首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This research was conducted to determine the effect of corn genetics and cutting height on the composition and nutritive characteristics of corn silage. An in situ study involving eight commercially available corn hybrids indicated main effects and interactions (P < 0.01) of hybrid and cutting height on NDF, ADF, and starch content and on in situ DM and NDF degradablility. Four ruminally cannulated Angus heifers (initial BW = 378 +/- 3 kg) were used in a 4 x 4 Latin square digestion experiment with a 2 x 2 factorial treatment arrangement. Main effects and interactions of hybrid (Pioneer Hi-Bred Int., Inc., hybrids 3335 and 3223) and cutting height (LO = 20.3 cm, and HI = 61 cm) were evaluated. Dietary treatment consisted of 40% chopped alfalfa hay and 60% corn silage. Although corn silage hybrids used were of equivalent maturity at harvest (60% milkline), 3335 treatments had 37.8% starch and 34.8% NDF, whereas 3223 treatments had 33.7% starch and 38.6% NDF. The LO treatments averaged 3.1 percentage units greater in NDF and 3.45 percentage units less in starch content than the HI treatments. Intake of DM was greater for heifers fed 3335-HI than 3335-LO; however, DMI was greater by heifers fed 3223-LO than 3223-HI (hybrid x cutting height interaction, P < 0.05). Starch intake was greater (P < 0.05) and NDF intake was less (P < 0.05) by heifers fed HI vs. LO and fed 3335 vs. 3223 dietary treatments. Digestibility of DM, starch, and NDF was greater (P < 0.05) by heifers fed 3223 than 3335 dietary treatments, but digestibility differences were not observed (P > 0.10) between cutting heights. Rate of in situ DM and starch degradability was not affected (P > 0.10) by hybrid or cutting height; however DM degradability was greater (P < 0.05) for HI than LO corn silage substrates at 8, 16, and 24 h of incubation. Rate of NDF degradability tended (P = 0.08) to be greater for 3223 than for 3335, and for LO compared with HI corn silage. Degradability of NDF was greater (P < 0.05) for 3223 compared with 3335 substrates at 24, 36, and 48 h of incubation. These data suggest fiber may not be an accurate measure of corn silage quality. Whereas cutting height affected chemical composition, we observed genetics to have a greater effect on corn silage quality.  相似文献   

2.
The brown midrib-3 (bm3) gene mutation has been incorporated into corn plants to potentially improve fiber digestibility. The objectives of this study were to determine the effect of bm3 corn silage on digestion and performance of growing beef steers and to determine whether limiting intake would further enhance fiber digestibility of bm3 corn silage. A bm3 hybrid and its isogeneic normal counterpart were harvested at three-quarters kernel milk line. Neutral detergent fiber, ADF, and ADL were 4.5, 6.9, and 1.9 units lower, respectively, and DM was 5.4 units higher for bm3 than for normal silage. In Trial 1, eight ruminally fistulated Angus crossbred steers (224 +/- 24 kg) were randomly assigned to a 2 x 2 factorial arrangement of treatments in a replicated 4 x 4 Latin square design. Steers had ad libitum feed access or were restricted to 80% of ad libitum intake of diets containing 86% normal corn silage (Control) or bm3 corn silage (BMCS). The remainder of the diets consisted of soybean meal, urea, monensin, vitamins, and minerals. Dry matter intake was greater (P < 0.01) for steers offered ad libitum access to BMCS than for those with ad libitum access to the Control diet. The BMCS treatment resulted in improved (P < 0.05) apparent total-tract digestibility of DM, OM, NDF, and ADF. Mean concentration of total VFA and molar proportions of acetate were increased (P < 0.05) by feeding BMCS. There tended to be a DMI x hybrid interaction (P = 0.16) for apparent total-tract digestibility of NDF. When diets were offered ad libitum, BMCS increased NDF digestibility by 10.5 percentage units compared with Control, but, when DMI was limited, BMCS increased NDF digestibility by 15.8 percentage units. In Trial 2, 128 steer contemporaries of those used in Trial 1 (245 +/- 13 kg) were offered ad libitum access to BMCS or Control diets as used in Trial 1. After a 112-d treatment period, concentrate in the diet was increased, and all steers were fed a common finishing diet. During the 112-d treatment period, steers receiving BMCS consumed 0.45 kg more DM/d (P < 0.05) and had similar ADG (P > 0.10), compared with those steers receiving the Control silage. This resulted in poorer (P < 0.01) feed efficiency for steers receiving BMCS. Finishing phase and overall performance of the steers was not different (P > 0.10) due to treatment. Although feeding BMCS in growth-phase diets resulted in increased daily DMI and improved digestibility of DM and fiber, it did not result in improved steer feedlot ADG compared with Control silage.  相似文献   

