首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The objective of this study was to quantify the genetic variability and determine the inheritance of Al tolerance in lucerne (or alfalfa) using a 4-parent diallel mating design. Regrowth root length (RRL), along with root length (RL) and total root length (TRL), was measured to indicate relative Al stress response using a hydroponic system in a 3 μM Al solution at pH 4.5. A diallel analysis indicated the significance of general combining ability (gca) variance for RRL but not the specific combining ability (sca) variance; the same result was obtained for TRL but not for RL. For both RRL and TRL, genetic variance appeared to be more important than the environmental variance. For RRL, a strong but non-significant correlation was indicated between parental performance and their gca effects; while mid-parent heterosis and/or over-dominance were detected, as associated with the expressed sca effects in several combinations. These results suggest the complex genetic nature and expression of Al tolerance in the 4-parent diallel crossing system tested. Al-tolerant parent, GAAT‘S’, was the most promising parent, conferring the highest gca effects for RRL as well as for other two characters. The existence of significant gca variance in RRL may also suggest the feasibility of improving Al tolerance through enhanced root regrowth using phenotypic recurrent mass selection to pyramid desirable Al-tolerant genes, focussing on parental lines and/or elite individual plants expressing long regrowth roots.  相似文献   

2.
Aluminum (Al) toxicity is a predominant growth-limiting factor in acid soils. Better understanding of the genetic mechanisms by which plants tolerate toxic Al expedites the development of tolerant plant genotypes. The genetic behavior of apparent Al tolerance in two triticale crosses as measured by root regrowth of seedlings at a level of 10 μg · g−1 Al stress in nutrient solutions was analyzed by following a bi-parental (BIP) mating design. The validity of the additive-dominance genetic model was tested with relevant gene effects estimated. The continuous variation of regrown root length showed that apparent Al tolerance was a metrical character in nature. Both the additive and dominance effects were responsible while the additive effects played a major role in the expression of Al tolerance. Non-allelic interaction (or epistasis) was indicated from the inadequacy of the model and different types of epistatic gene effects were detected in the two crosses. These results suggest that Al tolerance was of polygenic system rather than simply inherited. One to three pairs of genes were involved in apparent Al tolerance for the parental difference. The moderately high value of estimates of heritability together with the estimates of genetic advance (GA) could be used in planning a selective breeding program aimed at greater Al tolerance. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

3.
Acid soils containing high levels of aluminum (Al) are known to severely limit plant growth on over 1.6 billion hectares worldwide. In the United States, a gradual decline in the pH of many soils both in the Great Plains as well as the Southeast, has caused many soils to become high in levels of free Al. This worldwide condition encouraged the analysis of wheat (Triticum aestivum L. em Thell.), triticale (X Triticosecale Wittmack), and rye (Secale cereale L.) germplasm from one of the major acid soil regions of the world (Brazil) in order to evaluate and compare the genetic potential of Al genes for cereal improvement. The objectives were to compare Al-tolerance levels in wheats, triticales, and ryes by measuring root elongation responses in Al-containing hydroponic nutrient solutions. Root elongation was impaired for all species grown in 1 mg/L concentrations of Al. Rye had the longest root regrowth and Al-sensitive wheats had the shortest root regrowth. The triticales containing a 2D(2R) substitution developed in the mid-1970s had the poorest root regrowth of all triticale types. The newly developed advanced triticale lines (AABBRR) yet to be released for commercial production showed the highest degree of Al tolerance of all the triticale types and approached or exceeded the levels observed in rye. This indicated that progress is being made in improving Al-tolerance of triticale in Brazil. Of all the old and new wheat varieties showing the highest degree of Al-tolerance, none of them were better than ‘BH 1146’ a variety that is at least 50 years old. This indicated that over the past 50 years, although Brazilian wheat breeders have made yield improvements in wheat production, they have not improved Al-tolerance. Rye showed a higher degree of Al-tolerance than the other cereals when tested in 1 mg/L of Al, but as expected, some variation was noted. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

