首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The chemically different adjuvants ‘Agral’, ‘Bond’, ‘Codacide Oil’, Li 700, ‘Silwet L’-77, and ‘Headland Guard’ were assayed to determine their effects on the rainfastness of an emulsifiable concentrate formulation of the organophosphorus pesticide chlorpyrifos. Cabbage leaves were each treated with 200×0.25-μl droplets of diluted formulation using a hand-held microapplicator. Droplet deposits were left to air-dry for 1 h prior to exposure to simulated rainfall. Rain fastness was assessed using GC residue analyses of treated leaves after exposure to 10, 20 or 30 min simulated rainfall. The results indicated that the latex-based adjuvants ‘Bond’ and ‘Headland Guard’ induced a statistically significant increase in rainfastness, results for the other adjuvants assayed being either not significant or inconclusive. The results are discussed within the context of using adjuvants to enhance insecticide efficacy. ©1999 Society of Chemical Industry  相似文献   

2.
To assess its response to the herbicide, tribenuron‐methyl, samples of Nasturtium officinale were exposed to 0, 0.01, 0.05, 0.1, and 0.5 mg L?1 of tribenuron‐methyl for 1, 2, 4 and 7 days. The influence of this herbicide on the relative growth rate, electrolyte leakage, lipid peroxidation, photosynthetic pigmentation, protein content, and performance of anti‐oxidant enzymes, such as superoxide dismutase (SOD), catalase, and ascorbate peroxidase (APX), was examined. The results indicated that tribenuron‐methyl, applied at 0.5 mg L?1, affected plant growth negatively. It also was determined that chlorophyll a is the most responsive photosynthetic pigment to tribenuron–methyl exposure. Under stress conditions, the anti‐oxidant enzymes were up‐regulated compared to the control. The SOD activity was significantly stimulated, while the activity of APX was inhibited. A significant correlation was found between lipid peroxidation and SOD activity. The exposure period and herbicide concentration had significant effects on the biological responses against tribenuron‐methyl stress. These results may be useful for clarifying the effect of herbicides on non‐target aquatic plants.  相似文献   

3.
在室内模拟雨水冲刷条件下,分别通过荧光显微镜法和高效液相色谱法探究了添加4种自制喷雾助剂AY904-1 (含有40%乙酸乙烯酯-丙烯酸共聚物和10%异构醇聚氧乙烯醚)、AY904-2 (含有30%乙酸乙烯酯-丙烯酸甲酯共聚物和10%异构醇聚氧乙烯醚)、AY904-3 (含有20%乙酸乙烯酯-丙烯酸乙酯共聚物和10%异构醇聚氧乙烯醚) 和AY904-4 (含有10%乙酸乙烯酯-丙烯酸丁酯共聚物和10%异构醇聚氧乙烯醚) 对提高嘧菌酯在玉米叶片表面耐雨水冲刷效果的影响,并测定了喷雾助剂对嘧菌酯药液物理性状及其玉米安全性的影响。结果表明:在室内模拟冲刷试验中,两种检测方法所测结果具有良好的相关性;在嘧菌酯中添加质量分数为0.1%~1.0%的AY904-1和AY904-2以及添加质量分数为0.5%~1.0%的AY904-3和AY904-4均可显著提高嘧菌酯在玉米叶片上的持留量,且助剂的添加量越大,耐冲刷效果越好,其中以AY904-1的效果最好。在嘧菌酯药液中添加4种喷雾助剂,均能降低药液在玉米叶片表面的接触角,但与嘧菌酯药剂对照相比无显著差异。AY904-1和AY904-2的干燥薄膜在水中溶胀度较低,成膜性能较好。将4种喷雾助剂与氯虫苯甲酰胺药液桶混后喷雾,发现其对3个品种玉米均有很高的安全性。  相似文献   

4.
5.
The efficacy of cyhalofop‐butyl with tank‐mixed adjuvants on barnyardgrass (Echinochloa crus‐galli [L.] Beauv.), as well as the physico‐chemical properties, absorption and translocation, was evaluated and compared. The efficacy experiment showed that the treatments with tank‐mixed adjuvants were approximately twofold more effective than with cyhalofop‐butyl alone at 2% (v/v) (silwet 625 at 0.05%). The surface tension decreased and the droplets could spread automatically on the leaves after adding the adjuvants. The spreading speed increased significantly with the adjuvants. The epidermal cells and wax layer were damaged by the adjuvants. The absorption of cyhalofop‐butyl was increased significantly after adding the tank‐mixed adjuvants. GY‐T12 and silwet 625 were conducive to upward translocation and all six tank‐mixed adjuvants promoted the downward translocation of the herbicide. The results demonstrate that adjuvants can have a considerable influence on the efficiency of cyhalofop‐butyl on barnyardgrass.  相似文献   