3.
Twelve Angus (237 +/- 13 kg) and twelve Holstein (235 +/- 15 kg) steers were used to determine whether corn silage-based diets with different NDF levels influence DMI to a similar extent in Angus and Holstein steers and as body weight of the steers increase. Steers were randomly assigned to individual slatted-floor pens and used in a crossover design consisting of six 14-d periods. Experimental diets contained corn silage from a normal hybrid (low-fiber; LF) and its male-sterile counterpart (high-fiber; HF) and were alternated each period. The LF and HF diets contained 33.8 and 50.8% NDF, respectively. The HF diet decreased (P < 0.01) overall steer mean DMI 14.0% relative to LF, with mean differences increasing as steers increased in BW (P < 0.01). Feeding the HF diet also reduced ADG by an average of 13.8% relative to the LF diet (P < 0.01). Holstein steers consumed 14.4% more DM and gained 14.3% faster (P < 0.01) than Angus steers. There was a fiber level x breed-type interaction (P = 0.08) for efficiency of gain. Angus steers receiving the HF diet had greater efficiency of gain than Angus steers consuming the LF diet; however, Holstein steers consuming the LF diet had greater efficiency of gain than those receiving the HF diet. The HF treatment reduced total-tract digestibility of DM and GE by 4.6 and 4.5%, respectively (P < 0.01), and decreased DE intake by 20.5% (P < 0.01) but increased apparent totaltract digestibility of NDF and ADF (9.4 and 8.4%, respectively; P < 0.01). Holstein steers had similar digestibility of DM and GE (P > 0.10) but had greater DE intake (P < 0.01) compared to Angus steers. There were fiber level x breed-type interactions for total-tract digestibility of NDF and ADF (P < 0.06). The difference in DM digestibility was negatively associated with the difference in DMI (r2 = 0.23; P < 0.01) for LF minus HF within Angus steers, but not within Holstein steers (P = 0.42). Total-tract digestibility of NDF and ADF was 4.1 and 3.4% lower for the HF diet but was only 1.1 and 0.6% lower for the LF diet when fed to Holstein compared to Angus steers. Results from this trial demonstrate that high-NDF corn silage-based diets reduced intake of both Angus and Holstein steers, and this reduction in DMI continued as steers increased in BW from 235 to 330 kg. Breed differences were also noted for digestible energy intake as influenced by fiber level.  相似文献   

4.
Three experiments were conducted to determine the effects of cattle age and dietary forage level on the utilization of corn fed whole or ground to feedlot cattle. In Exp. 1, 16 steers were used to investigate the effects of cattle age and corn processing on diet digestibility. Two cattle age categories were evaluated (weanling [254 +/- 20 kg BW] and yearling [477 +/- 29 kg BW]; eight steers per group), and corn was fed either ground or whole to each cattle age category. Cattle age and corn processing did not affect (P > 0.10) diet digestibility of DM, OM, starch, CP, NDF or ADF, and no interactions (P > 0.10) between these two factors were detected. In Exp. 2, the effects of forage level and corn processing on feedlot performance and carcass characteristics were evaluated. One hundred eighty steers (310 +/- 40 kg BW) were allotted to 24 pens, and were fed one of the following diets: high-forage (18.2% corn silage) cracked corn (HFCC); high-forage shifting corn (whole corn for the first half of the trial, then cracked corn until harvest; HFSC); high-forage whole corn (HFWC); low-forage (5.2% corn silage) cracked corn (LFCC); low-forage shifting corn (LFSC); and low-forage whole corn (LFWC). For the high-forage diets, steers fed cracked corn had 7% greater DMI than those fed whole corn, whereas for the low-forage diets, grain processing did not affect DMI (interaction; P = 0.02). No interactions (P > 0.10) between forage level and corn processing were found for ADG and G:F. Total trial ADG and G:F, and percentage of carcasses grading USDA Choice, and carcass yield grade were not affected (P > 0.10) by corn processing. Cattle with fewer days on feed grew faster and more efficiently when cracked corn was fed, whereas cattle with longer days on feed had greater ADG and G:F when corn was fed whole (interaction; P < 0.10). In Exp. 3, the effects of forage level and corn processing on diet digestibility were evaluated. The high-forage cracked corn, high-forage whole corn, low-forage cracked corn, and low-forage whole corn diets used in Exp. 2 were fed to 16 steers (350 +/- 27 kg BW) in a digestion trial. No interactions (P > 0.10) between forage level and corn processing were detected for starch digestibility. Forage level and corn processing (grinding) did not affect (P > 0.10) diet DM, OM, starch, CP, and NDF digestibility. Processing corn did not provide additional benefits to feedlot cattle performance under these experimental conditions.  相似文献   

