共查询到10条相似文献,搜索用时 125 毫秒
1.
M. C. G. Gasparoto H. D. Coletta‐Filho R. B. Bassanezi S. A. Lopes S. A. Lourenço L. Amorim 《Plant pathology》2012,61(4):658-664
The objectives of this work were (i) to determine the influence of temperature on infection of citrus by ‘Candidatus Liberibacter asiaticus’ and ‘Candidatus Liberibacter americanus’, the two bacterial species associated with citrus huanglongbing (HLB) in Brazil, and (ii) to determine the influence of temperature on citrus colonization by ‘Ca. L. asiaticus’, which has taken over from ‘Ca. L. americanus’ as the predominant species in Brazil since 2008. Two experiments were carried out with graft‐inoculated Valencia oranges on Rangpur lime rootstocks. Immediately after inoculation the plants were maintained for 423 days in growth chambers under the following night/day temperature conditions: 17/22, 22/27 or 27/32°C, with a dark/light photoperiod of 8/16 h. Infection and colonization of plants were determined using quantitative PCR (qPCR). ‘Candidatus Liberibacter americanus’ did not infect the plants maintained at 27/32°C; however, infection by ‘Ca. L. asiaticus’ occurred at all studied temperatures. Two months after inoculation, ‘Ca. L. asiaticus’ was distributed throughout the inoculated plants, with mean Ct values in the range of 30–31 for leaves and 25–28 for roots. Over time, ‘Ca. L. asiaticus’ reached the highest titres in mature leaves (mean Ct value = 26·7) of citrus plants maintained at 22/27°C. ‘Candidatus Liberibacter asiaticus’ colonization of citrus plants was negatively affected by the daily temperature regime of 27/32°C (mean Ct value in mature leaves = 33·6). 相似文献
2.
Huanglongbing (HLB) is a systemic disease of citrus caused by phloem‐limited bacteria ‘Candidatus Liberibacter’ spp. with ‘Ca. Liberibacter asiaticus’ (Las) the most widespread. Phloem‐limited bacteria such as liberibacters and phytoplasmas are emerging as major pathogens of woody and herbaceous plants. Little is known about their systemic movement within a plant and the disease process in these tissues. Las movement after initial infection was monitored in leaves and roots of greenhouse trees. Root density, storage starch content, and vascular system anatomy in relation to Las presence in field and greenhouse trees, both with and without symptoms, showed the importance of root infection in disease development. Las preferentially colonized roots before leaves, where it multiplied and quickly invaded leaves when new foliar flush became a sink tissue for phloem flow. This led to the discovery that roots were damaged by root infection prior to development of visible foliar symptoms and was not associated with carbohydrate starvation caused by phloem‐plugging as previously hypothesized. The role of root infection in systemic insect‐vectored bacterial pathogens has been underestimated. These findings demonstrate the significance of early root infection to tree health and suggest a model for phloem‐limited bacterial movement from the initial insect feeding site to the roots where it replicates, damages the host root system, and then spreads to the rest of the canopy during subsequent leaf flushes. This model provides a framework for testing movement of phloem‐limited bacteria to gain greater understanding of how these pathogens cause disease and spread. 相似文献
3.
Quantification and ecological study of ‘Candidatus Liberibacter asiaticus’ in citrus hosts,rootstocks and the Asian citrus psyllid 下载免费PDF全文
The use of proper management strategies for citrus huanglongbing (HLB), caused by ‘Candidatus Liberibacter asiaticus’ (Las) and transmitted by Asian citrus psyllid (ACP) (Diaphorina citri), is a priority issue. HLB control is based on healthy seedlings, tolerant rootstock cultivars and reduction of ACP populations. Here, dynamic populations of Las in different citrus hosts and each instar of ACP were studied, together with the seasonal growth and distribution of Las in different tissues, using conventional and TaqMan real‐time PCR. Different levels of susceptibility/tolerance to HLB were seen, resulting in different degrees of symptom severity and growth effects on hosts or rootstocks. Troyer citrange, Swingle citrumelo and wood apple were highly tolerant among 11 rootstock cultivars. Regarding distribution and seasonal analysis of Las, mature and old leaves contained high concentrations in cool temperatures in autumn and spring. Las was detected earlier through psyllid transmission than through graft inoculation, and the amounts of Las (AOL) varied in different hosts. Thus, different AOL (104–107 copy numbers μL?1) and Las‐carrying percentages (LCP; 40–53.3%) were observed in each citrus cultivar and on psyllids, respectively. Furthermore, both AOL and LCP were lower in nymphs than in adult psyllids, whereas the LCP of psyllids were not affected by increasing the acquisition‐access time. The present study has significant implications for disease ecology. The combination of early detection, use of suitable rootstocks and constraint of psyllid populations could achieve better management of HLB disease. 相似文献
4.
