首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Fusarium head blight of cereals has, in recent years, become one of the most important pre-harvest diseases worldwide. This paper examines the in vitro efficacy of fungicides to control Fusarium species in cereals and the efficacy in the field on both Fusarium infection of ripening ears as well as their impact on mycotoxin production. Field studies suggest that fungicides such as tebuconazole and metconazole give good control of both Fusarium infection of ears and control of deoxynivalenol (DON) production. However, azoxystrobin and related fungicides are less effective, and grain from treated crops has sometimes been found to have increased concentrations of DON and nivalenol. Studies of isolates of Fusarium culmorum from different parts of Europe showed that complex interactions occur between environmental factors, fungicide type and isolate in relation to growth inhibition and DON production. These studies confirmed the ineffectiveness of azoxystrobin and suggest that environmental stress factors, particularly water availability and temperature, and low fungicide doses may stimulate mycotoxin production by Fusaria in vitro and in wheat grain.  相似文献   

2.
A defined medium was developed in which to monitor deoxynivalenol (DON) accumulation, fungal growth and expression of genes involved in trichothecene biosynthesis (designated Tri genes). In liquid culture, DON accumulated shortly after maximum expression of Tri6 and coincident with expression of Tri5. This was generally 96 h after inoculation. The effects of sublethal concentrations of the fungicides azoxystrobin, trifloxystrobin, kresoxim-methyl and tebuconazole on biosynthesis of the trichothecene DON by Fusarium culmorum were studied using this medium. The strobilurin fungicides trifloxystrobin and azoxystrobin significantly reduced the accumulation of DON in culture medium at a range of concentrations. Kresoxim-methyl, also a strobilurin, and tebuconazole, a triazole, did not significantly reduce the accumulation of DON, although levels were lower than those in nonamended cultures. Trifloxystrobin significantly reduced the accumulation of DON when added to cultures before initiation of trichothecene biosynthesis. RT-PCR assays of the expression of Tri6 and Tri5 genes indicated that trifloxystrobin acted by inhibiting the initiation of trichothecene biosynthesis.  相似文献   

3.
Gibberella zeae (anamorph Fusarium graminearum) is the main pathogen causing Fusarium head blight of wheat in Argentina. The objective of this study was to determine the vegetative compatibility groups (VCGs) and mycotoxin production (deoxynivalenol, nivalenol and 3-acetyl deoxynivalenol) by F. graminearum populations isolated from wheat in Argentina. VCGs were determined among 70 strains of F. graminearum isolated from three localities in Argentina, using nitrate non-utilizing (nit) mutants. Out of 367 nit mutants generated, 41% utilized both nitrite and hypoxanthine (nit1), 45% utilized hypoxanthine but not nitrite (nit3), 9% utilized nitrite but not hypoxanthine (NitM) and 5% utilized all the nitrogen sources (crn). The complementations were done by pairing the mutants on nitrate medium. Fifty-five different VCGs were identified and the overall VCG diversity (number of VCGs/number of isolates) averaged over the three locations was 0.78. Forty-eight strains were incompatible with all others, thus each of these strains constituted a unique VCG. Twenty-two strains were compatible with other isolates and were grouped in seven multimembers VCGs. Considering each population separately, the VCG diversity was 0.84, 0.81 and 1.0 for San Antonio de Areco, Alberti and Marcos Juarez, respectively. Toxin analysis revealed that of the 70 strains of F. graminearum tested, only 90% produced deoxynivalenol, 10% were able to produce deoxynivalenol and very low amounts of 3-acetyldeoxynivalenol. No isolate produced nivalenol. The results indicate a high degree of VCG diversity in the F. graminearum populations from wheat in Argentina. This diversity should be considered when screening wheat germplasm for Fusarium head blight resistance.  相似文献   