4.
We evaluated Al-tolerance in 44 interspecific lines (32 upland and 12 lowland) developed from the crosses of Oryza sativa and O. glaberrima called New Rice for Africa (NERICA) with 2 O. glaberrima lines and 13 O. sativa varieties under hydroponic culture containing 0.15, 0.3, 0.6, and 1.2 mM Al (+Al) and 0 mM Al (?Al as a control). Ten upland and four lowland NERICA lines showed strong Al-tolerance judging from their higher relative root and shoot dry weights (percentage ratios of dry weights in the Al treatments to the control) than those of the tolerant O. sativa check of IR 53650. Their tolerance was supported by relatively higher root Al accumulation (dark blue color) opposite performance with common knowledge (shown pale blue color) in root using hematoxylin staining compared to the Al-susceptible genotypes identified based on relative root and shoot dry weights in the study. Net Al concentration was higher in roots than in shoots in all +Al conditions for all genotypes; however, a clear difference in the Al concentration among the Al-tolerant, Al-moderately tolerant, and Al-susceptible genotypes was observed in the shoots. Al concentrations in the shoots of the Al-tolerant and Al-moderately tolerant upland and lowland NERICA lines were significantly lower than those of its Al-susceptible counterparts in the groups under 0.6 and 1.2 mM Al conditions, respectively. Differences in root and shoot growth among the Al-tolerant, Al-moderately tolerant, and Al-susceptible NERICA lines were clearer under strong Al toxic conditions (0.6 and 1.2 mM Al) than under weak Al toxic conditions (0.15 and 0.3 mM Al).  相似文献   

5.
The objective of this study was to correlate root length of wheat (Triticum aestivum L.) genotypes grown in Al-containing, acidic hydroponic solutions, with root weights from acid-soil experiments and field scores from Brazilian acid-field trials. A total of 43 wheat genotypes, primarily from Brazil, were evaluated by growing seedlings for 4 days in hydroponic solutions containing 0.0–4.0 mg/l Al. The root growth rate of all the genotypes was reduced with the addition of Al to the solution and the Al-sensitive and Al-tolerant wheat genotypes were clearly identified. Genotypes with intermediate Al-tolerance levels showed variable root lengths in response to Al stress. Correlations between root length or a root tolerance index (RTI) in the Al solutions versus acid-soil experiments and acid-field trials were highly significant (r = 0.71–0.85, P < 0.01). The most significant correlation was observed among seedlings grown in 1 mg/1 Al. This study presents evidence that this short duration and simple screening technique provides a highly significant correlation with previous acid-soil Al-tolerance evaluations. Furthermore, the data obtained suggest that hydroponic screening of wheat seedlings for Al tolerance may be used in breeding programmes or in screening germplasm collections.  相似文献   

6.
The objectives of this study were to determine genetics of Al tolerance and whether the Al tolerance observed is governed by the same gene. The lines ‘L‐7903’ and ‘L‐4602’ have been developed through breeding programme as Al‐tolerant lines. These lines showed maximum root regrowth and minimum accumulation of Al and callose as compared to sensitive genotypes (‘BM‐4’ and ‘L‐4147’). Al tolerance in the parents, F1, F2 and backcross generations was estimated using the regrowth of the primary root after staining and scoring of fluorescent signals. The F1 hybrids responded similarly to the tolerant parents, indicating dominance of Al tolerance over sensitivity. The segregation ratios obtained for Al tolerance and sensitivity in the F2 and backcross generations were 3 : 1 and 1 : 1, respectively. Test of allelism confirmed the same gene was conferring Al tolerance in both genotypes (‘L‐7903’ and ‘L‐4602’) as the F1 was also tolerant and no segregation of tolerant : sensitive was recorded. These results indicated that Al tolerance is a monogenic dominant trait that can be easily transferred to agronomic bases through backcross breeding technique.  相似文献   

