on DH or on F2 individuals, which had been preselected for mildew and leaf rust resistance.  相似文献   

8.
The development of transgenic oilseed Camelina sativa (2n = 40) and the potential for hybridization with its weedy relative Capsella bursa‐pastoris (2n = 36) necessitates a careful evaluation of the reproductive compatibility between the species. Here, we conducted over 1800 crosses (emasculation and manual pollination) to examine the ability of 10 Canadian C. bursa‐pastoris (♀) accessions to hybridize with five accessions of C. sativa (♂). Seven hybrids were confirmed among 586 putative hybrids screened with species‐specific markers, indicating a hybridization rate of 1.5 hybrids per 10 000 ovules pollinated. All seven hybrids had intermediate DNA content compared to their parents, were morphologically distinct, had low (1.9%) pollen fertility and failed to produce selfed or backcrossed seed. Given the abundance of C. bursa‐pastoris along field margins, hybrids will likely be generated in the wild, but they will be unable to establish lineages unless fertility is restored. The large number of crosses and the diversity captured by the use of multiple accessions resulted in strong statistical power and a high degree of confidence in the estimated hybridization rate.  相似文献   

9.
The development of soybean varieties that lack the β‐conglycinin α‐subunit is an attractive goal because the β‐conglycinin α‐subunit negatively influences the nutrition and gelation of tofu and is a major allergen. To remove this undesirable allergen and simultaneously improve the seed nutritional value and food‐processing quality, marker‐assisted background selection (MABS) was used in backcross breeding to incorporate cgy‐2, a null phenotype version of the gene encoding the β‐conglycinin α‐subunit, from the donor line ‘RiB’ into the genetic background of the Chinese cultivar ‘Dongnong47’ (DN47), a popular high‐oil superfine seed soybean cultivar from Heilongjiang Province, China. In each F2 (F2, BCnF2) generation of the breeding programme, the offspring that carried the introgressed cgy‐2 were identified by sodium dodecyl sulphate–polyacrylamide gel electrophoresis and rescreened by MABS using simple sequence repeat markers to accelerate recurrent parent genome recovery. Of the 49 advanced backcrossing breeding lines (ABLs), the three best lines, ABL1, ABL2 and ABL3, were selected from the BC1, BC2 and BC3 populations, respectively. The ABLs were evaluated for desirable agronomic characteristics, yield‐related traits, amino acid composition, free amino acid composition and tofu‐processing quality in the mature seeds. All of the ABLs lacked the α‐subunit but grew and reproduced normally without deleterious effects on physiological processes such as seed development and germination. The free amino acid content of ABL1 was significantly higher than that of ‘DN47’, with arginine (Arg) being particularly enriched. Compared to the recurrent parent ‘DN47’, the total protein content of the three ABLs was higher, the amino acid composition of the seed proteins was markedly modified and the yield and hardness of the tofu that was made from the ABLs were significantly increased. MABS combined with stringent phenotypic selection in a backcross breeding programme is a feasible strategy for the genetic engineering of seed protein components to produce allergenic subunit‐deficient variant alleles.  相似文献   

10.
11.
Little is known about the extent or diversity of resistance in soft red winter wheat (Triticum aestivum L.) to stripe rust, caused by the fungal pathogen Puccinia striiformis f.sp. tritici. The soft red winter (SRW) wheat cultivar ‘USG 3555’ has effective adult‐plant resistance to stripe rust, which was characterized in a population derived from ‘USG 3555’/‘Neuse’. The mapping population consisted of 99 recombinant inbred lines, which were evaluated for stripe rust infection type (IT) and severity to race PST‐100 in field trials in North Carolina in 2010 and 2011. Genome‐wide molecular‐marker screenings with 119 simple sequence repeats and 560 Diversity Arrays Technology (DArT) markers were employed to identify quantitative trait loci (QTL) for stripe rust resistance. QTL on chromosomes 1AS, 4BL and 7D of ‘USG 3555’ explained 12.8, 73.0 and 13.6% of the variation in stripe rust IT, and 13.5, 72.3 and 10.5% of the variation in stripe rust severity, respectively. Use of these and additional diagnostic markers for these QTL will facilitate the introgression of this source of stripe rust resistance into SRW wheat lines via marker‐assisted selection.  相似文献   