5.
Corn silage with high NDF concentration has the potential to reduce DMI because it has a greater filling effect in the rumen than low-NDF corn silage. Our objective was to determine whether ruminal fill influences DMI to the same extent with low- or high-NDF corn silage-based diets. Eight ruminally cannulated Holstein steers (198 +/- 13 kg) were randomly assigned to a 2 x 2 factorial arrangement of treatments in a replicated 4 x 4 Latin square design with 16-d periods. Treatments were diets containing corn silage from a normal hybrid (low-fiber; LF) or its male-sterile isogenic counterpart (high-fiber; HF), offered for ad libitum consumption to steers with or without rumen inert bulk (RIB). The LF and HF diets contained 33.8 and 50.8% dietary NDF, respectively. Rumen inert bulk was added at 25% of pretrial ruminal volume in the form of plastic-coated tennis balls filled with sand to achieve a specific gravity of 1.1 and a total volume of 7.5 L. No fiber level x inert bulk interactions were detected for DMI or NDF intake (P > 0.10), suggesting that DMI was limited to the same extent by physical fill at both levels of dietary fiber. Addition of RIB decreased DMI by an average of 10.7%, which was 65.5 g/L of added bulk. The HF diet depressed DMI by an average of 15.5%, increased NDF intake 27.1%, and reduced ruminal NDF turnover time by 21.0% compared to the LF diet (P < 0.01), with no effect on ruminal volume or amount of NDF in the rumen (P > 0.10). Addition of RIB also reduced ruminal NDF turnover time and amount of NDF in the rumen (11.8% and 20.7%, respectively; P < 0.01), with no change in ruminal digesta volume (P > 0.10). The HF treatment decreased digestibility of DM and GE (5.5 and 5.7%, respectively; P < 0.01) but increased NDF digestibility (10.4%; P < 0.01) compared to LF. Rumen inert bulk had no effect on digestibility of DM, NDF, or GE (P > 0.10). The lack of reduction in digesta volume with addition of inert fill suggests that DMI of light-weight steers receiving corn silage-based diets within a wide range of NDF concentrations was not regulated by ruminal distension alone.  相似文献   

6.
Three trials were conducted to evaluate the effects of degree of barley and corn processing on performance and digestion characteristics of steers fed growing diets. Trial 1 used 14 (328 +/- 43 kg initial BW) Holstein steers fitted with ruminal, duodenal, and ileal cannulas in a completely randomized design to evaluate intake, site of digestion, and ruminal fermentation. Treatments consisted of coarsely rolled barley (2,770 microm), moderately rolled barley (2,127 microm), and finely rolled barley (1,385 microm). Trial 2 used 141 crossbred beef steers (319 +/- 5.5 kg initial BW; 441 +/- 5.5 kg final BW) fed for 84 d in a 2 x 2 factorial arrangement to evaluate the effects of grain source (barley or corn) and extent of processing (coarse or fine) on steer performance. Trial 3 investigated four degrees of grain processing in barley-based growing diets and used 143 crossbred steers (277 +/- 19 kg initial BW; 396 +/- 19 kg final BW) fed for 93 d. Treatments were coarsely, moderately, and finely rolled barley and a mixture of coarsely and finely rolled barley to approximate moderately rolled barley. In Trial 1, total tract digestibilities of OM, CP, NDF, and ADF were not affected (P > or = 0.10) by barley processing; however, total tract starch digestibility increased linearly (P < 0.05), and fecal starch output decreased linearly (P < 0.05) with finer barley processing. In situ DM, CP, starch disappearance rate, starch soluble fraction, and extent of starch digestion increased linearly (P < 0.05) with finer processing. In Trial 2, final BW and ADG were not affected by degree of processing or type of grain (P > or = 0.13). Steers fed corn had greater DMI (P = 0.05) than those fed barley. In Trial 3, DMI decreased linearly with finer degree of processing (P = 0.003). Gain efficiency, apparent dietary NEm, and apparent dietary NEg increased (P < 0.001) with increased degree of processing. Finer processing of barley improved characteristics of starch digestion and feed efficiency, but finer processing of corn did not improve animal performance in medium-concentrate, growing diets.  相似文献   

7.
通过化学成分分析和活体外人工瘤胃发酵法,对3种玉米(高油玉米HOC115、普通玉米3138及青贮专用玉米)及3个籽粒成熟期(2/4乳线期(ML)、3/4 ML和4/4 ML)的秸秆青贮品质进行了比较。结果表明:随籽粒成熟期的延长,HOC115和3138青贮秸秆的品质及青贮发酵品质均下降,而青贮专用玉米各期的发酵品质均良好。其中HOC115的NDF和木质素含量以3/4 ML为最高(P<0.05),ADF含量无显著变化(P>0.05),3138的NDF、ADF和木质素含量在成熟期上呈明显的二次曲线增加趋势(P<0.01),干物质(DM)和NDF消化率明显降低(P<0.05),而青贮专用玉米秸秆的NDF、ADF和木质素含量在成熟期上呈显著的下降趋势(P<0.01),48 h的DM消化率有明显的增加(P<0.05)。由此得出HOC115和3138玉米秸秆在2/4 ML具有较佳的青贮效果,而青贮专用玉米的最佳青贮期可延长至籽粒3/4 ML或4/4 ML。  相似文献   