6.
Glasshouse trials had shown that the activity of metconazole formulations against cereal foliar diseases could be enhanced by alcohol ethoxylate adjuvants. A series of soluble liquid (SL) formulations of metconazole had been prepared containing adjuvant: metconazole ratios of 5:1, 7.5:1, 10:1, 15:1 m/m (SL1, SL2, SL3, SL4) which glasshouse trials had shown could give equivalent performance to an emulsifiable concentrate formulation, (ECM) of metconazole at application rates up to three- or four-fold lower than that of ECM alone. A field trials programme was undertaken to compare the performances of these SL formulations with ECM at 120 g AI ha?1, through a range of application rates (48, 60, 72, 84 g AI ha?1), in a non-orthogonal factorial trial design against diseases that occurred naturally (Septoria tritici Rob., Puccinia recondita Rob., Pyrenophora teres Drechs., Erysiphe graminis DC) or by artificial inoculation (Leptosphaeria nodorum Muell.), on either Triticum aestivum L. or Hordeum vulgare L. The results from trials in three locations showed that the commercially acceptable performance of ECM at 120 g AI ha?1, in giving high levels of control of P. recondita, S. tritici and L. nodorum (both prophylactic and therapeutic activity) on T. aestivum. and of E. graminis and P. teres on H. vulgare, could be matched or improved by SL2, SL3 and SL4 at 72 g AI ha?1. Furthermore, control of E. graminis f. sp. tritici Marchal by these SL formulations at this application rate was better than that by ECM at 120 g AI ha?1, though the levels of control still remained below commercial acceptability for therapeutic activity. Nevertheless, substantial reductions in the application rate of metconazole have been achieved by using one-pack adjuvant-containing formulations in field trials, while still maintaining excellent control of a range of cereal foliar diseases. The choice between these SL formulations could therefore be made on other grounds such as cost/performance and ease of formulation.  相似文献   

7.
Non‐destructive assessment of herbicide effects may be able to support integrated weed management. To test whether effects of herbicides on canopy variables could be detected by sensors, two crops were used as models and treated with herbicides at BBCH 20 using a logarithmic sprayer. Twelve days after spraying at BBCH 25 and 42 days after sowing, nine sensor systems scanned a spring barley and an oilseed rape field experiment sown at different densities and sprayed with increasing field rates of glyphosate and tribenuron‐methyl. The objective was to compare ED50s for crops and weeds derived by the different sensors in relation to crop density and herbicides. Although sensors were not directly developed to detect herbicide symptoms, they all detected changes in canopy colours or height and crop density. Generally ED50s showed the same pattern in response to crop density within herbicide, but there were marked differences between barley and oilseed rape. We suggest that the results of comparing the various sensor outputs could become a stepping stone to future standardisation for the benefit of the research and development of sensors that will detect herbicide effect on crops and weeds, particularly at the most vulnerable stages of development of the canopy.  相似文献   

8.
Although it is well known that judicious use of adjuvants can increase the performance of foliage-applied sprays of many agrochemicals, little information is available in the public domain about their ultimate effects on pesticide residues in treated crops. In the present work, the influence of Agral (polyoxyethylene nonylphenols), Toil (methyl esters of rapeseed fatty acids) and Bond (styrene-butadiene copolymers) on surface and crop residues of diclofop-methyl/diclofop and propiconazole in wheat and field beans was investigated using a model system simulating field practice. Pesticides were applied as commercial formulations, diclofop-methyl 378 g litre(-1) EC (Hoegrass) and propiconazole 250 g litre(-1) EC (Tilt), at their maximum approved rates, 1135 g AI ha(-1) and 125 g AI ha(-1), respectively, both in the presence or absence of the maximum rate recommended for each candidate adjuvant. No detectable residues of diclofop-methyl or propiconazole were found in wheat 35 days after any of the four applications. However, residues of diclofop were present in this crop, and those from applications containing Agral (0.07 mg kg(-1) fresh weight (FW)) or Bond (0.08 mg kg(-1) FW) were significantly lower than those with no adjuvant (0.14 mg kg(-1) FW) or Toil (0.16 mg kg(-1) FW). Unlike wheat, residues of both diclofop and propiconazole were detected in field beans after harvest. Significantly higher residues of the former were recorded from the applications with Agral or Bond (ca 0.32 mg kg(-1) FW) than with those with no adjuvant or Toil (ca 0.15mg kg(-1) FW). All the propiconazole applications containing adjuvants showed a similar significant increase in residues (0.10-0.16 mg AI kg(-1) FW) over the no-adjuvant treatment (0.05 mg kg(-1) FW) in this crop. There appeared to be little agreement between the apparent amounts of uptake, as indicated by the rates of decline of surface residues up to 5 days after application, and final residues in either target species. On wheat, surface residues of diclofop-methyl decreased from initially ca 20 to as little as 0.02 mg kg(-1) FW using adjuvants; the corresponding values for propiconazole were ca 2 to ca 0.03 mg kg(-1) FW. Recoveries of diclofop-methyl from the surfaces of field beans were much higher than those from wheat, declining from ca 30 to only ca 6 mg kg(-1) FW during the course of 5 days; the corresponding residues for propiconazole were ca 2 mg to 0.15 mg kg(-1) FW. These findings are discussed in relation to uptake results obtained with radiolabelled pesticides and adjuvants in the laboratory, and to the mandatory requirements for pesticide residue data for the authorised use of adjuvants in the UK.  相似文献   