12.
German chamomile is an important medical plant with a long history of usage and a wide range of medical applications. Wild forms are diploid, whereas cultivated ones are diploid and tetraploid. Ploidy level variation within 15 origins (varieties, accessions, populations) of chamomile was investigated. Both naturally occurring triploids and those induced through directed crosses between diploid and tetraploid parents were identified and analysed, and these data could facilitate the exploitation of triploidy in chamomile as in other crop plants (fruit and ornamental plants).  相似文献   

13.
14.
Soybean mosaic virus (SMV) can cause serious yield losses in soybean. Soybean cultivar ‘RN‐9’ is resistant to 15 of 21 SMV strains. To well‐characterize this invaluable broad‐spectrum SMV‐resistance, populations (F1, F2 and F2:3) derived from resistant (R) × susceptible (S) and R × R crosses were tested for SMV‐SC18 resistance. Genetic analysis revealed that SC18 resistance in ‘RN‐9’ plus two elite SMV‐resistant genotypes (‘Qihuang No.1’ and ‘Kefeng No.1’) are controlled by independently single dominant genes. Linkage analysis showed that the resistance of ‘RN‐9’ to SMV strains SC10, SC14, SC15 and SC18 is controlled by more than one gene(s). Moreover, Rsc10‐r and Rsc18‐r were both positioned between the two simple sequence repeats markers Satt286 and Satt277, while Rsc14‐r was fine‐mapped in 136.8‐kb genomic region containing sixteen genes, flanked by BARCSOYSSR_06_0786 and BARCSOYSSR_06_0790 at genetic distances of 3.79 and 4.14 cM, respectively. Allelic sequence comparison showed that Cytochrome P450‐encoding genes (Glyma.06g176000 and Glyma.06g176100) likely confer the resistance to SC14 in ‘RN‐9’. Our results would facilitate the breeding of broad‐spectrum and durable SMV resistance in soybeans.  相似文献   

15.
Abstract: This paper examines an exemplary case of ‘transnational state entrepreneurship’, which was the Singapore government's Suzhou Industrial Park project. Between 1994 and 2001, the Singapore government was directly involved in the development and management of the project, hoping to generate an income that could eventually supplement Singapore's domestic economy. The strategy involved servicing the industrial needs of multinational corporations seeking to locate operations in China. This paper finds that transnational state entrepreneurship was less than successful, as the Singapore government's objectives were only partially achieved. The project's biggest problems were its lack of profitability and, ironically, the state's presence. This led to the Singapore government disengaging from the project in 2001. The paper concludes that it would be very difficult for a state, which is essentially a political entity, to be as efficient as a business entity, especially in an international environment.  相似文献   

16.
Pyramiding Asian soybean rust (ASR) resistance (Rpp) genes in a single genotype has been shown to increase ASR resistance in soybean. However, it remains unclear which combinations of Rpp genes are superior. Therefore, here, we developed six new Rpp‐pyramided lines carrying different combinations of Rpp genes and evaluated their resistance against 13 Bangladeshi rust (Phakopsora pachyrhizi) isolates (BdRPs) alongside seven previously developed Rpp‐pyramided lines. We found that lines carrying one, two and three Rpp genes had high ASR resistance without sporulation in 13.8%, 35.2% and 73.1% of the assays, respectively. Among the new lines that were developed, those with Rpp3 + Rpp4 and Rpp3 + Rpp4 Rpp5 had high levels of ASR resistance, while the line containing Rpp2 + Rpp4 Rpp5 showed immunity phenotype at two weeks after inoculation by the BdRP‐22 infection. Thus, pyramiding larger numbers of Rpp genes confers soybean with a higher level of resistance to ASR pathogens and can produce an immunity phenotype at two weeks after inoculation.  相似文献   

17.
18.
19.
20.
Abstract: Harold Brookfield's academic career spans more than half a century, traversing small tropical and subtropical islands and mountainous uplands, focusing on people–environment relations and linking to a diversity of institutions and disciplines. His unwavering commitment to fieldwork at the local level and to comparative study is paralleled by a healthy scepticism with respect to academic trends and orthodoxy of any kind, whether intellectual or physical. It is the farmers of the developing world who are the source of much of his inspiration. His theoretical contributions are based essentially on his observations of their practices and his learning from their experiences. His academic insights into the processes of change in rural areas of Melanesia, East and South‐East Asia, Africa and South America, where small‐scale ecological studies are linked to global forces, are of lasting significance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号