8.
Fourteen Holstein steers (446 +/- 4.4 kg of initial BW) with ruminal, duodenal, and ileal cannulas were used in a completely randomized design to evaluate effects of whole or ground canola seed (23.3% CP and 39.6% ether extract; DM basis) on intake, digestion, duodenal protein supply, and microbial efficiency in steers fed low-quality hay. Our hypothesis was that processing would be necessary to optimize canola use in diets based on low-quality forage. The basal diet consisted of ad libitum access to switchgrass hay (5.8% CP; DM basis) offered at 0700 daily. Treatments consisted of hay only (control), hay plus whole canola (8% of dietary DM), or hay plus ground canola (8% of dietary DM). Supplemental canola was provided based on the hay intake of the previous day. Steers were adapted to diets for 14 d followed by a 7-d collection period. Total DMI, OM intake, and OM digestibility were not affected (P > or = 0.31) by treatment. Similarly, no differences (P > or = 0.62) were observed for NDF or ADF total tract digestion. Bacterial OM at the duodenum increased (P = 0.01) with canola-containing diets compared with the control diet and increased (P = 0.08) in steers consuming ground canola compared with whole canola. Apparent and true ruminal CP digestibilities were increased (P = 0.01) with canola supplementation compared with the control diet. Canola supplementation decreased ruminal pH (P = 0.03) compared with the control diet. The molar proportion of acetate in the rumen tended (P = 0.10) to decrease with canola supplementation. The molar proportion of acetate in ruminal fluid decreased (P = 0.01), and the proportion of propionate increased (P = 0.01), with ground canola compared with whole canola. In situ disappearance rate of hay DM, NDF, and ADF were not altered by treatment (P > or = 0.32). In situ disappearance rate of canola DM, NDF, and ADF increased (P = 0.01) for ground canola compared with whole canola. Similarly, ground canola had greater (P = 0.01) soluble CP fraction and CP disappearance rate compared with whole canola. No treatment effects were observed for ruminal fill, fluid dilution rate, or microbial efficiency (P > or = 0.60). The results suggest that canola processing enhanced in situ degradation but had minimal effects on ruminal or total tract digestibility in low-quality, forage-based diets.  相似文献   

9.
Performance and digestibility experiments were conducted to determine the influence of moisture and flake density (FD) on the feeding value of steam-flaked corn (SFC). Dietary treatments consisted of finishing diets that contained 78% (DM basis) SFC that was tempered using 0, 6, or 12% moisture and processed to either 360 (SF28) or 310 (SF24) g/L. A 3 x 2 factorial arrangement of treatments was used. In Exp. 1, 78 steers were individually fed the respective treatments for 106 d. Moisture added during tempering tended (linear; P < 0.10) to increase starch availability but linearly decreased (P < 0.01) particle size. Decreasing flake density increased (P < 0.001) starch availability and also decreased (P < 0.001) particle size. Starch availability (P < 0.001), moisture (P < 0.001), and particle size (P = 0.05) were all greater for SFC that was collected the day of processing compared with SFC that had been processed the previous day. Steers fed diets containing SF24 consumed less DM as the moisture level increased, whereas steers fed diets containing SF28 had increased DMI as moisture level increased (moisture x FD interaction; P < 0.01). Nonetheless, ADG, G:F, and most carcass characteristics did not differ among treatments. In Exp. 2, 6 multicannulated Jersey steers were used in a 6 x 6 Latin square using the same treatments as in Exp. 1. Increasing moisture intake linearly decreased (P < 0.05) starch intakes. Organic matter and N intakes followed similar trends but were not different. Decreasing FD tended to increase (P < 0.10) microbial N flow to the duodenum and increased microbial efficiency (P < 0.05). Ruminal starch digestibility was 90.5%, and total tract starch digestibility was 99.5% without adding moisture or processing beyond SF28. Moisture additions to corn before steam flaking resulted in few differences in performance or digestibility, despite increases in starch availability that occurred as moisture increased. Processing corn more extensively than SF28 may be unnecessary and cost-prohibitive.  相似文献   

10.
本试验以两个高油玉米品种(HOC298和HOC647)、两个普通玉米品种(CAU80和CAU3138)和一个饲料专用玉米品种(FC3)为试验材料,分析比较不同类型玉米和籽粒成熟期(1/2、3/4和4/4乳线期)对玉米秸秆主要营养成分含量和干物质、纤维组分消化率的影响。结果表明:高油玉米秸秆的水溶性糖、淀粉、粗脂肪含量和干物质、N DF、ADF消化率明显高于普通玉米秸秆P(<0.01),而NDFA、DF和木质素含量则低于普通玉米秸秆P(<0.01),饲料专用玉米秸秆的上述指标则介于二者之间。随籽粒成熟度的提高,高油玉米秸秆水溶性糖、淀粉、粗脂肪含量和干物质、NDF消化率呈直线规律提高L(P;<0.01),而NDF、ADF和木质素含量则直线规律下降L(;P<0.001),其中,4/4乳线期的水溶性糖、淀粉含量和干物质消化率分别比l/2乳线期提高26.5倍、2.4倍和22.7%,而NDF、ADF和木质素分别比1/2乳线期减少24.1%、30.6%和38.4%。随籽粒成熟期的延长,普通玉米品种秸秆的水溶性糖、淀粉含量和干物质NDF消化率直线下降L(;P<0.01),而NDF、ADF和木质素含量直线提高L(P;<0.05)。饲料专用玉米秸秆的营养成分和活体外消化率指标介于高油和普通玉米秸秆之间。本试验结果表明,高油玉米秸秆具有营养物质含量高和消化率高的特点,是反刍动物理想的粗饲料和青贮饲料原料。  相似文献   