9.
Metconazole, (1RS, 5RS; 1RS, 5SR)-5-(4-chlorobenzyl)-2,2-dimethyl-1-(1H-1,2,4-triazol-1-ylmethyl)cyclopentanol, is a highly active fungicide, in particular controlling seed-borne and foliar diseases of cereals, such as wheat (Triticum aestivum L.) and barley (Hordeum vulgare L.). In order to maximize its foliar activity, an experimental survey of some types of surfactants and an emulsifiable oil was undertaken. Two types of metconazole formulation were investigated using a biological assay involving the therapeutic control of two diseases (Erysiphe graminis DC f. sp. tritici Marchal and Leptosphaeria nodorum Muell.) of wheat. Enhancements of activity by ?Genapol’? C12/C14 alcohol ethoxylates of an emulsifiable concentrate (ECM) formulation of metconazole were approximately three- to four-fold. For its, initially, less active suspension concentrate (SCM) formulation, enhancements were around 35-fold, so that with these adjuvants the two formulations were of similar activity. The enhancement ability of these ?Genapol’? surfactants was optimal at lower (5–10 moles) ethylene oxide content. These analogues induced marginally better enhancements of activity than members of a range of nonylphenol ethoxylates (?Arkopal’?), and emulsifiable paraffinic/naphthenic oil (HVI 60E) and a castor oil ethoxylate (?Atlas’? G1281) but were equivalent to a similar series of alcohol ethoxylates (?Dobanol’?) from another source. Varying the alkyl chain length between C9-C11 and C14-C15 in the ?Dobanol’? series had little effect on their high enhancements of metconazole activity. It was determined from trials varying the application rate of the best alcohol ethoxylates that application rates of 1–1.5 kg ha?1 were required for maximum activity. This implied the use of high adjuvant/metconazole ratios in one-pack adjuvant-containing formulations. A range of soluble liquid (SL) formulations were prepared with either ?Dobanol’? 23–6.5 or ?Dobanol’? 91-6/metconazole ratios varying from 5:1 to 15:1. There were found to be highly active and were recommended for field testing.  相似文献   

10.
BACKGROUND: The antifungal properties of chitosan and acibenzolar‐S‐methyl were evaluated to assess their potential for protecting grapes against Botrytis cinerea Pers.: Fr. isolated from Vitis vinifera L. The objectives were to determine the effects of these compounds on the in vitro development of B. cinerea and to assess their effectiveness at controlling grey mould on grapes stored at different temperatures. RESULTS: Both agents significantly inhibited the radial growth of this fungus species. The EC50 was 1.77 mg mL?1 for chitosan and 3.44 mg mL?1 for acibenzolar‐S‐methyl. In addition, single grapes treated with aqueous solutions of chitosan (1.0 and 2.5 mg mL?1) and acibenzolar‐S‐methyl (1.0 and 3.0 mg mL?1) were inoculated with B. cinerea and incubated at both 4 and 24 °C. After 4 days at 24 °C, all the concentrations of chitosan and acibenzolar‐S‐methyl significantly reduced B. cinerea growth. However, at 4 °C, significant differences were only observed between chitosan at 2.5 mg mL?1 and acibenzolar‐S‐methyl at both 1.0 and 3.0 mg mL?1 and the corresponding controls. After 3 days at 24 °C, the greatest reduction in lesion size was obtained in grapes pretreated with acibenzolar‐S‐methyl at 3.0 mg mL?1. Only the highest doses of these products significantly reduced the lesion diameters when grapes were stored for 3 days at 4 °C. CONCLUSIONS: Chitosan and acibenzolar‐S‐methyl could directly inhibit the growth of Botrytis cinerea in vitro and confer resistance on grapes against grey mould. Pretreatment with these compounds could be an alternative to traditional fungicides in post‐harvest disease control in grapes. Copyright © 2010 Society of Chemical Industry  相似文献   

