首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The aim of this study was to compare pregnancy per artificial insemination (P/AI) after timed AI with sex‐sorted sperm (SS) or conventional semen (CS) in lactating dairy cows. Cyclic cows (n = 302) were synchronized by Ovsynch and randomly assigned into two groups at the time of AI. Cows with a follicle size between 12 and 18 mm and clear vaginal discharge at the time of AI were inseminated with either frozen‐thawed SS (n = 148) or CS (n = 154) of the same bull. A shallow uterine insemination was performed into the uterine horn ipsilateral to the side of probable impending ovulation. Pregnancy per AI on Day 31 tended (p = 0.09) to be less for SS (31.8%) than CS (40.9%). Similarly, P/AI on Day 62 was less (p = 0.01) for cows inseminated with SS (25.7%) compared with CS (39.0%). The increased difference in fertility between treatments from Days 31 to 62 was caused by the greater (p = 0.02) pregnancy loss for cows receiving SS (19.2%) than CS (4.8%). Cow parity (p = 0.02) and season (p < 0.01) when AI was performed were additional factors affecting fertility. Primiparous cows had greater P/AI than multiparous cows both on Day 31 (41.7% vs 25.0% in SS and 53.0% vs 31.8% in CS groups) and on Day 62 (33.3% vs 20.5% in SS and 48.5% vs 31.8% in CS groups). During the hot season of the year, P/AI on Day 31 was reduced (p = 0.01) in the SS group (19.6%) when compared with the rates during the cool season (38.1%). In conclusion, sex‐sorted sperm produced lower fertility results compared to conventional semen even after using some selection criteria to select most fertile cows.  相似文献   

2.
Artificial insemination (AI) in pigs has been established for about four decades but ejaculates are still used insufficiently. Higher demand of semen for AI and new techniques that involve low sperm concentration require the optimization of insemination protocols. Based on the knowledge of the physiology of sperm transportation and events in the female genital tract prior to fertilization, new strategies are under development to minimize sperm losses. One goal is to deposit the semen into the uterine horn rather than into the proximal cervix. It was shown that the minimal number of spermatozoa necessary for surgical AI at the utero‐tubal junction (UTJ) were at least 1 × 106 diluted in 0.5 ml of a special extender. Artificial insemination into the distal part of the uterine horn required about 1 × 107 million sperm in 20 ml of extender. Meanwhile, first insemination devices for non‐surgical intra‐uterine AI are commercially available. Using similar sperm concentrations as for surgical AI, non‐surgical uterine insemination did not differ significantly from control inseminations in terms of pregnancy rate and litter size. With respect to the fertilizing capacities of their ejaculates, boars have to be selected more strictly for sperm quality parameters as most of the compensatory effects of sperm cells disappear in maximally extended semen samples.  相似文献   

3.
4.
Successful sex‐sorting of goat spermatozoa and subsequent birth of pre‐sexed kids have yet to be reported. As such, a series of experiments were conducted to develop protocols for sperm‐sorting (using a modified flow cytometer, MoFlo SX®) and cryopreservation of goat spermatozoa. Saanen goat spermatozoa (n = 2 males) were (i) collected into Salamon's or Tris catch media post‐sorting and (ii) frozen in Tris–citrate–glucose media supplemented with 5, 10 or 20% egg yolk in (iii) 0.25 ml pellets on dry ice or 0.25 ml straws in a controlled‐rate freezer. Post‐sort and post‐thaw sperm quality were assessed by motility (CASA), viability and acrosome integrity (PI/FITC‐PNA). Sex‐sorted goat spermatozoa frozen in pellets displayed significantly higher post‐thaw motility and viability than spermatozoa frozen in straws. Catch media and differing egg yolk concentration had no effect on the sperm parameters tested. The in vitro and in vivo fertility of sex‐sorted goat spermatozoa produced with this optimum protocol were then tested by means of a heterologous ova binding assay and intrauterine artificial insemination of Saanen goat does, respectively. Sex‐sorted goat spermatozoa bound to sheep ova zona pellucidae in similar numbers (p > 0.05) to non‐sorted goat spermatozoa, non‐sorted ram spermatozoa and sex‐sorted ram spermatozoa. Following intrauterine artificial insemination with sex‐sorted spermatozoa, 38% (5/13) of does kidded with 83% (3/5) of kids being of the expected sex. Does inseminated with non‐sorted spermatozoa achieved a 50% (3/6) kidding rate and a sex ratio of 3 : 1 (F : M). This study demonstrates for the first time that goat spermatozoa can be sex‐sorted by flow cytometry, successfully frozen and used to produce pre‐sexed kids.  相似文献   