Contrasting canopy and fibrous root damage on Swingle citrumelo caused by ‘Candidatus Liberibacter asiaticus’ and Phytophthora nicotianae 下载免费PDF全文
Huanglongbing (HLB), associated with the phloem‐limited bacterium ‘Candidatus Liberibacter asiaticus’ (Las), is devastating trees in citrus orchards of Florida. Additionally, Phytophthora nicotianae, omnipresent in citrus soils, causes root rot that reduces water and nutrient uptake by fibrous roots. To investigate fibrous root damage and replacement and canopy size in relation to infection of fibrous roots by Las and P. nicotianae, rootstock seedlings of Swingle citrumelo (Citrus paradisi × Poncirus trifoliata) were inoculated with Las or P. nicotianae in two greenhouse pot trials. Phytophthora nicotianae caused root damage within 5 weeks post‐inoculation, which led to greater reduction of canopy size than for Las‐infected seedlings by the end of the experiment. Las increased accumulation of fibrous root biomass at 5 weeks post‐root trimming (wpt) in the 2014 trial and at 11 wpt in the 2015 trial. New root length was not consistently increased by Las. Reduced total leaf area of symptomless Las‐infected seedlings compared to noninoculated controls might be due to the combined effect of altered carbohydrate allocation between shoots and roots and altered leaf morphology. 相似文献
5.
M. Loiseau F. A. O. Tanaka S. Barbé C. Martínez P. Gentit M. M. López M. Cambra 《Plant pathology》2015,64(2):276-285
A protocol for the specific detection and quantification of ‘Candidatus Liberibacter solanacearum’ in carrot seeds using real‐time PCR was developed. The bacterium was detected in 23 out of 54 carrot seed lots from 2010 to 2014, including seeds collected from diseased mother plants. The average total number of ‘Ca. L. solanacearum’ cells in individual seeds ranged from 4·8 ± 3·3 to 210 ± 6·7 cells per seed from three seed lots, but using propidium monoazide to target live cells, 95% of the cells in one seed lot were found to be dead. Liberibacter‐like cells were observed in the phloem sieve tubes of the seed coat and in the phloem of carrot leaf midrib from seedlings. The bacterium was detected as early as 30 days post‐germination, but more consistently after 90 days, in seedlings grown from PCR positive seed lots in an insect‐proof P2 level containment greenhouse. Between 12% and 42% of the seedlings from positive seed lots tested positive for ‘Ca. L. solanacearum’. After 150 days, symptoms of proliferation were observed in 12% of seedlings of cv. Maestro. ‘Candidatus Liberibacter solanacearum’ haplotype E was identified in the seeds and seedlings of cv. Maestro. No phytoplasmas were detected in seedlings with symptoms using a real‐time assay for universal detection of phytoplasmas. The results show that to prevent the entry and establishment of the bacterium in new areas and its potential spread to other crops, control of ‘Ca. L. solanacearum’ in seed lots is required. 相似文献
6.