11.
12.
Fresh root fragments of Rumex crispus and Rumex obtusifolius, which initially contain 65–70% moisture, progressively lose moisture when desiccated under conditions matching summer weather in southeast England. The likelihood of shoot emergence and the time it took in glasshouse conditions were both affected by desiccation, with R. crispus the most affected up to 48 hr and R. obtusifolius slower to emerge after 48 hr. These effects converged after longer desiccation periods, and R. crispus entirely failed to emerge after 120 hr. The dry weight of emerged shoots was not significantly different between the species until they were desiccated for 96 hr, after which R. obtusifolius dry weight was significantly reduced. In outdoor trials, desiccation for 24 or 48 hr had a lesser effect on emergence in either species when fragments were planted at the soil surface or at up to a depth of 10 cm, compared to deeper plantings, but emergence was significantly lower in plantings at 15 or 20 cm. Emergence delays were not significantly different between the species until they were planted at 15 or 20 cm, when R. obtusifolius was slower to emerge than R. crispus, an effect exacerbated by increasing desiccation. Similar interactions of increasing soil depth and desiccation were found in reductions in dry weight, number of tillers and leaf area, with R. obtusifolius generally, but not exclusively, better able to withstand more extreme trial conditions. Our findings suggest that control of these highly troublesome weeds can be assisted by appropriate agricultural practices, notably exposing cut fragments to drying conditions followed by deep burial.  相似文献   

13.
Fifty years separate the commercialization of the herbicides trifluralin and halauxifen‐methyl. Despite the vast degree of technological change that occurred over that time frame, some aspects of their discovery stories are remarkably similar. For example, both herbicides were prepared very early in the iterative discovery process and both were developed from known lead compound structures by hypothesis‐driven research efforts without the use of in vitro assays or computer‐aided molecular design. However, there are aspects of the halauxifen‐methyl and trifluralin discovery stories that are substantially different. For example, the chemical technology required for the cost‐effective production of halauxifen‐methyl simply did not exist just two decades prior to its commercial launch. By contrast, the chemical technology required for the cost‐effective production of trifluralin was reported in the chemical literature more than two decades prior to its commercial launch. In addition, changes in regulatory environment since the early 1960s ensured that their respective discovery to commercial launch stories would also differ in substantial ways. Ultimately, the time and cost required to develop and register halauxifen‐methyl demanded a global initial business case while the lower registration hurdles that trifluralin cleared enabled a narrow initial business case mainly focused on the USA. © 2017 Society of Chemical Industry  相似文献   

14.
An immunoassay (ELISA) for analysis of metsulfuron‐methyl was evaluated as a method for quantifying residues in soil. Soil samples were extracted with phosphate buffered saline (PBS), PBS + acetone (80 + 20 by volume) or ammonium carbonate and were analyzed with both ELISA and LC‐MS. A tendency for the ELISA to overstimate the metsulfuron‐methyl content was noted and matrix effects were pronounced, particularly in PBS + acetone or ammonium carbonate extracts. Dilution of extracts before analysis improved the situation but reduced the sensitivity of the assay. Using light standard concentrations it was shown that the extracts in PBS on dilutions exhibited a curve parallel with the standard curve, indicating no significant interference due to matrix effects. A working range of 10–250 ng litre−1 was found for ELISA on this type of extracts. © 2000 Society of Chemical Industry  相似文献   

15.
A study was made of the influence of the upper leaf surface characteristics on the retention and rainfastness of the contact fungicide mancozeb with and without tank-mix adjuvants (RSO 5 and RSO 60) on apple seedlings, bean seedlings and kohlrabi plants. Large differences in roughness, in the amount and composition of surface waxes and in the retention and rainfastness of mancozeb were found among species. Strong correlations between roughness and total amount of surface waxes and mass of C29 alkane in the wax mass were also found. Fungicide retention was strongly, negatively correlated with surface roughness, total epicuticular wax, amount of C29 alkane and the total mass of alkanes. Rainfastness correlated strongly or very strongly with the amount of C28 alcohol and C33 alkane. The addition of a more hydrophobic (RSO 5) or a more hydrophilic (RSO 60) adjuvant to the spray solution influenced retention and rainfastness, and also altered the correlation coefficients. The present results support earlier observations which show that the success of adjuvants in enhancing the retention and rainfastness of agrochemicals depends on the characteristics of the leaf surface.  相似文献   