5.
In swine artificial insemination, several dose regimens are applied, ranging from 1.5 x 10(9) to 6.0 x 10(9) spermatozoa per intra-cervical insemination dose. A lower sperm dose is more profitable for artificial insemination centres and offers a more effective use of superior boars. To evaluate fertility, 50 boars were used for a total of 10 773 homospermic first inseminations at a dose of 2 billion spermatozoa. In addition, 96 boars were used at a dose of 3 billion spermatozoa for 34 789 homospermic first inseminations. Fertility was determined by a 60-day non-return rate (NR%) of first inseminations. Litter size was registered by total number of piglets born separately in primiparous and multiparous farrowings. On average, a sow was inseminated 1.5 times. A significant decrease was observed in all three fertility parameters (NR%, litter size of both primiparous and multiparous farrowings) with a dose of 2 billion spermatozoa compared with a dose of 3 billion spermatozoa. The NR% was 75.8% and 84.0% (p < 0.001), the mean litter size of primiparous farrowings 10.1 and 10.7 (p < 0.001) and the mean litter size of multiparous farrowings 11.7 and 12.1 (p < 0.001) for 2 and 3 billion spermatozoa/dose, respectively. The proportion of normal spermatozoa in the sperm morphology analysis correlated significantly with NR% in both insemination regimens: p < 0.001, r = 0.604 and p < 0.05, r = 0.223 for 2 and 3 billion spermatozoa/dose, respectively. These results confirm that quantity can at least partly compensate for poor sperm quality. When the boars with <70% normal spermatozoa in the morphology evaluation were excluded from the data there were no correlation between the sperm morphology and NR%. However, the difference between the NR% and litter size remained statistically significant (p < 0.001) in favour for the bigger insemination dose. In conclusion, a decrease in sperm dose from 3 to 2 billion spermatozoa on commercial farms will severely decrease prolificacy at least under field conditions, where a sow is inseminated an average of 1.5 times/heat, and the semen is typically used within 3 days after collection. We recommend that under commercial circumstances the homospermic semen doses contain no <3 billion spermatozoa/dose.  相似文献   

6.
The effects of artificial insemination (AI) using sexed sperm on pregnancy rates have seldom been studied in lactating dairy cows on commercial dairy farms. We evaluated pregnancy results after AI of 306 lactating dairy cows, of which 157 were inseminated with 2x10(6) frozen/thawed sexed sperm and 149 with 15x10(6) frozen/thawed unsexed sperm. The average pregnancy and calving rates were 21.0% and 20% for the sexed-sperm AIs and 46% and 45% for the unseparated control-sperm AIs respectively (p<0.001). The proportion of female calves derived from sexed-sperm AI was 82% compared with 49% for control AI (p<0.01). The proportion of live and healthy calves in single births was 100% for sexed-sperm AI and 97% for control AI (p>0.05). Our results indicate that AI with low-dose sexed sperm under field conditions in commercial dairy herds without oestrus synchronization results in significantly reduced pregnancy rates compared with normal-dose AI. Improved insemination strategies combined with increased sperm doses are needed before the use of sexed sperm can be of any significant benefit for the dairy and beef industry.  相似文献   

7.
The objective of the present study was to determine whether oestrous detection with the help of oestrous detection aids during the Heatsynch without timed AI protocol is equally effective with the progesterone‐combined protocol in dairy heifers. A total of 148 heifers were randomly assigned to one of the two groups. A group of heifers treated with Heatsynch with heat detection aids (n = 72) received GnRH on day 0, prostaglandin F (PGF) on day 7 and oestradiol benzoate (EB) on day 8, while in controlled internal drug release (CIDR)‐Heatsynch group (n = 76), CIDR was included during a period from GnRH to PGF. Heifers were checked for oestrus twice daily, i.e. from 09:00 to 10:00 hours and from 15:00 to 16:00 hours starting on day 2 for Heatsynch group and on day 8 in CIDR‐Heatsynch group, and continued up to day 12. KAMAR®heat mount detector (KAMAR® Inc., Steamboat Springs, CO, USA) and ALL‐WEATHER® PAINTSTIK® (LA‐CO Industries Inc., Elk Grove Village, IL, USA) were used as heat detection aids. AI was conducted within 1 h after confirming oestrus in 72 heifers, while 19 animals were transferred with embryo 7 days after oestrus according to the request of the owners. Premature oestrus before PGF injection occurred in 18% of Heatsynch group. Of 13 heifers which showed premature oestrus, six were inseminated and two of them conceived. Oestrus detection rate within 12 days after initiation of the protocols did not differ between the two groups (94% vs 95%). There was no difference in the conception rate after first AI (including heifers that were inseminated before PGF injection) and embryo transfer between Heatsynch with heat detection aids and CIDR‐Heatsynch groups (36% vs 44% and 70% vs 56%). It is concluded that the use of heat detection aids to monitor the occurrence of premature oestrus prior to PGF injection in Heatsynch protocol in dairy heifers was equally effective to the inclusion of CIDR.  相似文献   

