首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 265 毫秒
1.
黄土高原子午岭森林碳储量与碳密度研究   总被引:2,自引:2,他引:0  
基于样地林分调查与室内分析,运用清查平均生物量法和林木相对生长模型,研究了黄土高原子午岭林区3种森林碳储量及碳密度空间分布特征。结果表明:研究区森林生态系统植被含碳率变化范围为0.331 6~0.553 2 g/g;变异系数介于2%~14%,而枯落层含碳率为0.294 8~0.335 9 g/g;3种林地平均碳密度:柴松林为238.22 t/hm2,辽东栎林为235.75 t/hm2,油松林为191.58 t/hm2,柴松林及辽东栎林碳密度约是油松林的1.24倍;从研究空间尺度上土壤层植被层枯落层,其碳密度分别为105.21,88.11,28.53 t/hm2,其中植被层各分层碳密度大小差异显著,而土壤层碳密度随着土壤深度的增加而递减;3种森林生态系统有机碳库总储碳量为31.70 Tg,其中土壤层碳储量占整个碳库的49%,是植被层和枯落层碳储量的1.3倍和3.5倍,且碳储量空间分布呈现出:土壤层乔木层枯枝落叶层灌木层草本层。  相似文献   

2.
[目的]研究滦河上游典型林分的枯落物层与土壤层的水文效应,为森林健康监测和评价提供依据。[方法]对滦河上游3种林分的枯落物层未分解层与半分解层进行调查研究。[结果](1)油松林的枯落物生物量为12.03t/hm2,最大持水量为19.4t/hm2,有效拦蓄量为23.52t/hm2;落叶松林的枯落物生物量为9.51t/hm2,最大持水量为11.9t/hm2,有效拦蓄量为17.03t/hm2;落叶松白桦混交林的枯落物生物量为5.54t/hm2,最大持水量为13.0t/hm2,有效拦蓄量为13.7t/hm2。(2)半分解层枯落物浸泡8h已基本达到饱和,而未分解层需浸泡10h。枯落物在浸水的前0.5h内吸水速率最大,6h左右时吸水速率明显减缓。(3)落叶松白桦混交林土壤层持水能力最强,为375.92t/hm2;油松林土壤层的持水能力最差,为248.04t/hm2。利用幂函数对入渗速率与入渗时间进行拟合,其相关系数R2均在0.98以上。[结论]油松林枯落物层的生物量、最大持水量、有效拦蓄量都最大,而落叶松白桦混交林枯落物的土壤持水能力最强。  相似文献   

3.
 从林冠层、林下植被层、枯枝落叶层和土壤层研究木荷和杉木人工林涵蓄水分以及土壤入渗能力的差异。结果表明,木荷人工林地上部分(含林冠层、林下植被层和枯枝落叶层)的持水能力低于杉木人工林,仅为杉木人工林的76.36%,但1m深表土层的饱和贮水量为5039.5t/hm2,比杉木人工林高323.3t/hm2,同时木荷人工林土壤渗透性能也好于针叶林。  相似文献   

4.
北京十三陵不同林分枯落物层和土壤层水文效应研究   总被引:15,自引:3,他引:12  
对北京十三陵林场4种林分枯落物层及土壤层进行了初步研究.结果表明:①侧柏林枯落物的总蓄积量为3.67 t/hm2,最大持水量为8.54 t/hm2.有效拦蓄量为9.83 t/hm2;油松林枯落物的总蓄积量为12.44 t/hm2,最大持水量为20.45 t/hm2.有效拦蓄量为26.75 t/hm2;黄栌林枯落物的总蓄积量为12.29 t/hm2,最大持水量为21.81 t/hm2,有效拦蓄量为26.67 t/hm2;黄栌、油松混交林枯落物的总蓄积量为13.27 t/hm2,最大持水量为21.10 t/hm2,有效拦蓄量为27.29 t/hm2;②未分解层枯落物10 h基本达到饱和.半分解层在8 h已经达到饱和,持水量与浸泡时间的关系为Q=aln(t)+6;枯落物在浸水的0.5 h内吸水速率最大,4 h左右时下降速度明显减缓,枯落物吸水速率与浸泡时间的关系为V=ktn.③油松林土壤层持水能力最强,为206.9 t/hm22,黄栌、油松林土壤层的持水能力最差,为130.2 t/hm2,并利用幂函数对入渗速率和入渗时间进行拟合.  相似文献   