7.
High concentration of reduced iron (Fe2+) in waterlogged acid soils is a constraint for growing wheat in high rainfall (waterlogged-prone) areas of Western Australia. Growing crop genotypes tolerant to high Fe2+ concentrations may be desirable in such situations, but there is no knowledge about the extent of variability in Fe2+ tolerance in the wheat germplasm. A bioassay for tolerance to high concentrations of iron in wheat was developed and optimised using Siete Cerros (Fe-tolerant) and BH1146 (Fe-intolerant) as control genotypes and a range of FeSO4 concentrations (36, 313, 625, 1250, 1875, 2500 and 3125 μM Fe2+) in nutrient solution in a controlled-temperature environment. Increasing external concentration of iron decreased both shoot and root dry weight, increased shoot iron concentration and intensified the development of toxicity symptoms to a greater degree in intolerant BH1146 as compared to tolerant Siete Cerros. Increased iron supply negatively affected uptake of Ca (r = −0.41) and Mg (r = −0.40). The tolerant genotype Siete Cerros showed an improved avoidance/exclusion of high external concentration of Fe2+ compared with intolerant BH1146. The genotypic discrimination based on relative root dry weight and the development of toxicity symptoms was most pronounced at 625 μM Fe2+. This concentration was chosen for screening of 20 bread wheat and one durum genotype chosen from a preliminary screening of 94 Australian wheat genotypes. A relatively narrow but significant variation (22–38%) in terms of relative root dry weight under Fe2+ toxicity was observed among Australian advanced breeding lines and varieties. The presence of genotypic variation for Fe2+ tolerance across and within the Australian breeding programs could be exploited in a deliberate selection process to enhance Fe2+ tolerance in wheat. Durum wheat (Arrivato) and several Australian wheat varieties and advanced lines in this study were as tolerant to Fe2+ toxicity as Siete Cerros, a variety representing common parentage of iron-tolerant genotypes.  相似文献   

8.
采用根箱分室土培方法,研究了两个不同耐铝性玉米自交系在两种不同pH土壤根际的营养状况。结果表明,两自交系根际Al、P、Ca等元素的含量和分布不同。酸性土壤根表附近土壤Al含量明显高于远根际区域,耐铝自交系根际土壤铝的含量显著高于敏感自交系。中性土壤上两自交系距根表0-4cm区域为一典型的P耗竭区,而酸性土壤上P耗竭区相对较小,在距根表0-2.5cm范围。酸性土壤上耐铝自交系距根系1-2.5cm区域P含量较高,对P的活化能力相对较强。酸性土壤根系附近Ca含量显著低于中性土壤。耐铝自交系根系对Ca、Mg的吸收能力相对较强,在酸性土壤的0-2.5区域形成一明显的Ca耗竭区。  相似文献   

9.
Aluminum (Al) toxicity is the key factor limiting wheat production in acid soils. Soil liming has been used widely to increase the soil pH, but due to its high cost, breeding tolerant cultivars is more cost-effective mean to mitigate the problem. Tolerant cultivars could be developed by traditional breeding, genetic transformation or introgression of genes from wild relatives. We used 30 wheat alien chromosome addition lines to identify new genetic resources to improve wheat tolerance to Al and to identify the chromosomes harboring the tolerance genes. We evaluated these lines and their wheat background Chinese Spring for Al tolerance in hydroponic culture at various Al concentrations. We also investigated Al uptake, oxidative stress and cell membrane integrity. The L. racemosus chromosomes A and E significantly enhanced the Al tolerance of the wheat in term of relative root growth. At the highest Al concentration tested (200 μM), line E had the greatest tolerance. The introgressed chromosomes did not affect Al uptake of the tolerant lines. We attribute the improved tolerance conferred by chromosome E to improved cell membrane integrity. Chromosome engineering with these two lines could produce Al-tolerant wheat cultivars.  相似文献   