8.
This study utilized three staining assays (Annexin V, mitochondrial membrane potential (JC‐1) and TUNEL) for flow cytometric analysis of apoptosis in sex‐sorted sperm from four different bulls (A, B, C and D). Correlations between sperm quality and IVF efficiency were then assessed to determine which assay provided the best prediction of IVF efficiency. The results of the Annexin V assays, as well as measures of viable sperm, early apoptosis, necrotic sperm and mitochondrial membrane potential (?ψm) showed that the sex‐sorted sperm collected from bull A significantly differed from those of the other three bulls (p < 0.05). In addition, the levels of DNA fragmentation in sex‐sorted sperm from bull A were significantly lower than those from bulls B and C (p < 0.05). The percentage of cells reaching the cleavage and blastocyst stages in sex‐sorted sperm from bull A were significantly greater than those from the other bulls (p < 0.05). A significant positive correlation was observed between viable sperm and the percentage of cells at the cleavage or blastocyst stages (p < 0.05). In contrast, a negative correlation was found between early apoptotic sperm and the percentage of cells at the cleavage or blastocyst stages (p < 0.05). In conclusion, these results indicated that the Annexin V assay was the most reliable technique for the prediction of the IVF success of sex‐sorted bovine sperm.  相似文献   

9.
Motility is one of the most important characteristics associated with the fertilizing ability of spermatozoa and is an expression of their viability and structural integrity. Computer‐assisted semen analyser (CASA) provides precise and accurate information on different sperm motion characteristics. This article reviews various aspects of computer‐aided motility analysis of bull sperm like sample preparation, standardization of instrument settings, importance of various motility parameters evaluated by the system and its impact on basic functional studies of spermatozoa. It gives special emphasis to various aspects of bull sperm motion analysis especially sub‐populations of spermatozoa, hyper‐activation, motion characteristic in different genetic and age groups, etc. and their utility in predicting the fertility of dairy bulls. The need to fill the gap in research and the necessity of universal standardization of the equipment has been discussed.  相似文献   

10.
The objective was to compare pregnancy per artificial insemination (P/AI) with conventional (CS) or sex‐sorted semen (SS) in dairy cows subjected to one of the three timed AI protocols. Cows (n = 356) were randomly assigned to synchronization with Ovsynch (OVS), Presynch–Ovsynch (PO) or Double‐Ovsynch (DO) and inseminated on Day 77 ± 3 postpartum with either frozen‐thawed SS (n = 182) or CS (n = 184) of the same bull. More cows were cyclic at the beginning of breeding Ovsynch increased (p < 0.01) with presynchronization and it was greater for DO than PO (OVS = 78.5%, PO = 85.1%, DO = 95.6%). Overall, P/AI for SS and CS increased with presynchronization (p < 0.05) on Days 31 (OVS = 35.5%, PO = 47.1%, DO = 48.3%) and 62 (OVS = 30.1%, PO = 43.8%, DO = 43.9%). Regardless of synchronization treatments, insemination with SS reduced P/AI (p < 0.02) on Days 31 (38.1% vs. 50.6%) and 62 (34.5% vs. 45.6%) compared with CS. No interaction was observed between synchronization treatment and type of semen for P/AI, although in cows receiving CS, P/AI was numerically greatest for PO (OVS = 42.0%, PO = 59.3%, DO = 49.0%), and in cows receiving SS, it was numerically greatest for those inseminated following DO (OVS = 27.9%, PO = 35.5%, DO = 47.6%). Thus, presynchronization improved P/AI in cows inseminated with sex‐sorted or conventional semen.  相似文献   