5.
对湖南永顺43年生闽楠人工林生态系统生物量、碳贮量及其空间分布进行研究,采用平均标准木法和收获法对林分生物量及林下植被与枯落物生物量进行测定与估算,同时测定植物、土壤有机碳含量。结果表明:闽楠人工林林分生物量为295.65t/hm2,生物量分布表现为乔木层(96.70%)枯落物层(2.77%)灌木层(0.46%)草本层(0.07%)。闽楠各器官的碳素含量范围为440.83~506.01g/kg,排列顺序为树叶根茎粗根树枝细根树干树皮中根;闽楠韧皮部平均碳素含量低于外表皮,初生嫩叶碳素含量比多年生老叶高;灌木层植物的碳素平均含量为454.39g/kg,草本层植物为448.66g/kg,未分解枯落物为490.23g/kg,半分解枯落物为402.32g/kg;0-60cm土壤层有机碳含量平均值为16.53g/kg。闽楠人工林生态系统总碳贮量为288.98t/hm2,其中乔木层为133.98t/hm2(46.36%),灌木层为0.62t/hm2(0.45%),草本层为0.10t/hm2(0.07%),枯落物层为3.54t/hm2(2.56%),土壤层为150.74t/hm2(52.17%);闽楠各器官的碳贮量与其生物量成正比,树干的生物量最大,其碳贮量也最高,占乔木层碳贮量的59.33%。闽楠人工林乔木层年净生产力为11.25t/hm2,年净固碳量为5.44t/hm2,年净碳素累积量为3.12t/hm2,并且以地上部分为主。研究表明,在对区域尺度森林植被碳贮量估算时,取50%或45%作为通用标准,可能会导致估算结果偏低或偏高;闽楠人工林生态系统具有较高的碳汇能力,其系统碳贮量高于我国森林生态系统平均碳贮量(258.82t/hm2)。  相似文献   

6.
华北土石山区典型森林枯落物层和土壤层水文效应   总被引:15,自引:5,他引:10  
以河北省围场县北沟林场内4种不同林分的枯落物层和土壤层为研究对象,对其水文效应进行初步研究.结果衰明:(1)落叶松、油松混交林枯落物蓄积量最大,为12.28 t/hm2,最大持水量为24.60 t/hm,2,有效拦蓄量为27.19 t/hm2;油松林的枯落物蓄积量为11.74 t/hm2,最大持水量为19.30 t/hm2,有效拦蓄量为22.21 t/hm2;落叶松林的枯落物蓄积量为9.32 t/hm2,最大持水量为11.60 t/hm2,有效拦蓄量为16.20 t/hm2;落叶松白桦混交林的枯落物蓄积量为5.58 t/hm2,最大持水量为12.90 t/hm,2,有效拦蓄量为13.53 t/hm2.(2)半分解层枯落物浸泡8 h已基本达到饱和,而未分解层需浸泡10 h,通过分析得出持水量与浸泡时间的关系为Q=aln(t)+b;枯落物在浸水的前30 min内吸水速率最大,6 h左右时吸水速率明显减缓,枯落物吸水速率与浸泡时间的关系为V=ktn.(3)落叶松白桦混交林土壤层持水能力最强,为377.03 t/hm2;落叶松油松混交林土壤层的持水能力最差,为241.9 t/hm,2,利用幂函数对入渗速率与入渗时间进行拟合,其相关系数均在0.95以上.  相似文献   

7.
太湖地区森林生态系统的水源涵养功能特征   总被引:1,自引:0,他引:1  
为客观认识森林生态系统在流域水资源管理中的作用,在总结分析前人研究成果的基础上,该文综合比较了太湖地区主要森林类型中枯枝落叶层和土壤层的涵养水源功能特征。结果表明:太湖地区森林生态系统林下枯枝落叶层现存量平均值为4.68~14.4 t/hm2,持水量为11.6~29.99 t/hm2,持水率为187.24%~246.22%;主要森林类型土壤层的毛管孔隙度变动于39.01%~44.21%,非毛管孔隙度为10.21%~16.53%;而土壤层的初渗率变动于11.94~19.06 mm/min,稳渗率为3.77~6.74 mm/min。总体来看,太湖地区森林枯枝落叶层和土壤层的水源涵养能力指标多低于亚热带平均值。  相似文献   