11.
Twelve ruminally cannulated Jersey steers (BW = 534 kg) were used in an incomplete Latin square design experiment with a 2 x 2 factorial arrangement of treatments to determine the effects of wet corn gluten feed (WCGF) and total DMI level on diet digestibility and ruminal passage rate. Treatments consisted of diets formulated to contain (DM basis) steam-flaked corn, 20% coarsely ground alfalfa hay, and either 0 or 40% WCGF offered once daily for ad libitum consumption or limited to 1.6% of BW (DM basis). Two consecutive 24-d periods were used, each consisting of 18 d for adaptation, 4 d for collection, and a 2-d in situ period. Rumens of all steers were evacuated once daily at 0, 4, 8, and 12 h after feeding. Chromic oxide (10 g/[steer*d]) was fed as a digestibility marker, and steers were pulse-dosed with Yb-labeled alfalfa hay to measure ruminal particulate passage rate. Dacron bags containing 5 g of steam-flaked corn, WCGF, or ground (2-mm screen) alfalfa hay were placed into the rumens of all steers and removed after 3, 6, 12, or 48 h. Wet corn gluten feed increased percent apparent total-tract digestion of OM (P < 0.01), NDF (P < 0.01), and starch (P < 0.03), decreased (P < 0.01) ruminal total VFA concentration, increased (P < 0.01) ruminal NH3 concentration, and increased (P < 0.01) ruminal pH. Wet corn gluten feed also increased (P < 0.01) ruminal passage rate of Yb. Limit feeding decreased (P < 0.01) percent apparent total-tract digestion of both OM and NDF, ruminal total VFA concentration (P < 0.01), and ruminal fill (P < 0.01), but increased (P < 0.01) ruminal NH3 concentration. Apparent total-tract digestion of starch was not affected (P = 0.70) by level of DMI. A DMI level x hour interaction (P < 0.01) occurred for ruminal pH. Limit feeding increased ruminal pH before and 12 h after feeding, but decreased ruminal pH 4 h after feeding compared with diets offered ad libitum. A diet x DMI level interaction (P < 0.02) occurred for in situ degradation of alfalfa hay, with dietary addition of WCGF increasing (P < 0.02) the extent of in situ alfalfa hay degradation in steers fed for ad libitum consumption. This study suggests that WCGF increases OM and NDF digestion, and that limit feeding diets once daily might depress OM and NDF digestion, possibly due to decreased stability of the ruminal environment.  相似文献   

12.
Brahman x British crossbred steers were used in growth and digestion trials to evaluate the response of source (corn, sugar cane molasses, or soybean hulls) and feeding rate (0, 1.4, or 2.8 kg DM per steer daily in the growth trials; 0, 15, or 30% of the ration DM in the digestion trial) of energy supplementation in cattle fed ammoniated (4% of forage DM) stargrass (Cynodon nlemfuensis Vanderyst var. nlemfuensis) hay. Cattle on all treatments were fed 0.5 kg cottonseed meal daily. In the growth trials, steers grazed dormant bahiagrass (Paspalum notatum) pasture. Increasing the levels of supplementation decreased hay intake but increased total dietary intake for all diets (P < 0.07). Daily gain and feed efficiency of steers were improved (P < 0.03) with supplementation. Steers supplemented with corn or soybean hulls at 2.8 kg DM/d had a higher ADG (0.92 kg) and gain/feed (0.103) than steers supplemented with molasses (0.78 kg, 0.08, respectively) at the same level. Seven crossbred steers (200 kg) were used in a five-period digestion trial to evaluate apparent OM, NDF, ADF, and hemicellulose digestibility. Apparent OM digestibility of all diets increased linearly (P = 0.02) as the level of supplementation increased. Apparent NDF and ADF digestibility decreased (P < 0.03) as the level of supplementation with corn or molasses increased, whereas increasing the level of soybean hulls in the diet increased (P < 0.06) apparent NDF and ADF digestibility. Four ruminally fistulated crossbred steers (472 kg) were used in a 4 x 4 latin square design to investigate ruminal characteristics with energy supplementation at 30% of ration DM. Ruminal pH in steers supplemented with soybean hulls or corn declined after feeding. Ruminal pH decreased more rapidly with corn supplementation and remained below 6.2 for a longer period of time than with the other diets. Ruminal pH did not change within 24 h after feeding for steers fed the control or molasses diets. No change in total VFA concentration was observed in steers fed molasses or corn. Total ruminal VFA concentration in steers supplemented with soybean hulls increased initially after feeding and then declined within 24 h after feeding. Soybean hulls produced fewer negative associative effects than corn when fed with ammoniated stargrass hay at 2.8 kg DM/d. The reduced gain/feed of steers supplemented with molasses compared to soybean hulls or corn indicates that molasses was not utilized as efficiently as the other energy sources.  相似文献   

