共查询到20条相似文献,搜索用时 15 毫秒
1.
A survey on the occurrence of Phytophthora species in oak ecosystems in Austria was conducted from April to May 1999 and in June 2000. The investigations were carried out at 35 study sites distributed throughout the zone of oak forests in eastern Austria. Four oak species, including Quercus robur, Q. petraea, Q. cerris and Q. pubescens were considered in the survey. Rhizosphere soil samples were taken from sample trees, which consisted of healthy and declining trees as indicated by their crown transparency. Young oak leaflets were used as baits to recover Phytophthora species. The assemblage of Phytophthora spp. detected in Austrian oak forests consisted of five species, including Phytophthora quercina, P. citricola, P. gonapodyides, P. europaea and P. syringae. P. quercina and P. citricola were isolated from 11 and seven sites, respectively, and were thus the most common and most widely distributed species. The three other species were recovered only sporadically. P. citricola could be separated into two morphologically and genetically well‐characterized types (A and B). Phytophthora species, in particular the common P. quercina and P. citricola occurred on sites showing a wide variety of soil types, soil textures and moisture classes. There was mild evidence for connection between deteriorating crown status and the presence of Phytophthora spp. Furthermore, significant differences in contents of magnesium, as well as calcium, aluminium, nitrogen and carbon at different soil depths (0–10, 10–20 and 20–40 cm) were detected between Phytophthora‐infested and Phytophthora‐free sites. The results of the present study provide circumstantial evidence that Phytophthora species are involved in oak decline at certain sites in Austria. 相似文献
2.
Influence of water status of oak trees (Quercus rubra) on the development of Phytophthora cinnamomi lesions was studied. On agar media or excised inner bark, growth of P. cinnumomi was reduced by low water potentials. In contrast, on voung saplings or mature oak trees the development of P. cinnamomi lesions was not affected during a period of water stress. But after the end of the water stress treatment, susceptibility of the young saplings to P. cinnamoni increased. 相似文献
3.
Quercus robur L. and Quercus petraea (Matt.) Liebl. are sympatric oak species with different ecological requirements. Quercus robur is more tolerant to waterlogging than Q. petraea. This ecological divergence may play a role in the maintenance of the two species despite the absence of an insurmountable reproductive barrier between them. We predicted that the genetic architecture of traits related to waterlogging tolerance differs between the species. To gain insight into this architecture in the absence of genetic markers for waterlogging tolerance, we compared populations of seedlings of each species for diversity in the expression of quantitative phenotypic traits induced by severe hypoxia. To determine the capacity for hypertrophied lenticel formation, we applied gas-impermeable mastic to stems of seedlings. Two months after application, the mastic treatment had induced the formation of 3 (+/- 2) cm(-2) hypertrophied lenticels in the absence of root hypoxia. Leaf epinasty during root hypoxia was an early predictor of seedling mortality. Four weeks of waterlogging resulted in greater epinasty in Q. petraea than in Q. robur, but fewer hypertrophied lenticels (16 +/- 6 versus 21 +/- 9 cm(-2)) and adventitious roots (2.7 +/- 4.7 versus 5.2 +/- 5.9). Differences between species in these traits were associated with differences in the frequencies of extreme phenotypes rather than with a generally higher tolerance to waterlogging in Q. robur seedlings. 相似文献
4.
5.
The susceptibility of oak seedlings (Quercus palustris, Quercus robur, Quercus rubra) and chestnut seedlings (Castanea sativa) to Phytophthora cinnamomi was tested. The dynamics of infection was examined in plant material raised in a rhizotron. In the oak species, primary root tissues were susceptible whereas secondary cortical tissues showed some resistance to P. cinnamomi. Secondary cortical tissues of the tap root in C. sativa were susceptible. Inoculations with P. cinnamomi were performed both in situ and on excised roots of mature Q. rubra. In both cases, the resistance of Q. rubra roots and shoots was negatively correlated with diameter at the inoculation point. Small roots (l–5-cm diameter) were resistant, whereas collar and trunk were susceptible. In contrast to oak, small excised roots of mature C. sativa (0.7–2-cm diameter) were susceptible to P. cinnamomi. This may explain why P. cinnamomi does not induce a decline of the attacked oaks, but rather a trunk canker. 相似文献
6.