8.
北京百花山森林枯落物层和土壤层水文效应研究   总被引:29,自引:7,他引:22  
对百花山4种林分枯落物层和土壤层的水文效应进行了初步研究。结果表明:1核桃楸林枯落物的总蓄积量为9.99 t/hm2,最大持水量为27.72 t/hm2,有效拦蓄量为29.55 t/hm2;华北落叶松林枯落物的总蓄积量为10.27 t/hm2,最大持水量为12.84 t/hm2,有效拦蓄量为13.53 t/hm2;黑桦林枯落物的总蓄积量为7.04 t/hm2,最大持水量为19.01 t/hm2,有效拦蓄量为19.18 t/hm2;辽东栎林枯落物的总蓄积量为8.22 t/hm2,最大持水量为14.72 t/hm2,有效拦蓄量为18.33 t/hm2。2半分解层枯落物浸泡8 h已基本达到饱和,而未分解层10 h基本达到饱和,持水量与浸泡时间的关系为Q=aln(t) b;枯落物在浸水的前半小时内吸水速率最大,4 h左右时下降速度明显减缓,枯落物吸水速率与浸泡时间的关系为V=ktn。3辽东栎林土壤层持水能力最强,为266.22 t/hm2,黑桦林土壤的持水能力最差,为219.39 t/hm2,利用幂函数对入渗速率与入渗时间进行拟合,其相关系数均在0.98以上。  相似文献   

9.
以临朐县石灰岩山地山坡上部营造的5种侧柏林造林密度为试验材料,系统研究侧柏林枯枝落叶层蓄积量、灌草植被生物量、土壤物理性状、渗透速率、土壤侵蚀量等保土功能指标。结果表明:(1)5种密度侧柏林的枯枝落叶层蓄积量造林密度最大的枯枝落叶层蓄积量最多,造林密度最小的枯枝落叶层蓄积量最少,林下灌草植被盖度和生物量随造林密度的减小而明显增加,密度为1 667株/hm2的侧柏林枯枝落叶量、灌木生物量和草本植物生物量总和最多,其次为2 500,1 111,5 000株/hm2的,最少的为833株/hm2。枯落物腐烂分解后可改善土壤物理性状,减小土壤容重,增加土壤孔隙度,特别是增加非毛管孔隙度,促进水分下渗。(2)5种密度侧柏林与对照相比减少的土壤侵蚀量以密度为1 667株/hm2的最大,为61.466t/hm2,其次是2 500株/hm2的,为61.092t/hm2,1 111株/hm2的为58.712t/hm2,最小的是5 000株/hm2和833株/hm2的,分别为56.664,55.2t/hm2。(3)通过对5种密度侧柏林的林分郁闭度、土壤总孔隙度、土壤非毛管孔隙度、枯落物蓄积量、土壤渗透速率、灌草生物量、灌草盖度、与对照相比减少的土壤侵蚀量等因子进行方差分析,均存在显著差异,按各项保土指标得分相加得出保土效益,计算结果显示,5种密度的侧柏林保土效益大小依次排序为:1 667株/hm2>2 500株/hm2>1 111株/hm2>833株/hm2>5 000株/hm2。  相似文献   