10.
Z. Rengel  V. Jurkic 《Euphytica》1992,62(2):111-117
Summary Aluminium tolerance of 83 genotypes from Croatian and Yugoslav Triticum aestivum germplasm was evaluated in nutrient solutions having Al3+ activities of 0, 12.5 and 25 M. Relative root length (25 M Al3+/0 Al) of various genotypes ranged from 2 to 97% (from very sensitive to tolerant to Al). No genotype with Al tolerance close to that of very tolerant cultivar Atlas-66 was found. Soil, climatic, fertilization, and liming effects that wheat plants giving seeds for the nutrient solution Al-tolerance screening had been subjected to during their growth cycle did not influence the Al-tolerance ranking. Significant correlation was found between screening wheat for Al tolerance in nutrient solutions and in acid Pseudogley soil amended with five rates of limestone in a greenhouse experiment. Seed protein concentration was significantly related to the Al-tolerance ranking (r2 = 0.962). Such a significant correlation was not obtained in a case of rheological and other quality characteristics of seeds. Al-tolerant wheat genotypes identified in this study will be used in breeding for improved Al tolerance.Abbreviations HSD Tukey's Honestly Significant Difference - RRL-2 relative root length, in % (12.5 M Al3+/0 Al) - RRL-4 relative root length, in % (25 M Al3/0 Al)  相似文献   

11.
With the aim of producing polyhaploids of hexaploid triticale, 20 genotypes from a CIMMYT breeding programme and eight D-genome chromosome substitution lines of ‘Rhino’ were crossed with maize. In crosses between 20 triticale genotypes and maize, 15 lines produced embryos. Frequencies of embryo formation ranged from 0.0 to 5.4%, with an average of 1.1%. From a total of 200 pollinated spikes, 62 plants were regenerated. Most regenerated plants were polyhaploids with 21 chromosomes, and few aneuhaploids with 22 chromosomes were found. In crosses of triticale substitution lines with maize, all the lines produced embryos, while ‘Rhino’ produced no embryos at all. Higher frequencies of embryo formation were obtained in substitution lines with chromosomes 2D and 4D. These results suggest that D-genome chromosomes in a triticale genetic background have the effect of increasing the frequency of polyhaploid production in triticale x maize crosses.  相似文献   

12.
玉米根系活力与耐铝性的关系   总被引:21,自引:1,他引:21  
铝胁迫可提高耐铝自交系根系还原力,而铝敏感自交系TTC还原强度则显著下降,表明自交系根系TTC相对还原强度与耐铝性具有很好的一致性。耐铝自交系根系活跃吸收面积,尤其是根系活跃吸收面积占总吸收面积的比例相对较高。铝胁迫可维持或略提高铝自交系根系氧化力,而敏感自交系根系氧化力则有所下降,说明耐铝自交系在铝胁迫下仍可维持较高的呼吸代谢活性。铝胁迫可造成玉米自交系伤流量减少,且敏感自交系降幅较大。  相似文献   

13.
Bean species and genotypes show wide phenotypic variability in relation to aluminium (Al) resistance and progressive soil drying. The objective of this study was to identify and characterize sources of resistance to Al toxicity and progressive soil drying among six genotypes of common bean (Phaseolus vulgaris), four of runner bean (P. coccineus), and one of tepary bean (P. acutifolius), using hydroponic and soil cylinder screening methods. One experiment on hydroponic screening of Al resistance was carried out using a basal nutrient solution with and without 20 μM Al. Two experiments were carried out using two oxisols in 80 cm long soil cylinders with high Al (HAl) and low Al (LAl) saturation treatments. The three experiments showed an average of 36.9–53.5% inhibition of root growth with HAl compared with LAl treatments. Differences in root development and distribution were observed among genotypes and species. Two accessions of P. coccineus (G35346-2Q, G35464-5Q) and one Andean common bean genotype (ICA Quimbaya) were outstanding in root and shoot growth in the HAl treatments. P. coccineus accession (G35346-3Q) was outstanding under combined stress of Al-toxic acid soil and progressive soil drying. Accessions of P. coccineus may represent unique sources of Al resistance for the improvement of common bean through interspecific crosses.  相似文献   