Up‐regulation of PR1 and less disruption of hormone and sucrose metabolism in roots is associated with lower susceptibility to ‘Candidatus Liberibacter asiaticus’ 下载免费PDF全文
Huanglongbing (HLB), caused by ‘Candidatus Liberibacter asiaticus’ (Las), is a devastating disease of citrus trees in Florida. Previous work showed that the rootstock cultivar Cleopatra mandarin (Citrus reticulata) has a higher population of Las in roots than Swingle citrumelo (C. paradisi × Poncirus trifoliata). Las reduced fibrous root biomass and sucrose content in Cleopatra mandarin more than in Swingle citrumelo. To understand the mechanisms for susceptibility to Las infection, sucrose and hormone metabolism status were evaluated in Cleopatra mandarin and Swingle citrumelo. In fibrous roots of Cleopatra mandarin, higher expression of genes related to sucrose cleavage was consistent with lower sucrose content compared to noninoculated seedlings at 5 weeks post‐root trimming (wpt). In fibrous roots of Swingle citrumelo, both sucrose content and gene expression related to sucrose cleavage were less disrupted by Las infection compared to Cleopatra mandarin at 5 wpt. Genes associated with salicylic acid (SA), ethylene (ET) and abscisic acid (ABA) synthesis, and ABA signalling, phospholipases D (PLD), and phospholipase A2 (PLA2) were activated by Las infection at 5 wpt in Cleopatra mandarin. Expression of downstream effectors of SA, i.e. NPR1, WRKY70 and PR1, did not change in Cleopatra mandarin, suggesting inhibition of the response to SA by the elevation of ABA, ET and PLD. In contrast, the up‐regulation of PR1, lower response of sucrose metabolism genes and down‐regulation of biosynthesis of phytohormones indicates that Swingle citrumelo activates a more effective defence against this biotrophic pathogen than Cleopatra mandarin. 相似文献
7.
Frequency and occurrence of the carrot pathogen ‘Candidatus Liberibacter solanacearum’ haplotype C in Finland 下载免费PDF全文
M. Haapalainen P. Kivimäki S. Latvala M. Rastas A. Hannukkala L. Jauhiainen A. Lemmetty M. Pirhonen A. Virtanen A. I. Nissinen 《Plant pathology》2017,66(4):559-570
Occurrence of ‘Candidatus Liberibacter solanacearum’ (CLso) was studied in field‐grown carrots (Daucus carota) in different regions of Finland. In addition, the frequency of CLso in carrots and in field populations of its vector, the carrot psyllid (Trioza apicalis), was studied in southwestern Finland. CLso was detected in six of the seven regions where the main carrot cultivation areas are located. The highest disease incidence was found in southwestern Finland, in the area where this carrot pathogen was originally found. In the Tavastia Proper and Southwest Finland regions, CLso was detected in 26 out of 30 randomly chosen fields inspected in 2013 and 2014, and in a third of those fields more than 10% of plants showed symptoms. Of those carrots showing both psyllid feeding‐associated leaf curling and CLso infection‐associated leaf discolouration symptoms, 77% were CLso positive in the PCR test. Some symptomless carrots from the affected fields also tested positive. Of the carrot psyllid individuals collected from the same area, 60% were CLso positive. Elsewhere, disease incidence was variable in South Ostrobothnia in western Finland and low but established in South Savonia in eastern Finland. CLso was not detected in the North Ostrobothnia region. Sequencing of the amplified DNA fragments confirmed that the bacteria in the carrot samples from different areas within Finland all represented CLso haplotype C. The frequent occurrence and wide distribution of this pathogen, transmitted by a psyllid that does not migrate over long distances, suggest that it is persistent in Finland. 相似文献
8.