10.
冀西北地区4种纯林枯落物及土壤水文效应   总被引:6,自引:0,他引:6  
为改善冬奥会赛区(张家口市崇礼区清水河流域)水生态环境,提高(崇礼)赛区森林涵养水源功能,以崇礼区和平林场的云杉、白桦、山杨和华北落叶松4种纯林为研究对象,布设50m×50m样地,枯落物水文效应测定采用浸泡法,土壤层水文效应测定采用环刀法。结果表明:(1)枯落物总蓄积量最大为云杉林(38.46t/hm~2),各林分半分解层的蓄积量均大于未分解层;(2)枯落物最大持水量云杉林(3.03t/hm~2)最大,有效拦蓄量云杉林(2.57t/hm~2)最大,最大持水率山杨林(384.22%)最大,枯落物持水量与持水时间呈对数关系,枯落物吸水速率与持水时间呈幂函数关系;(3)土壤容重华北落叶松林(1.00g/cm~3)最大,山杨林(0.67g/cm~3)最小,土壤总孔隙度白桦林(67.14%)最大,山杨林(58.77%)最小。土壤入渗速率与入渗时间呈明显的幂函数关系。(4)林地总持水能力排序为:白桦林(887.45t/hm2)华北落叶松林(840.94t/hm~2)云杉林(800.03t/hm~2)山杨林(768.58t/hm~2),土壤层的持水能力占99%以上。综合分析得知,阔叶林涵养水源功能优于针叶林,土壤层的持水能力强于枯落物层。  相似文献   

11.
托木尔峰自然保护区台兰河上游森林植被水源涵养功能   总被引:4,自引:1,他引:4  
为定量评价托木尔峰自然保护区森林的水源涵养能力,利用综合蓄水能力法,对台兰河上游雪岭云杉森林生态系统的林冠层截留量(C)、枯枝落叶层持水量(L)、土壤层蓄水量(S)及综合水源涵养能力进行估算和分析。结果表明:(1)研究区4样地中,林冠层截留量表现为中海拔云杉林(29.94mm)较高海拔云杉林(20.56mm)高海拔云杉林(11.72mm)低海拔云杉杨树混交林(5.84mm),而茎流量则与之相反。(2)除中海拔云杉林外,各样地枯枝落叶未分解层平均厚度均大于半分解层;其中,未分解层的平均蓄积量中高海拔云杉林最大(79.32t/hm~2),半分解层为中海拔云杉林最大(59.47t/hm~2)。整体来看,枯枝落叶层的最大持水量大小依次为中海拔云杉林(32.55mm)高海拔云杉林(31.05mm)较高海拔云杉林(30.78mm)低海拔云杉杨树混交林(12.84mm)。(3)4样地平均土壤容重变动范围为0.73~1.06g/cm~3;土壤孔隙度的平均值大小均为中海拔云杉林较高海拔云杉林高海拔云杉林低海拔云杉杨树混交林;林下土壤自然含水率随海拔高度的增加呈不断上升趋势。不同样地30cm深土层的非毛管孔隙持水量表现为:中海拔云杉林(37.6mm)较高海拔云杉林(30.7mm)高海拔云杉林(25.73mm)低海拔云杉杨树混交林(13.92mm)。(4)研究区森林生态系统的水源涵养能力在171.27~280.84mm之间,低海拔云杉杨树混交林的总持水量最小,中海拔云杉林最大。土壤层水源涵养贡献率最大,占比在77.75%~89.10%之间;总有效蓄水量虽远小于总持水量,但能够很好地发挥水源涵养功能和水土保持作用。  相似文献   

12.
阿什河上游小流域主要林分类型土壤水文功能研究   总被引:6,自引:1,他引:5  
通过对阿什河上游小流域6种具有代表性的林分类型土壤特性及水源涵养功能的研究,结果表明:枯落物层厚度为2.8~5.5cm;总蓄积量为9.27~39.81t/hm2;最大持水量为25.65~136.83t/hm2;有效拦蓄量为17.17~67.00t/hm2。6种林分的枯落物层的水文功能排序为兴安落叶松林>针阔混交林>红松林>蒙古栎林>樟子松林>水曲柳林。土壤层容重均值的变化范围为0.97~1.26g/cm3;总孔隙度变动范围为50.16%~60.19%;土壤最大持水量为1 949.51~2 293.74t/hm2;有效持水量为234.66~438.56t/hm2;6种林分土壤层的水文功能排序为蒙古栎林>水曲柳林>兴安落叶松林>针阔混交林>樟子松林>红松林。地表层(包括枯落物层与土壤层)最大持水量变化范围在1 991.89~2 357.31t/hm2之间,排序为兴安落叶松林>蒙古栎林>水曲柳林>针阔混交林>樟子松林>红松林;有效持水量变化范围是264.80~455.73t/hm2,排序为水曲柳林>针阔混交林>兴安落叶松林>蒙古栎林>樟子松林>红松林。  相似文献   