13.
Effects of increasing level of field pea (variety: Profi) on intake, digestion, microbial efficiency, and ruminal fermentation were evaluated in beef steers fed growing diets. Four ruminally and duodenally cannulated crossbred beef steers (367+/-48 kg initial BW) were used in a 4 x 4 Latin square. The control diet consisted of 50% corn, 23% corn silage, 23% alfalfa hay, and 4% supplement (DM basis). Treatments were field pea replacing corn at 0, 33, 67, or 100%. Diets were formulated to contain a minimum of 12% CP, 0.62% Ca, 0.3% P, and 0.8% K (DM basis). Each period was 14 d long. Steers were adapted to the diets for 9 d. On d 10 to 14, intakes were measured. Field pea was incubated in situ, beginning on d 10, for 0, 2, 4, 8, 12, 16, 24, 36, 48, 72, and 96 h. Bags were inserted in reverse order, and all bags were removed at 0 h. Ruminal fluid was collected and pH recorded at -2, 0, 2, 4, 6, 8, 10, and 12 h after feeding on d 13. Duodenal samples were taken for three consecutive days beginning on d 10 in a manner that allowed for a collection to take place every other hour over a 24-h period. Linear, quadratic, and cubic contrasts were used to compare treatments. There were no differences in DMI (12.46 kg/d, 3.16% BW; P > 0.46). Ruminal dry matter fill (P = 0.02) and mean ruminal pH (P = 0.009) decreased linearly with increasing field pea level. Ruminal ammonia-N (P < 0.001) and total VFA concentrations (P = 0.01) increased linearly with increasing field pea level. Total-tract disappearance of OM (P = 0.03), N (P = 0.01), NDF (P = 0.02), and ADF (P = 0.05) increased linearly with an increasing field pea level. There were no differences in total-tract disappearance of starch (P = 0.35). True ruminal N disappearance increased linearly (P < 0.001) with increasing field pea level. There were no differences in ruminal disappearance of OM (P = 0.79), starch (P = 0.77), NDF (P = 0.21), or ADF (P = 0.77). Treatment did not affect microbial efficiency (P = 0.27). Field pea is a highly digestible, nutrient-dense legume grain that ferments rapidly in the rumen. Because of their relatively high level of protein, including field peas in growing diets will decrease the need for protein supplementation. Based on these data, it seems that field pea is a suitable substitute for corn in growing diets.  相似文献   

14.
Three experiments were conducted to evaluate the impact of the Bacillus thuringiensis (Bt)-11 transformation event in two parental corn hybrids differing in date of maturity on beef and dairy cattle performance. Sixteen lactating Holstein dairy cows in replicated 4 x 4 Latin squares were assigned to four diets in a 2 x 2 factorial arrangement: Bt vs non-Bt trait and early- vs late-maturing corn hybrids. The diets contained 40% of the test corn silage plus 28% corn grain from the same corn hybrid (DM basis). There was no effect of the Bt trait on efficiency of milk production, ruminal pH, acetate:propionate ratio, or in situ digestion kinetics of NDF. The early-maturing corn hybrids resulted in greater total VFA concentrations in the rumen and efficiency of 4% fat-corrected milk production than the later-maturing hybrids (P < 0.05). Sixty-seven steer calves were used in a 70-d corn residue grazing trial for the late-maturing corn hybrids only. Daily BW gain of steers was similar for those grazing Bt and non-Bt corn residues, and the steers exhibited no grazing preference between Bt and non-Bt corn residue. One hundred twenty-eight steer calves were assigned to four silage-based growing diets in a 2 x 2 factorial arrangement: Bt vs non-Bt trait and early- vs late-maturing corn hybrids. The diets contained 90% corn silage and 10% supplement (DM basis). The DMI was higher for steers fed Bt compared with non-Bt hybrids (P < 0.02). An interaction (P < 0.03) was observed for feed efficiency between hybrid genotype and incorporation of the Bt trait. Feed efficiency was greater (P < 0.05) for steers fed the later-maturing non-Bt hybrid compared with the later-maturing Bt hybrid; however, feed efficiency was similar between steers fed early-maturing Bt and non-Bt corn silages. Steers fed the early-maturing hybrid gained 11% faster and were 7% more efficient compared with those fed the late-maturing hybrid. These latter results agree with the dairy experiment in which the early-maturing hybrid resulted in 5% greater efficiency of milk production than the later-maturing corn hybrid. In all experiments, incorporation of the Bt trait into corn had no consistent effect on cattle performance. In addition, background genetics of the corn hybrids appeared to have a more consistent impact on performance than did presence of the Bt trait.  相似文献   