11.
In swine, the use of frozen-thawed (FT) sperm for artificial insemination (AI) is limited because of poor sow fertility, possibly associated with a post-thaw capacitation-like status resulting in fewer fully viable sperm. Sow fertility to AI with FT sperm may improve with deeper deposition of sperm within the female tract, insemination very close to ovulation, or reversal of cryocapacitation by seminal plasma (SP). We performed two experiments to examine these suggestions. In experiment 1, 122 multiparous Yorkshire sows received 600 IU equine chorionic gonadotrophin at weaning and 5 mg pLH 80 h later to control time of ovulation. The predicted time of ovulation (PTO) was 38 h after pLH injection. Thereafter, sows were assigned on the basis of parity to a single AI of FT sperm at 2 h before PTO, or at 12 h before PTO, or FT sperm supplemented with 10% SP at 12 h before PTO. Control sows received fresh semen at 12 h before PTO. All semen doses were adjusted to 3 x 10(9) live cells and deposited into the cervix. Experiment 2 employed 99 multiparous crossbred sows and repeated the treatments of experiment 1 except that all FT inseminations were intrauterine. In both experiments, farrowing rates were lower (p < 0.01) following FT inseminations with no effect of time of insemination or of supplemental SP. In experiment 1, litter size was smaller following FT insemination (p < 0.05), but no effect on litter size was evident in experiment 2. Supplemental SP had no effect on litter size in either experiment. The lack of effect of either SP or timing of FT insemination on sow fertility suggests that the non-lethal sperm cryoinjury affecting fertility involves more than just cryocapacitation.  相似文献   

12.
Prostaglandin F (PGF) and GnRH treatments given 24 h apart have been shown to result in short oestrous cycles (8–12 days) in some cows and heifers. The differences in responses may depend on the dose of GnRH. Therefore, the effect of the dose of GnRH on occurrence of short cycles and LH response was studied here. Oestrus was induced with dexcloprostenol (0.15 mg) in two groups of Ayrshire heifers. A second luteolysis was induced similarly on day 7 after ovulation; 24 h after PGF treatment, the heifers were administered either a high (0.5 mg, n = 15, group T500) or low (0.1 mg, n = 10, group T100) dose of gonadorelin. Blood samples for progesterone analyses were collected daily from the second PGF administration to the second ovulation after the PGF injection. Beginning 24 h after the GnRH treatment, ovaries were examined by transrectal ultrasonography every 6 h until ovulation, and daily between day 4 and the next ovulation. Five heifers from both groups were sampled for LH analyses via a jugular catheter every 30 min from 1 h before to 6 h after the GnRH administration. Short oestrous cycles were detected in 7 of 10 cases in group T100 and in 12 of 15 cases in group T500. No significant differences in LH responses were detected between the groups. In group T500, the rise in LH concentration tended to be somewhat slower than in group T100. The dose of GnRH (0.1 vs 0.5 mg) did not affect the occurrence of short oestrous cycles and LH response.  相似文献   

13.
14.
A new procedure for non-surgical deep intrauterine insemination (DUI) in unrestrained sows hormonally induced to ovulate, has been reported. In comparison with standard artificial insemination (AI), with this procedure, the sperm numbers inseminated can be reduced 20-fold without reducing the reproductive performance of these hormonally treated sows. The present study evaluated, using two experiments, the reproductive performance applying 20-fold different sperm numbers per AI dose using DUI or standard AI in spontaneously ovulating sows, under field conditions. In experiment 1, AI was applied to crossbred sows at 12, 24 and 36 h after onset of spontaneous oestrus using one of the following two regimes: (i) DUI (treatment) with 0.15 x 10(9) fresh boar spermatozoa in 5 ml of Beltsville thawing solution (BTS) extender (n = 95), and (ii) standard cervical AI (control) with 2.85 x 10(9) fresh spermatozoa in 95 ml of BTS extender (n = 95). The farrowing rates of the two groups of sows were statistically similar (NS). However, a decrease (p < 0.002) in litter size and the total number of pigs born alive was observed in sows inseminated with the DUI procedure. In experiment 2, 42 post-weaned oestrus sows were inseminated following the same design described for experiment 1 during spontaneous oestrus. On day 6 after onset of oestrus, the proximal segment of the uterine horns of the sows were flushed under surgery to retrieve eventual embryos and evaluate the success of fertilization per cornua (e.g. occurrence of effective uni- vs bilateral sperm transport rendering uni- or bilateral, complete or partial fertilization). Retrieved embryos were assessed for cleavage and number of accessory spermatozoa. Although identical overall pregnancy rates were achieved in both insemination groups, the percentage of sows with partial bilateral fertilization and unilateral fertilization was markedly higher (p < 0.05) in the DUI group (35%) compared with the control (standard AI) group (5%), with a consequent lower (p < 0.001) percentage of viable early embryos after DUI. The number of accessory spermatozoa in the zona pellucida of the embryos was highly variable, but higher (p < 0.001) in control animals than in DUI-AI. No accessory spermatozoa were found in oocytes retrieved from sows depicting unilateral fertilization. In conclusion, DUI in spontaneously ovulating sows with 0.15 x 10(9) spermatozoa renders similar farrowing rates but a lower litter size compared with use of standard AI with a 20-fold higher sperm dose. The lower litter size ought to be related to a decreased distribution of spermatozoa after DUI leading to a higher incidence of partial bilateral and unilateral fertilization.  相似文献   