16.
17.
Production and importation of methyl bromide is scheduled to be banned by 2001. Methyl iodide was evaluated as a possible replacement soil fumigant. The effects of soil moisture, temperature, soil texture and fumigation time on the efficacy of methyl iodide for the control of two common weeds, Abutilon theophrasti and Lolium multiflorum, were characterized and compared with those of methyl bromide. The optimal soil moisture for methyl iodide to kill both weed species in sandy soils was 14% water content (w/w). Greater efficacy was obtained when the temperature during fumigation was above 20°C. Compared to methyl bromide, the efficacy of methyl iodide was more consistent in different soils. Time to 100% mortality of weeds was 24 h for methyl iodide fumigation and 36 h for methyl bromide when 200 μM of fumigant was used. On a molar basis methyl iodide was consistently more effective than methyl bromide across the range of environmental factors tested. In terms of application technology and spectrum of activity, methyl bromide can be directly replaced by methyl iodide. © 1998 SCI  相似文献   

18.
The photochemical fate of the herbicide triflusulfuron‐methyl in aqueous solution under UV light (λ > 290 nm) was investigated. Nine photoproducts were detected and tentatively identified by LC/MS and LC/MS/MS analysis. The main routes of degradation involve the cleavage and/or contraction of the sulfonylurea bridge with the elimination of sulfur dioxide, which increases the acidity of the reaction medium. On the basis of the results obtained a photodegradation pathway is proposed. © 2001 Society of Chemical Industry  相似文献   

19.
BACKGROUND: In recent years, several studies have shown the impact of adjuvants on the characteristics of herbicide deposits on leaf surfaces. Until now, most studies have addressed the distribution of active ingredients (AIs), whereas few experiments have focused on the location of the adjuvants. The objective of this study was a systematic examination of the particle distribution profile of both the AI (glyphosate, Gly) and the adjuvants after the application of sessile microdroplets on hydrophobic (Teflon) and hydrophilic (glass and aluminium) model surfaces. RESULTS: The association degree (AD) was surface dependent and specific for the tested adjuvants. In general, the rather hydrophobic adjuvant RSO 5 showed decreasing AD with Gly at increasing relative humidity (RH) levels. The rather hydrophilic RSO 60 adjuvant displayed higher AD between the compounds at a higher RH. A high concentration of the adjuvant reduced the AD for both of the RSO adjuvants evaluated. CONCLUSION: The combination of surface properties, the type of adjuvant and the relative humidity determines the degree of association between Gly and the adjuvants. The present results suggest that the interaction between the AI and an adjuvant determines whether spatial separation occurs, whereas physical processes (e.g. capillary particle movement, inward and outward Marangoni flows and the evaporation rate) are decisive for the extent of the separation. Coffee‐ring structures were formed exclusively with the adjuvant + Gly mixtures, whereas Gly alone formed either one big deposit or several small islands distributed within the droplet footprint. Copyright © 2011 Society of Chemical Industry  相似文献   

20.
BACKGROUND: Metsulfuron‐methyl is a low‐application‐rate sulfonylurea herbicide that is widely used to control broad‐leaved weeds in wheat. Owing to its persistent nature, its residues may be present at phytotoxic levels for the next crop in rotation. Therefore, a comparative evaluation of HPLC and bioassay techniques was made for the analysis of this herbicide in wheat field soil. RESULTS: Metsulfuron‐methyl was applied to wheat crop at different rates (4, 8 and 12 AI ha?1) at 28 days after sowing as a post‐emergence application, and the soil was analysed for metsulfuron‐methyl residues by HPLC and lentil seed bioassay techniques. The bioassay was found to be the more sensitive technique. At the recommended rate of application, 4 g AI ha?1, the bioassay technique could detect the residue up to 30 days in surface soil, while, with HPLC, residues were not detectable on the 15th day. The half‐lives of metsulfuron‐methyl by HPLC and bioassay were calculated as 6.3–7.8 and 17.5 days respectively. Under field conditions, residues of metsulfuron‐methyl were also detected in subsurface soil by the bioassay technique at trace levels, but were not detected by the solvent extraction/HPLC method. CONCLUSION: Lentil seed bioassay is a more sensitive technique than HPLC. Traces of residues detected in subsurface soil indicated the mobility of metsulfuron‐methyl into lower layers. Copyright © 2009 Society of Chemical Industry  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号