15.
整株玉米不同成熟阶段对其青贮品质及有氧稳定性的影响   总被引:1,自引:0,他引:1  
随着整株玉米不断成熟,其干物质(DM)、淀粉、中性洗涤纤维(NDF)和酸性洗涤纤维(ADF)含量不断增加,而可溶性碳水化合物(WSC)、水分含量不断降低。成熟早期高含量的WSC为乳酸菌提供了大量的发酵底物,可促进青贮发酵,但高水分会降低青贮料的有氧稳定性;成熟后期,低水分和低含量的WSC使青贮达不到理想的发酵效果,此外,高木质化也导致青贮料消化率降低。综合各方面因素,在1/3乳腺期到2/3乳腺期阶段青贮的整株玉米无论是发酵效果还是有氧稳定性方面均可达到较好效果。  相似文献   

16.
Animal selectivity and digestibility differences among switchgrass strains selected for different in vitro dry matter digestibilities (IVDMD) were measured in a grazing trial with esophageally fistulated steers and a sheep digestion trial. Extrusa selected by esophageally fistulated steers grazing high-IVDMD (Trailblazer), Pathfinder and low-IVDMD strains of switchgrass were compared, as were top and whole plant hand-clipped samples from each strain. Trailblazer extrusa had higher (P less than .1) in vitro organic matter disappearance (IVOMD) and lower (P less than .1) NDF and ADF than Pathfinder extrusa. Extrusa from all three strains appeared to be of higher quality than top or whole plant hand-clipped samples. In vitro organic matter disappearance tended to be highest for Trailblazer top hand-clipped samples. Composition of hand-clipped samples among strains was not significantly different. Mature crossbred wethers were used to compare Trailblazer and Pathfinder switchgrass hay in a digestion trial. No differences (P greater than .1) were detected between strains for DMI or apparent digestibility of DM, NDF, ADF and CP. Extrusa from Trailblazer switchgrass that had been selected for whole plant IVDMD had higher IVOMD; however, there was no indication that steers selected a differentially higher IVOMD for one strain than another.  相似文献   

17.
The effect of supplementation with different levels of cracked corn on the sites of OM, total dietary fiber (TDF), ADF, and starch digestion in steers fed fresh alfalfa indoors was determined. Six Angus steers (338 +/- 19 kg) fitted with cannulas in the rumen, duodenum, and ileum consumed 1) alfalfa (20.4% CP, 41.6% NDF) ad libitum (AALF); 2), 3), and 4) AALF supplemented (S) with .4, .8, or 1.2%, respectively, of BW of corn; or 5) alfalfa restricted at the average level of forage intake of S steers (RALF), in a 5 x 5 Latin square design. Total OM intake was lower (P < .01) in steers fed RALF than in those fed AALF but level of forage intake did not affect sites of OM, TDF, or starch digestion (P > .05). Forage OM intake decreased (P < .01) linearly (8,496 to 5,840 g/d) but total OM intake increased (P = .03) linearly (8,496 to 9,344 g/d) as corn increased from .4 to 1.2% BW. Ruminal apparent and true OM disappearance was not affected, but OM disappearing in the small intestine increased (P < .01) linearly with increasing levels of corn. Total tract OM digestibility (71.2 to 76.2%) and the proportion of OM intake that was digested in the small intestine (15.4 to 24.5%) increased (P < .01) linearly as corn increased. The TDF and ADF intakes decreased (P < .01) linearly as level of corn increased. Total tract TDF and ADF digestibilities were not different among treatments (average 62.9 and 57.8%, respectively). Starch intake and starch digested in the rumen and small and large intestine increased (P < .01) linearly with increasing corn level. Ruminal pH and VFA concentrations decreased and increased (P < .01), respectively, with increasing corn. Supplementation with corn increased OM intake, decreased forage OM intake, and increased the proportion of OM that was digested in the small intestine, but fiber digestion was not affected.  相似文献   