15.

Background

Few medications are available for parental administration to animals with seizures. Rectal administration of medications is often used if the animal cannot be administered oral medications.

Hypothesis/Objectives

To determine the pharmacokinetic differences in zonisamide when administered rectally in either of 2 vehicles and PO to dogs.

Animals

Eight healthy research dogs.

Methods

Randomized cross‐over design. Zonisamide, 10 mg/kg, was administered rectally in polyethylene glycol (PEG‐R), rectally in water (H2O‐R), and as an oral capsule. Plasma zonisamide concentrations were measured until 72 hours after administration. Zonisamide was quantitated by HPLC and plasma concentration versus time curve data was analyzed by using noncompartmental modeling.

Results

Mean maximum plasma zonisamide concentrations (μg/mL) were significantly higher after oral administration (11.56 ± 4.04) compared to H2O‐R (5.00 ± 1.83) (P = .004). Disappearance half‐life (hours) and mean time to maximum concentration (hours) were not significantly different between methods of administration. Mean relative bioavailability of PEG‐R (85 ± 69%) was significantly higher than that of H2O‐R (53 ± 37%) (P = .039). Dogs tolerated all dosing forms with no evidence of adverse effects.

Conclusions and Clinical Importance

The vehicle in which zonisamide is dissolved influences rectal bioavailability, with PEG preferred to H2O‐R. Because of the prolonged time to maximum concentration, rectal administration of zonisamide should not be used to treat status epilepticus in dogs. A dose higher than what was used in this study might be necessary, if currently recommended minimum therapeutic concentrations (10 μg/mL) are to be achieved with a single‐dose administration.  相似文献   

16.
Background: Vinblastine (VBL) is commonly used in dogs at a dosage of 2.0 mg/m2. The minimal toxicity observed at this dosage indicates that higher dosages might be well tolerated. Hypothesis: The maximum tolerated dosage (MTD) for a single VBL treatment is higher than the previously published dosage of 2.0 mg/m2. Animals: Twenty‐three dogs with lymphoma or cutaneous mast cell tumors. Methods: Dogs received 1 single‐agent VBL treatment IV. The starting dosage was 3.0 mg/m2, and dosages were increased in increments of 0.5 mg/m2 in cohorts of 3 dogs. Hematologic toxicity was assessed with weekly CBCs. Gastrointestinal toxicity was assessed from medical histories from owners. Once the MTD was determined, additional dogs were treated with VBL at that dosage. Dogs whose cancers responded to VBL continued to receive treatments q2–3 weeks. Results: VBL dosages ranged from 3.0 to 4.0 mg/m2. Neutropenia was the dose‐limiting toxicity, with the nadir identified 7 days after treatment and resolving by 14 days after treatment. The MTD was 3.5 mg/m2. Sixteen dogs were treated at this dosage, and 3 experienced severe toxicity characterized by asymptomatic grade 4 neutropenia, febrile grade 4 neutropenia, and death. Gastrointestinal toxicity was mild and self‐limiting. Preliminary evidence of antitumor activity was identified in 2 of 12 dogs with lymphoma treated at the MTD. Conclusions and Clinical Importance: In dogs, single‐agent VBL is well tolerated at a dosage of 3.5 mg/m2 IV. At this dosage, the minimum safe treatment interval is q2 weeks, and adjunct treatment with prophylactic antibiotics should be considered.  相似文献   

17.
随着奶业的发展,奶牛养殖小区的建设逐渐增多,饲养规模也不断扩大,但由于饲养、管理、繁殖等技术的应用不到位,使奶牛繁殖力低下,极大地影响了奶业的健康发展。文章就影响奶牛繁殖力低下的原因进行分析,并提出相应的防治措施。  相似文献   