13.
大兴安岭岭南几种主要森林类型土壤水文功能研究   总被引:29,自引:9,他引:29  
通过对大兴安岭岭南5种主要森林类型枯落物和土壤持水性能进行的研究,结果表明:森林枯落物累积量为12.35~48.46 t/hm^2,针叶林的枯落物累积量明显高于阔叶林,各林分枯落物半分解层的累积量为未分解层的1.3倍以上;最大持水率变化范围565.66%~676.36%,平均值617.13%;最大持水量变化范围为92.70~319.96t/hm^2,平均值为193.68 t/hm^2,草类-落叶松林最大,杜鹃-白桦林最小,半分解层的最大持水量为未分解层的1.3~6.1倍。针叶林最大持水量大于针阔混交林,阔叶林最小;各林型的最大拦蓄率为416.55%~545.61%,平均值为454.12%;各林型的最大拦蓄量为71.5~200.27 t/hm^2,林型间平均值为125.97 t/hm^2;各林型的有效拦蓄率变化范围为327.28%~418.99%,林型间平均值为356.52%,有效拦蓄量变化范围为57.60~152.27 t/hm^2,林型间平均值为96.91 t/hm^2;土壤的总孔隙度和毛管孔隙度具有相同的排列顺序,非毛管孔隙度以杜鹃-白桦林最大(14.52%),草类-落叶松林较小(7.09%),蒙古栎林的毛管持水量和最大持水量都最大,分别达到了5682.60t/hm^2和7162.80 t/hm^2,草类-落叶松林最低,只有2683.60 t/hm^2和3817.00 t/hm^2。  相似文献   

14.
青海高寒山区5种林分土壤特性及其水源涵养功能   总被引:1,自引:6,他引:1  
为定量评价青海省大通县高寒山区不同森林的土壤特性和水源涵养功能,从而为森林的合理空间配置提供理论依据,采用浸水法、环刀法、定水头法、硫酸重铬酸钾法,分别测定5种林分的枯落物性质和0—40cm土层的孔隙度、渗透性及养分状况等。结果表明:(1)枯落物总储量及最大持水量依次为云杉白桦混交林云杉落叶松混交林青海云杉林华北落叶松林白桦林。(2)0—40cm土层的土壤有机质含量平均值依次为云杉落叶松混交林云杉白桦混交林白桦林青海云杉林华北落叶松林。(3)土壤容重随着深度增加而增大,0—40cm土层均值依次为白桦林华北落叶松林云杉白桦混交林青海云杉林云杉落叶松混交林。(4)土壤总孔隙度随土层加深而降低,0—40cm土层均值依次为云杉落叶松混交林青海云杉林云杉白桦混交林华北落叶松林白桦林。(5)0—40cm土层的土壤平均初渗速率和稳渗速率大小依次为白桦林云杉白桦混交林云杉落叶松混交林华北落叶松林青海云杉林。(6)依林地总贮水量评价的水源涵养功能依次为云杉落叶松混交林(4 427.40t/hm~2)青海云杉林(4 365.33t/hm~2)云杉白桦混交林(4 055.04t/hm~2)华北落叶松林(3 729.64t/hm~2)白桦林(2 650.31t/hm~2)。  相似文献   

15.
冀北山地6种天然纯林枯落物及土壤水文效应   总被引:8,自引:3,他引:8  
以冀北山区6种典型纯林为对象,对枯落物层和土壤层水文效应进行初步研究,结果表明:①枯落物总储量变化范围在3.44~23.97t/hm2之间,顺序为白桦纯林>油松纯林>山杨纯林>五角枫纯林>蒙古栎纯林>黑榆纯林,最大持水量的变化范围为5.16~45.11t/hm2,顺序为五角枫纯林>山杨纯林>蒙古栎纯林>白桦纯林>油松纯林>黑榆纯林,山杨纯林有效拦蓄能力最强,为35.45t/hm2,黑榆纯林的拦蓄能力最弱,为2.66t/hm2;②未分解层枯落物8h基本达到饱和,半分解层在6h已经达到饱和,持水量与浸泡时间呈明显对数关系;枯落物在浸水的0.5h内吸水速率最大,4h左右时下降速度明显减缓,枯落物吸水速率与浸泡时间呈明显幂函数关系;③土壤容重均值变化范围为0.82~1.14g/cm3,总孔隙度的变动范围为44.43%~56.97%;④土壤层有效持水能力以五角枫纯林最强,为116.00t/hm2,白桦纯林持水能力最弱,为40.50t/hm2,土壤入渗速率与入渗时间呈明显幂函数关系。  相似文献   