18.
Three experiments were conducted to evaluate effects of supplemental protein vs energy level on dormant forage intake and utilization. In Exp. 1, 16 ruminally cannulated steers were blocked by weight (avg wt = 242 kg) and assigned randomly to a negative control or to one of three isocaloric supplement treatments fed at .4% BW: 1) control, no supplement (NS); 2) 12% CP, low protein (LP); 3) 28% CP, moderate protein (MP); 4) 41% CP, high protein (HP). In Exp. 2 and 3, 16 ruminally cannulated steers were blocked by weight (avg wt = 332 kg, Exp. 2; 401 kg, Exp. 3) and assigned randomly to a 2 x 2 factorial arrangement of treatments. The treatments contrasted low (LP) and high (HP) levels of supplemental protein (.66 g CP/kg BW vs 1.32 g CP/kg BW) with low (LE) and high (HE) levels of supplemental ME (9.2 kcal/kg BW vs 18.4 kcal/kg BW). In Exp. 1, forage DMI as well as ruminal DM and indigestible ADF fill at 4 h postfeeding were greater (P less than .10) with the MP and HP steers than with control and LP steers. Total DM digestibility increased (P less than .10) for supplemented steers (35.5% for control vs 47.3 for supplemented steers); however, LP depressed (P less than .10) NDF digestibility. In Exp. 2, forage DMI, indigestible ADF flow and liquid flow were depressed (P less than .10) in LP-HE supplemented steers. In Exp. 3, HP steers had greater (P less than .10) forage DMI, indigestible ADF fill values (4 h postfeeding), liquid volume and tended (P = .11) to have greater ruminal DM fill (4 h postfeeding). In summary, increased levels of supplemental protein increased intake and utilization of dormant tallgrass-prairie forage (less than 3% CP). Increasing supplemental energy without adequate protein availability was associated with depressed intake and digestibility.  相似文献   

19.
The effects of source and level of dietary NDF on intake, ruminal digestion in situ, ruminal fermentation, and total tract digestion were evaluated in Hereford steers using a replicated 5 x 5 Latin square design. Diets contained 62 to 64% TDN and included 1) 80% control concentrate (contained pelleted ground grains) and 20% timothy hay (traditional diet), 2) 80% control concentrate and 20% alfalfa cubes, 3) 90% control concentrate and 10% cubes, 4) a completely pelleted diet using corn cobs as the primary NDF source, and 5) 80% textured (rolled instead of ground grains) concentrate and 20% hay. Dry matter intake differed (P less than .05) between the traditional and cube diets due to limited acceptance of alfalfa cubes. Increased (P less than .05) ruminal osmolality, total VFA, and NH3 N and lower (P less than .01) ruminal pH in steers fed corn cob and cube diets relative to steers fed the traditional diet were due to preferential consumption of concentrate over supplemental roughage and the resultant rapid fermentation of concentrates. Potentially degradable DM in the traditional diet exceeded (P less than .06) all other diets, resulting in the increased (P less than .10) extent of DM disappearance despite a slower (P less than .05) rate of DM disappearance. Rate of NDF disappearance and all in situ starch disappearance parameters were similar between the traditional, corn cob, and cube diets. All ruminal digestion parameters involving NDF disappearance were similar between hay diets and between cube diets, whereas rate and extent of starch disappearance differed (P less than .05) between hay diets. Although formulation of diets with different sources of dietary NDF did not affect total tract digestion of nutrients, nutrient availability and ruminal fermentation were altered due to dietary differences in sources of dietary NDF and preferential selection of feedstuffs by steers.  相似文献   

20.
The objective of this experiment was to determine the effects of feeding different levels of alkaline hydrogen peroxide-treated wheat straw (AHP-WS) in the diet on feed intake, nutrient digestion, ruminal fermentation, and production responses in mid-lactation dairy cows. Eight Holstein cows, averaging 147 d postpartum, were used in two replications of a 4 x 4 Latin square design. Complete mixed diets consisted of 70% forage and 30% concentrate (DM basis) with various levels of AHP-WS, alfalfa haylage, and corn silage as forage sources. Treatments contained 0 (control), 20.0, 40.1, or 60.0% AHP-WS in the diet. A quadratic effect (P = .08) of AHP-WS level on DMI was noted, with values of 2.16, 22.3, 20.8, and 18.9 kg/d for the control, 20.0, 40.1, and 60.0% AHP-WS treatments, respectively. Apparent digestibilities of DM, OM, CP, and ADF were not affected (P greater than .10) by replacing haylage and corn silage with increasing amounts of AHP-WS in the diet, but there was a linear increase (P = .03) in NDF digestibility (44% for control vs 59% for the 60.0% AHP-WS diet) and a parallel decrease (P less than .05) in cell content digestibility (82 vs 70% for these two diets). Yields of milk and 4% fat-corrected milk (FCM) were decreased (quadratic; P = .0001) as the level of AHP-WS increased in the diet. The addition of AHP-WS to the diet decreased the milk fat percentage from 3.72 to 3.60% (quadratic; P = .05) and decreased milk protein percentage from 3.27 to 3.13% (linear; P = .0001). Cows fed the higher levels of AHP-WS had linear increases (P = .0001) in ruminal concentrations of total VFA (128.0 mM for control vs 136.0 mM for the 60.0% AHP-WS treatment) and molar proportion of acetate, resulting in a quadratic effect (P less than .0001) on the acetate:propionate ratio. These data indicate that feeding the 40.1 and 60.0% AHP-WS diets lowered digestible DM and OM intakes, which resulted in reduced 4% FCM yield as nutrient intakes were decreased compared with cows fed the 20.0% AHP-WS diet or the control diet containing alfalfa haylage and corn silage. Although substituting AHP-WS for haylage and corn silage increased NDF digestibility and tended to increase digestible NDF intake, milk production was depressed because digestible DMI decreased.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号