Thirty‐two oak stands in southern Sweden, 27 with predominantly declining trees and five with a higher proportion of healthy trees were investigated regarding the presence of soilborne Phytophthora species. Phytophthora quercina, an oak‐specific fine root pathogen, was isolated from rhizosphere soil samples in 10 of the 27 declining stands. Additionally, P. cactorum and P. cambivora were recovered from one stand each. No Phytophthora species were isolated from the healthy oak stands. The soil conditions at the sites from which Phytophthora spp. were recovered ranged from mesic sediments to moraines, with clayey to silty textures and with soil pH (BaCl2) between 3.5 and 5.0. The results show that P. quercina is geographically widespread in oak stands in southern Sweden and indicate that this pathogen may be one of the factors involved in oak decline in Northern Europe as has already been shown for western, Central and parts of southern Europe. 相似文献
7.
Seven different Phytophthora species were used to test the foliar susceptibility of the common eastern US oak species and understory plants to Phytophthora infection. The Phytophthora species employed were Phytophthora cambivora, Phytophthora cinnamomi, Phytophthora citricola, Phytophthora europaea, Phytophthora quercetorum, Phytophthora quercina‐like and Phytophthora sp1. Inoculation of detached‐leaves with agar plugs containing mycelia of Phytophthora provided an estimate of their relative susceptibility. Lesions were always greater when foliage was wounded and young. On deciduous plants, lesion sizes were considerably reduced with the increasing foliar age, although with evergreen plants lesion sizes remained similar regardless of foliar age when more aggressive isolates were tested. Infections seldom resulted when foliage was not wounded. With young and mature foliage, P. citricola usually produced the largest lesions. Young foliage of Quercus rubra was the most susceptible to infection followed by Castanea dentata for both wounded and non‐wounded inoculations. Mature foliage of Hamamelis virginiana, Kalmia latifolia and Quercus alba were the most susceptible to wound and non‐wound inoculations. 相似文献
8.
Many plants emit isoprene, a hydrocarbon that has important influences on atmospheric chemistry. Pathogens may affect isoprene fluxes, both through damage to plant tissue and by changing the abundance of isoprene-emitting species. Live oaks (Quercus fusiformis (Small) Sarg. and Q. virginiana Mill) are major emitters of isoprene in the southern United States, and oak populations in Texas are being dramatically reduced by oak wilt, a widespread fungal vascular disease. We investigated the effects of oak wilt on isoprene emissions from live oak leaves (Q. fusiformis) in the field, as a first step in exploring the physiological effects of oak wilt on isoprene production and the implications of these effects for larger-scale isoprene fluxes. Isoprene emission rates per unit dry leaf mass were 44% lower for actively symptomatic leaves than for leaves on healthy trees (P = 0.033). Isoprene fluxes were significantly negatively correlated with rankings of disease activity in the host tree (fluxes in leaves on healthy trees > healthy leaves on survivor trees > healthy leaves on the same branch as symptomatic leaves > symptomatic leaves; isoprene per unit dry mass: Spearman's rho = -0.781, P = 0.001; isoprene per unit leaf area: Spearman's rho = -0.652, P = 0.008). Photosynthesis and stomatal conductance were reduced by 57 and 63%, respectively, in symptomatic relative to healthy leaves (P < 0.05); these reductions were proportionally greater than the reductions in isoprene emissions. Low isoprene emission rates in symptomatic leaves are most simply explained by physiological constraints on isoprene production, such as water stress as a result of xylem blockage, rather than direct effects of the oak wilt fungus on isoprene synthesis. The effects of oak wilt on leaf-level isoprene emission rates are probably less important for regional isoprene fluxes than the reduction in oak leaf area across landscapes. 相似文献
9.