14.
Summary Quantitative trait loci (QTL) analysis for Al tolerance was performed in rice using a mapping population of 98 BC1F10 lines (backcross inbred lines: BILs), derived from a cross of Al-tolerant cultivar of rice (Oryza sativa L. cv. Nipponbare) and Al-sensitive cultivar (cv. Kasalath). Three characters related to Al tolerance, including root elongation under non-stress conditions (CRE), root elongation under Al stress (SRE) and the relative root elongation (RRE) under Al stress versus non-stress conditions, were evaluated for the BILs and the parents at seedling stage. A total of seven QTLs for the three traits were identified. Among them, three putative QTLs for CRE (qCRE-6, qCRE-8 and qCRE-9) were mapped on chromosomes 6, 8 and 9, respectively. One QTL for SRE (qSRE-4) was identified on chromosome 4. Three QTLs (qRRE-5, qRRE-9 and qRRE-10) for RRE were detected on chromosomes 5, 9, 10 and accounted for 9.7–11.8% of total phenotypic variation. Interestingly, the QTL qRRE-5 appears to be syntenic with the genomic region carrying a major Al tolerance gene on chromosome 6 of maize. Another QTL, qRRE-9, appears to be similar among different rice populations, while qRRE-10 is unique in the BIL population. The common QTLs for CRE and RRE indicate that candidate genes conferring Al tolerance in the rice chromosome 9 may be associated with root growth rates. The existence of QTLs for Al tolerance was confirmed in substitution lines for corresponding chromosomal segments. These results also provide the possibilities of enhancing Al tolerance in rice through using marker-assisted selection (MAS) and pyramiding QTLs.  相似文献   

15.
Somaclonal variations, induced in vitro, were used to enhance tolerance to aluminium (Al) toxicity in rice. Tolerant plants were developed through in vitro screening of embryogenic calli. The calli were derived from mature seed embryos and cultured on medium stressed with different concentrations of Al2(SO4)3⋅18H2O. Seed germination, callus induction, plantlet regeneration and callus health declined with increased concentration of Al. At higher Al concentrations, callus health deteriorated drastically with partial to total necrosis. Plantlet regeneration varied largely among varieties and treatments. The variety IR72 produced maximum plantlets among all genotypes tested. An amount of 60 ppm or more Al was highly toxic, which greatly reduced plantlet regeneration from callus. R0 plantlets were grown under glasshouse. Based on the appearance of bronzing symptoms on leaves, the tolerant R1 plants were selected. R1 and R2 lines derived from putative tolerant somaclones, were evaluated in fiberglass tanks filled with Al-toxic soil. R3 population was evaluated in the field. A few lines derived from IR72 showed high yield and good plant type. The progenies at R3 showed normal root growth under stressed environment in sand culture. The study revealed that in vitro screening would be an appropriate alternative to conventional breeding in evolving Al-tolerant lines as observed in case of other abiotic stresses. The technique was useful in creating de novo synthesized Al-tolerance character in rice.  相似文献   

16.
Summary Aluminum toxicity due to the cation Al+3 is a major factor limiting yields in acid soils. Wide genetic variability to aluminum tolerance is found in oat genotypes. The objectives of this study were to determine the number of genes controlling aluminum tolerance in oats and to verify if any detrimental effects were present of the aluminum tolerance genes on grain yield and grain quality in Al+3free soils. Aluminum tolerance was estimated as the average regrowth of the main root after exposure to toxic levels of Al+3 in a hydroponic solution under controlled conditions. The number of genes controlling that trait was estimated from the distribution of the average root regrowth frequencies in a population of 333 recombinant inbred lines (RIL's) in generations F5:6 and F5:7. The effects on grain yield and grain quality were assessed in a subpopulation of 162 RIL's chosen based on their aluminum tolerance response. Aluminum tolerance in the evaluated population was controlled by one dominant major gene with the tolerant genotypes carying Al a Al a and the sensitive ones al a al a alleles. No detrimental effects of the Al a allele on grain yield or grain quality were detected.Part of the Master of Science dissertation of the first author  相似文献   