18.
The use of cholesterol‐loaded cyclodextrin (CLC) on semen cryopreservation has been related with better sperm viability in several species; however, the effect on fertility is not known in donkey semen. Ejaculates (n = 25) from five donkeys were diluted in S‐MEDIUM with 0, 1, 2 or 3 mg of CLC/120 × 106 spermatozoa. Semen was frozen, and thawed samples were evaluated by computer‐assisted sperm analyser system (CASA), supravital test, hyposmotic swelling test and fluorescent dyes to assess the integrity of sperm membranes. Mares (n = 60) were inseminated with frozen‐thawed semen treated with the doses of 0 or 1 mg CLC. Percentages of sperm with progressive motility and with functional plasma membrane were greater (p < 0.05) in the CLC‐treated groups than in the control. Percentages of intact plasma membrane and intact plasma membrane and acrosome detected by fluorescent dyes were also greater (p < 0.05) in CLC‐treated groups. Although no difference (p > 0.05) in conception rates was detected between groups (control, 3/30, 10%; CLC‐treated, 1/30, 3.3%), fertility was low for artificial insemination programs in mares. Therefore, we firstly demonstrated that frozen semen treated with CLC in S‐MEDIA extender before freezing improves the in vitro sperm viability, but semen treated or not with CLC in S‐MEDIUM extender results in a very low conception rate in mares inseminated with thawed donkey semen.  相似文献   

19.
The aim of this study was to investigate the number of spermatozoa in the crypts of the utero‐tubal junction (UTJ) and the oviduct of sows approximately 24 h after intrauterine insemination (IUI) and deep intrauterine insemination (DIUI) and compared with that of conventional artificial insemination (AI). Fifteen crossbred Landrace × Yorkshire (LY) multiparous sows were used in the experiment. Transrectal ultrasonography was performed every 4 h to examine the time of ovulation in relation to oestrous behaviour. The sows were inseminated with a single dose of diluted fresh semen by the AI (n = 5), IUI (n = 5) and DIUI (n = 5) at approximately 6–8 h prior to the expected time of ovulation, during the second oestrus after weaning. The sperm dose contained 3000 × 106 spermatozoa in 100 ml for AI, 1,000 × 106 spermatozoa in 50 ml for IUI and 150 × 106 spermatozoa in 5 ml for DIUI. The sows were anaesthetized and ovario‐hysterectomized approximately 24 h after insemination. The oviducts and the proximal part of the uterine horns (1 cm) on each side of the reproductive tracts were collected. The section was divided into four parts, i.e. UTJ, caudal isthmus, cranial isthmus and ampulla. The spermatozoa in the lumen in each part were flushed several times with phosphate buffer solution. After flushing, the UTJ and all parts of the oviducts were immersed in a 10% neutral buffered formalin solution. The UTJ and each part of the oviducts were cut into four equal parts and embedded in a paraffin block. The tissue sections were transversely sectioned to a thickness of 5 μm. Every fifth serial section was mounted and stained with haematoxylin and eosin. The total number of spermatozoa from 32 sections in each parts of the tissue (16 sections from the left side and 16 sections from the right side) was determined under light microscope. The results reveal that most of the spermatozoa in the histological section were located in groups in the epithelial crypts. The means of the total number of spermatozoa in the sperm reservoir (UTJ and caudal isthmus) were 2296, 729 and 22 cells in AI, IUI and DIUI groups, respectively (p < 0.01). The spermatozoa were found on both sides of the sperm reservoir in all sows in the AI and the IUI groups. For the DIUI group, spermatozoa were not found on any side of the sperm reservoir in three out of five sows, found in unilateral side of the sperm reservoir in one sow and found in both sides of the sperm reservoir in one sow. No spermatozoa were found in the cranial isthmus, while only one spermatozoon was found in the ampulla part of a sow in the IUI group. In conclusion, DIUI resulted in a significantly lower number of spermatozoa in the sperm reservoir approximately 24 h after insemination compared with AI and IUI. Spermatozoa could be obtained from both sides of the sperm reservoir after AI and IUI but in one out of five sows inseminated by DIUI.  相似文献   

20.
高产奶牛繁殖力低的原因分析及解决措施   总被引:1,自引:0,他引:1  
高产奶牛繁殖力降低的原因,是一个复杂而又具有挑战性的问题,有些机理至今仍不清楚。不过,我们仍然可以从高产奶牛的营养代谢、遗产选择、母牛生理和健康状况等方面进行分析和探讨。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号