Since 2008, severe and widespread tree decline and mortality has been observed at the main growing Quercus ilex L. (holm oak) forest on Caprera Island, Italy. To clarify the symptomatology and aetiology of this phenomenon, field surveys and isolations from symptomatic trees were carried out in summer 2010. Affected trees exhibited crown thinning, branch dieback, sunken cankers, epicormic shoots, exudates on branches and trunk, root losses and sudden death symptoms. Four fungal species belonging to Botryosphaeriaceae family, namely Botryosphaeria dothidea, Diplodia corticola, D. seriata and Neofusicoccum parvum, were isolated from cankers on trunk and branches, whereas three species of Phytophthora, namely P. cinnamomi, P. cryptogea and P. gonapodyides, were isolated from fine roots and rhizosphere soil samples. Isolates were identified using both morphological analysis and DNA‐based techniques. Pathogenicity trials on holm oak seedlings showed that all the isolated species are pathogenic. D. corticola proved to be the most aggressive species. Our results provide the first evidence for a combined involvement of D. corticola and P. cinnamomi in the aetiology of holm oak decline in Italy and suggest that these pathogens are not only important contributing factors in the onset of long‐term tree decline, but also may cause the rapid devastation of extensive oak ecosystems. 相似文献
10.
A. M. VETTRAINO G. P. BARZANTI M. C. BIANCO A. RAGAZZI P. CAPRETTI E. PAOLETTI N. LUISI N. ANSELMI A. VANNINI 《Forest Pathology》2002,32(1):19-28
Soil‐borne species of Phytophthora were isolated from 19 of 30 examined oak forest areas in Italy. The frequency of isolated Phytophthora spp. (35.2%) was significantly correlated with soil pH and longitude of the sites. Eleven Phytophthora species were detected. Phytophthora cambivora, P. cinnamomi and P. cactorum were recovered from sites in central and southern Italy whereas P. quercina was isolated in the northern and central part of the country. Phytophthora citricola occurred all over Italy. Phytophthora quercina was the only species significantly associated with declining oak trees. 相似文献
11.
Petersson Linda K. Löf Magnus Jensen Anna M. Chastain Daryl R. Gardiner Emile S. 《New Forests》2020,51(5):817-834
New Forests - Sprouting by woody plants can increase species resilience to disturbance and foster regeneration during periods with little recruitment from seed. Though sprouting often plays a... 相似文献
12.
Quercus arkansana(Arkansas oak) is at risk of becoming endangered, as the total known population size is represented by a few isolated populations. The potential impact of climate change on this species in the near future is high, yet knowledge of its predicted effects is limited.Our study utilized the biomod2 R package to develop habitat suitability ensemble models based on bioclimatic and topographic environmental variables and the known locations of current distribution of Q. arkansana. We pr... 相似文献
13.
In California today, several species of native oaks are not regenerating adequately. Artificial regeneration is a means of ensuring sufficient recruitment to replace trees that die or are harvested, and restoring areas where trees have been cleared. Until recently, however, no bareroot oak seedlings were being produced in the state and there was little information to guide nursery operators. This study evaluated the potential of bareroot blue oak seedlings to survive and grow after outplanting. Results indicated that 1-0 nursery stock performed well in the field as long as seedlings were planted early enough in the season to take advantage of a favorable growing environment. Late lifting and long storage resulted in planting at a time when soils were already becoming dry and temperatures were hot. As a result, seedlings grew slowly or even died. Seedlings lifted early in the season (December) grew best. Either one or two months of storage had little effect on seedlings lifted at this time of year. However, seedlings lifted in January, February, and even early March performed adequately as long as they were in the ground by early March. In this study, root growth capacity was not a good predictor of subsequent field performance. 相似文献
14.