17.
H. Özkan    I. Genc    T. Yagbasanlar  F. Toklu 《Plant Breeding》1999,118(4):365-367
The development of triticale (X Triticosecale Wittmack) cultivars which are tolerant to drought and heat stress is an objective in many breeding programmes, but so far success has been limited. This study was conducted to determine the susceptibility index (S) of triticale under stress conditions. Twenty genotypes were grown in replicated trials and evaluated for heat and drought tolerance under natural conditions at Adana, Turkey, from 1992 to 1996. Among the advanced lines of triticale, genetic variation for adaptation to heat and drought conditions—typical features of the Mediterranean environment—was determined. The best yielding lines under stress, hence having a low susceptibility index, were Lynx/Yogui and Zebra 31. The implications of these findings for triticale breeding in stress environments are discussed.  相似文献   

18.
Aluminium (Al) toxicity is a major limiting factor for plant production on acid soils. Breeding of adapted genotypes presents an alternative to corrective lime application. This study estimated genetic and non‐genetic components of variation, heritabilities, and trait correlations for 20 triticale (×Triticosecale Wittmack) genotypes grown for 2 years on naturally acidic, Al‐toxic (pH 4.4) and lime‐amended soils (pH 5.0 and 6.3). Eight traits were assessed. A 51% mean reduction in grain yield as a result of soil acidity was due to 27% fewer grains/spike, 11% fewer spikes/m2 and 7% reduced 1000‐grain weight. Genotypes were the most important source of variation for nearly all traits in the combined analysis across years. Genotype × lime interaction was relevant only for certain traits in a particular year. Despite a substantial genotype × year interaction, the general ranking of genotypes for acid‐soil tolerance did not change across years. Genotypic variation was higher on acidic than on lime‐amended soil. Heritability estimates were similar at the two extreme pH levels. Results suggest that in triticale a wide variation for adaptation to soil acidity exists. Selection under stress appears more effective than under optimal conditions. A visual plant‐development‐stress‐symptom rating can be used to select indirectly for grain yield in a breeding programme.  相似文献   

19.
Aluminium (Al) toxicity is a major constraint to crop productivity in acidic soils. A quantitative trait locus (QTL) analysis was performed to identify the genetic basis of Al tolerance in the wheat cultivar ‘Chinese Spring’. A nutrient solution culture approach was undertaken with the root tolerance index (RTI) and hematoxylin staining method as parameters to assess the Al tolerance. Using a set of D genome introgression lines, a major Al tolerance QTL was located on chromosome arm 4DL, explaining 31% of the phenotypic variance present in the population. A doubled haploid population was used to map a second major Al tolerance QTL to chromosome arm 3BL. This major QTL (Qalt CS .ipk-3B) in ‘Chinese Spring’ accounted for 49% of the phenotypic variation. Linkage of this latter QTL to SSR markers opens the possibility to apply marker-assisted selection (MAS) and pyramiding of this new QTL to improve the Al tolerance of wheat cultivars in breeding programmes.  相似文献   

20.
I. Karsai  Z. Bedö 《Euphytica》1998,100(1-3):249-252
A combination of in vivo and in vitro selection methods were used to increase aluminium tolerance in wheat using wheat x triticale crosses. Both in vivo and in vitro aluminium treatments significantly influenced the anther culture response. In vivo selection at the seedling stage resulted in significantly higher embryo induction. On induction media containing aluminium, the embryoid induction frequency dropped significantly, but there was an increase in the green plant regeneration frequency. In spite of this effect, all doubled haploid (DH) lines were more tolerant to aluminium in seedling tests than the winter wheat parent. The application of in vivo aluminium selection, before the start of anther culture, increased the probability of obtaining DH lines with significantly higher tolerance, compared to the original population. After three selection cycles of the original populations, there was a significant difference in the root regrowth rate of tolerant and sensitive plants. Both sensitive and tolerant plants showed a decrease due to the presence of aluminium in the induction media, with a greater decrease occurring in sensitive plants. Correlation between the rate of root regrowth in the seedling test and the change in embryo induction was positive, but moderate, emphasising the fact that plants with higher root regrowth tended to be more tolerant of the presence of aluminium in the induction medium. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号