T. Soliman M. C. M. Mourits A. G. J. M. Oude Lansink W. van der Werf 《Plant pathology》2013,62(5):1106-1113
International agreements on plant health and trade require that regulating a pest should be justified by economic impact assessment. Economic impact assessments are usually qualitative, weakening the objective and transparency of the regulation decision. This study assessed the potential economic impacts of the invasion of the plant pathogenic bacterium ‘Candidatus Liberibacter solanacearum’ into the European Union in order to economically justify a decision on its quarantine status. Direct economic impacts resulting from yield loss in potato and tomato were computed using partial budgeting at a regional scale, while total economic impacts on the potato and tomato markets were computed using partial equilibrium modelling at the EU scale. Annual direct impacts at the most likely infestation level were estimated at €222 m for the whole EU. Uncertainty analysis showed a distribution of foreseeable annual impacts with a 5th percentile of €192 m, and a 95th percentile of €512 m. Increased market prices of potato and tomato resulting from reduced supply were found to increase profits for non‐infested producers and to compensate in part for the production losses of infested producers, with consumers paying for this mitigation of impacts on producers. The expected negative impact on societal welfare at the most likely infestation level is less than the estimated direct impacts, viz. €114 m/year. The potential economic impacts of ‘Ca. L. solanacearum’ in the European Union are demonstrably of major importance. Therefore, a decision to categorize this organism as a quarantine pest is supported. 相似文献
9.
A. I. Nissinen M. Haapalainen L. Jauhiainen M. Lindman M. Pirhonen 《Plant pathology》2014,63(4):812-820
Carrot psyllid Trioza apicalis was recently found to carry the plant pathogenic bacterium ‘Candidatus Liberibacter solanacearum’ (CLs). To confirm the transmission of bacteria by the psyllids and to dissect the symptoms caused in carrot plants by psyllid feeding and CLs infection, a greenhouse experiment with single psyllids feeding on separate plants was performed. A positive correlation was found between the amount of CLs bacteria in the psyllids and in the corresponding plants exposed to feeding, indicating CLs transmission. The female psyllid feeding caused more severe damage than male feeding, and resulted in a substantial decrease in the root weight. Female psyllid feeding also significantly reduced the carrot leaf weight and increased the number of curled leaves. The number of curled leaves was also increased by the nymphs when their number exceeded 10 per plant. A high titre of CLs bacteria significantly reduced root weight, while not affecting the weight or number of the leaves. However, the amount of CLs correlated with the number of leaves showing discolouration symptoms. Microscopy of infected carrot plants revealed that the phloem tubes throughout the whole plant, from leaf veins to the root tip, were colonized by bacteria. The bacterial cells appeared to be long and thin flexible rods with tapering ends and a transversally undulated surface. Microscopy also revealed collapsed phloem cells in the infected carrots. Damage in the phloem vessels is likely to reduce the sucrose transport from source leaves to the root, explaining the observed leaf discolouration and reduction in root weight. 相似文献
10.
Transmission of ‘Candidatus Phytoplasma pyri’ by naturally infected Cacopsylla pyri to peach,an approach to the epidemiology of peach yellow leaf roll (PYLR) in Spain 下载免费PDF全文
Peach orchards in the northeast of Spain were severely affected in 2012 by a previously unreported disease in this area. The symptoms included early reddening, leaf curling, decline, abnormal fruits, and in some cases death of the peach trees. All the infected peach samples were positive for ‘Candidatus Phytoplasma pyri’, but none were infected by the ‘Ca. Phytoplasma prunorum’. In this work, potential vectors able to transmit ‘Ca. Phytoplasma pyri’ from pear to peach and between peach trees were studied and their infective potential was analysed at different times of the year. Transmission trials of the phytoplasma with potential vectors to an artificial feeding medium for insects and to healthy peach trees were conducted. Additionally, isolated phytoplasmas were genetically characterized to determine which isolates were able to infect peach trees. Results showed that the only insect species captured inside peach plots that was a carrier of the ‘Ca. Phytoplasma pyri’ phytoplasma was Cacopsylla pyri. Other insect species captured and known to be phytoplasma transmitters were present in very low numbers, and were not infected with ‘Ca. Phytoplasma pyri’ phytoplasma. A total of 1928 individuals of C. pyri were captured in the peach orchards, of which around 49% were phytoplasma carriers. All the peach trees exposed to C. pyri in 2014, and 65% in 2015, were infected by ‘Ca. Phytoplasma pyri’ 1 year after exposure, showing that this species is able to transmit the phytoplasma to peach. Molecular characterization showed that some genotypes are preferentially determined in peach. 相似文献