M. S. Serrano P. De Vita M. D. Carbonero F. Fernández P. Fernández‐Rebollo M. E. Sánchez 《Forest Pathology》2012,42(4):345-347
The four main morphotypes of Holm oak (Quercus ilex subsp. ballota) present in Andalusia (expansa, macrocarpa, microcarpa and rotundifolia) were infected with Phytophthora cinnamomi to determine their susceptibility to the root pathogen. No large differences were found among the four morphotypes in the infection of roots, which always showed a high degree of necrosis. However, the different responses of the foliage to infection separated the four morphotypes of Holm oak into three groups: very susceptible (microcarpa), susceptible (expansa) and moderately susceptible (rotundifolia and macrocarpa). The natural hybrid Q. ilex ballota–Q. faginea exhibited a low level of root and foliar symptoms when infected with P. cinnamomi. Quercus faginea could be considered as a source of resistance to P. cinnamomi in future breeding programmes. 相似文献
15.
Throughfall and stemflow measurements in a 60-year-old white oak stand (Quercus serrata Thunb.) were carried out during two periods totalling eleven months, from August to November 1993 and from May to November
1994, in order to clarify the rainfall partitioning of this forest. Troughs and spiral-type stemflow gauges connected to tipping
bucket-gauges were used for throughfall and stemflow measurements. Seventy-five storms were analyzed individually. Coefficients
of variation for throughfall and stemflow ranged between 5–25% and 20–70% respectively. Partitioning of net rainfall in throughfall
and stemflow represent 72% and 10% of the gross rainfall respectively. Multiple regression analyses were carried out to determine
the stemflow variability. In was determined that maximum rain intensity was highly correlated with stemflow and this variable
explained a further 5.5% of the stemflow variation. Estimates of averaged lag time and drainage after rain cease for stemflow
were 290 and 164 min, while estimates for throughfall were 60 and 104 min. respectively. The canopy saturation was estimated
from continuous storms and showed a value of 0.6 mm. The trunk storage capacity was estimated at a value of 0.2 mm. The interception
loss from the forest canopy was estimated in 18%. Interception loss was heighly correlated with rainfall characteristics such
as duration and intensity. 相似文献
16.
A four- to seven-fold enhancement of leaf hydraulic conductance by light has been reported in three temperate tree species. The enhancement occurs in the liquid-flow pathway between the petiole and the site of water evaporation. The enhancement occurs within 1 h, and dissipates in darkness over a period of 1 to 10 h depending on species. Here we report light-induced enhancement of leaf hydraulic conductance in a fourth species, bur oak (Quercus macrocarpa Michx.), the dependence of the effect on light flux and color, its absence in leaves of seedlings, and the impact on the response of leaf vein severance and several metabolic inhibitors. The light response of leaf hydraulic conductance approached saturation at a photosynthetic photon flux of 150 mumol m(-2) s(-1). Hydraulic enhancement was greater in response to blue and green light than to visible radiation of longer wavelengths, although at the same irradiance, the response to white light was greater than to light of any single color. Atrazine (a photosystem II inhibitor), fusicoccin (which stimulates plasma membrane-bound H(+)-ATPase) and HgCl(2) (an aquaporin blocker) reduced the light response of leaf lamina hydraulic conductance. When 2-mercaptoethanol was added following mercury treatment, the light response was totally suppressed. Our results are consistent with the notion that the effect of light on leaf lamina hydraulic conductance is controlled by factors acting outside the leaf veins, possibly through light-induced changes in membrane permeability of either mesophyll or bundle sheath cells, or both. 相似文献
17.
18.