16.
辽西低山丘陵区针叶林与阔叶林枯落物持水性对比   总被引:1,自引:0,他引:1  
为对比分析辽西低山丘陵区针叶林与阔叶林枯落物的持水性差异,为辽西森林植被恢复提供科学依据和技术支撑,选取3个针叶林(红松林、油松林、兴安落叶松林)和3个阔叶林(榆树林、山杨林、紫椴林)下的枯落物作为研究对象,采用野外现场采样与室内浸水相结合的方法对枯落物的持水特性进行测定.结果表明:针叶林平均蓄积量大于阔叶林,其中针叶林蓄积量在14.65 ~ 17.75 t/hm2,阔叶林在8.44 ~ 16.92 t/hm2;针叶林枯落物平均厚度(2.79 cm)大于阔叶林(2.44 cm);针叶林最大持水率在148.88% ~ 173.19%,阔叶林在145.42% ~156.91%;针叶林有效拦蓄水量为19.47~25.59 t/hm2,阔叶林有效拦蓄水量为10.56~ 22.04 t/hm2,表现为针叶林下枯落物的拦蓄能力更强;针叶林半分解层拦蓄水量显著大于未分解层,阔叶林未分解层拦蓄水量大于半分解层;阔叶林未分解层吸水速率大于针叶林.  相似文献   

17.
山地森林-干旱河谷交错带不同植被枯落物水文效益研究   总被引:1,自引:0,他引:1  
对岷江上游山地森林-干旱河谷交错带的6种植被类型枯落物的水源调蓄功能及特征进行了研究,结果表明:6种植被类型按枯落物贮量大小排序为青冈次生林(46.20 t/hm2)>杨柳阔叶林(23.46 t/hm2)>针阔混交林(20.51t/hm2)>岷江柏幼林(16.02 t/hm2)>次生灌丛(11.17 t/hm2)>荒草坡(9.23 t/hm2),按枯落物层最大持水量、最大拦蓄量和有效拦蓄量大小排序均是青冈次生林>杨柳阔叶林>针阔混交林>岷江柏幼林>次生灌丛>荒草坡;在整个持水过程中,前2 h内各林分枯落物层吸水作用较强。  相似文献   

18.
对大兴安岭山地樟子松天然林土壤水分物理性质及水源涵养能力进行研究,结果表明,0-20 cm土层土壤含水量、土壤毛管孔隙度、总孔隙度、枯落物蓄积量和蓄水量均表现为:坡下>坡中>坡上,土壤含水量变化范围为278.71~377.98 g/kg,平均值为327.67 g/kg;整个坡面土壤毛管孔隙和总孔隙度平均值分别为29.08%和53.15%;枯落物蓄积量和最大蓄水量分别为16.72,53.24 t/hm2。0-20 cm土层土壤容重随坡位降低有减小趋势,其平均值为0.84 g/cm3。土壤非毛管孔隙、土壤毛管蓄水量、有效蓄水量、最大蓄水量均表现为:坡下>坡上>坡中。整个坡面平均毛管蓄水量、有效蓄水量和最大蓄水量分别为625.90,499.05,1 130.29 t/hm2。樟子松天然林林地蓄水能力也表现为:坡下>坡上>坡中,坡下为1 358.51 t/hm2,坡上为1 102.09 t/hm2,坡中为1 058.85 t/hm2,平均蓄水量为1 183.54 t/hm2。由此可见,山地樟子松天然林蓄水能力受坡度和坡位影响较大。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号