Zouheyr Benbrahim Abdellatif Zerizer Louis Denaud Remy Marchal 《Wood material science & engineering》2020,15(4):241-249
ABSTRACT Veneer checking is a common enough occurrence in woodworking. It appears as cracks in the veneer and generally following the grain. Their appearance and the variation of their depth and frequencies have tremendous impact on their utilization. Finding a means of identifying and characterizing the veneer checks is an important ongoing challenge. An automated device, named SMOF, was developed in LABOMAP (Arts et Metiers – France) and achieves this task. By using the SMOF device, the lathe checks occurred in veneers of two species: zeen oak (Quercus canariensis Willd.) and afares oak (Quercus afares Pomel) were detected, automatically imaged and then, the depth and intervals of checks measured. The results were described by statistical distributions that exhibited abnormalities, such as skewness and kurtosis, which were assessed by mode analysis. It has been established that hot soaking temperature (from 60°C to 90°C) reduce slightly the cutting forces for both species, no produce significant heart checks within the loose side of veneers. However, low soaking temperature (from 50°C to 65°C) allow avoiding deeper lathe checking, producing shallower ones acceptable for veneer production. 相似文献
19.
A. Pérez‐Sierra C. López‐García M. León J. García‐Jiménez P. Abad‐Campos T. Jung 《Forest Pathology》2013,43(4):331-339
Oak decline has been a serious problem in Europe since the beginning of the twentieth century. In south‐west Spain, Quercus ilex and Q. suber are the main affected species, and their decline has been associated with Phytophthora cinnamomi. During the last 10 years, a severe decline of Q. ilex and Q. faginea accompanied by a significant decrease in the production of acorns affecting natural regeneration was observed in the eastern part of the Iberian Peninsula. Therefore, the aim of this study was to investigate the possible involvement of Phytophthora spp. in the decline. A forest in the Natural Park ‘Carrascar de la Font Roja’ in Comunidad Valenciana (eastern Spain), which is dominated by Q. ilex and Q. faginea, was surveyed during 2010–2011. Symptomatic trees showed thinning and dieback of the crown, withering of leaves and death. An extensive loss of both lateral small woody roots and fine roots and callusing or open cankers on suberized roots were observed. Soil samples containing fine roots were baited using both Q. robur leaves and apple fruits. Six Phytophthora species were isolated: P. cryptogea, P. gonapodyides, P. megasperma, P. quercina, P. psychrophila and P. syringae. These are the first records of P. quercina and P. psychrophila on Q. faginea, of P. quercina in Spain and of P. psychrophila in mainland Spain. A soil infestation trial was conducted for 6 months under controlled conditions with 1‐year‐old seedlings of Q. ilex and Q. faginea. Phytophthora cinnamomi was included in the pathogenicity test for comparison. The results showed that Q. ilex seedlings were generally more susceptible to infection than Q. faginea with P. cinnamomi being the most aggressive pathogen to both oak species. The two most commonly isolated Phytophthora species, P. quercina and P. psychrophila, also proved their pathogenicity towards both Q. ilex and Q. faginea. 相似文献
20.
Within the scope of a research project on the condition of roots of declining oaks (Quercus robur, Quercus petraea), samples of fine roots and surrounding soil, specimens of stripe cankers on the stem base, and samples of stream water were examined for the presence of Phytophthora species using both baiting methods and selective agar media. At 27 sites in Germany (Bavaria, Rheinland-Pfalz, Schleswig-Holstein), Switzerland, Hungary, Italy and Slovenia the following species were isolated (mainly from soil): Phytophthora citricola, Phytophthora cactorum, Phytophthora cambivora, Phytophthora gon-apodyides, Phytophthora undulata, a species with affinity to Phytophthora drechsleri, and two additional species with close affinity to the Phytophthora cactorum group. Moreover, Pythium group P, Pythium anandrum, Pythium chamaehyphon, and many other Pythium species that have not yet been identified could be recovered. In a soil infestation test most isolates induced dieback of long root tips and necrotic lesions in the root cortex and at the root collar of Quercus robur seedlings. All Phytophthora species tested and Pythium group P caused cortical necrosis after stem inoculation of young Quercus robur trees. It could be shown in vitro that Phytophthora gonapodyides and Pythium group P were able to produce a wilting toxin. Nitrogen input and climatic changes are discussed as predisposing factors for root damage observed in the field. 相似文献