4.
Fusarium graminearum causes important diseases of small-grain cereals and maize and produces several mycotoxins. Among them, deoxynivalenol (DON) and zearalenone (ZEA) can accumulate in feedstuffs and foods to health-threatening levels. Although DON is important for fungal virulence in wheat, disease severity in the field does not correlate with mycotoxin concentrations. We compared gene expression and mycotoxin production of lipase-deficient mutants (Δfgl1), strongly reduced in virulence, and the respective wild-type isolate. Δfgl1 mutants exhibited up-regulated DON production during wheat head infection. On isolated wheat kernels, DON was only produced in low quantities, but higher in wild-type than in Δfgl1 mutants. In contrast, neither wild-type nor Δfgl1 mutants produced ZEA during wheat head infection. However, ZEA was clearly detectable on wheat kernels. Here, Δfgl1 mutants revealed a dramatically enhanced ZEA production. We could correlate the altered amounts of DON and ZEA directly with the expression of the toxin-related genes Tri5 for DON and PKS4 and PKS13 for ZEA. Based on Tri5 expression and the infection pattern of the wild-type and Δfgl1 mutants, we suggest that the transition zone of rachilla and rachis is important in the induction of DON synthesis. Gene expression studies indicate an involvement of the lipase FGL1 in regulation of 8 PKS genes and ZEA production.  相似文献   

5.
This paper surveys our work on natural products as potential models for defensive substances against insect and fungal predators. Insecticides and repellents included are pyrethrins, rotenoids, lipid amides, phorbol esters, cordifolia germacranolides, nicandrenoids, mammeins, dihydroagarofuran esters, and cembrene diols. The fungal H-S toxins from Alternaria, and avenacins from oat roots are briefly considered. The avenacins provide an in-situ defence of oat roots against the destructive ‘Take-all’ fungus disease. © 1999 Society of Chemical Industry  相似文献   

6.
The main causative agents of Fusarium head blight are Fusarium graminearum and Fusarium culmorum. We examined the mycotoxin-producing abilities and molecular variability of 37 Fusarium culmorum isolates collected from the Pan-Northern Hemisphere, together with isolates representing related species. Mycotoxin-producing abilities of the isolates were tested by thin layer chromatography and by PCR using primer pairs specific for the Tri7 and Tri13 genes. Thirty isolates belonged to chemotype I (producing deoxynivalenol and 3-acetyl-deoxynivalenol), while seven represented chemotype II (producing nivalenol and/or fusarenone X). The presence of a functional Tri7 gene correlated well with nivalenol production. Isolates belonging to chemotype I were in general more pathogenic in in vitro tests than those belonging to chemotype II. Phylogenetic analysis of the random amplified polymorphic DNA profiles (RAPD) of the isolates enabled the isolates to be clustered into different groups. Most isolates from Hungary exhibited identical RAPD profiles. A similar clustering was found on the tree based on restriction analysis of the intergenic spacer region data. Sequence analysis of a putative reductase gene fragment of the isolates was also carried out. A correlation was detected between the geographic origin of the isolates and their position on the cladogram produced based on sequence data. The presence of mating type gene homologues was also tested with primer pairs specific for MAT1-1 and MAT1-2. The isolates carried either MAT1-1 or MAT1-2 homologues. No correlation was observed between clustering of the isolates based on RAPD, restriction analysis of the intergenic spacer region or sequence data and the distribution of MAT idiomorphs. Similarly, no correlation was detected between mycotoxin-producing abilities or aggressiveness and molecular characteristics of the isolates. Statistical analysis of RAPD data and lack of strict correlation between trees based on different data sets supported the view that Fusarium culmorum has a recombining population structure. The presence of mating type gene homologues in the isolates indicates that the recombining population structure is caused by ongoing or past meiotic exchanges.  相似文献   

7.
Fungi produce low molecular weight secondary metabolites such as antibiotics and mycotoxins. Antibiotics cure diseases whereas mycotoxins cause diseases in plants, animals and human beings. Species such as Aspergillus, Fusarium, Penicillium and Stachybotrys are known to produce mycotoxins that accumulate in processed foods and feeds, although the incidence of infection occurs before processing, during the active growth of the organism. Among the mycotoxins, aflatoxins produced by Aspergillus flavus and A. parasiticus have been extensively studied at the molecular level. A complex biosynthetic pathway involving sixteen steps is mediated by individual major genes. These fungi have eight linkage groups, but the aflatoxin/sterigmatocystin (AF/ST) metabolic pathway genes have been mapped to only three linkage groups; ten of them belong to linkage group VII, and one of each to linkage group II and VIII. These genes are involved in both the regulatory and biosynthetic pathways and are clustered on the respective chromosomes. Clustering of genes in fungi indicates an evolutionary trend among genes that orchestrate gene function. Being linked together they segregate as a unit, thereby conferring a selective advantage to the organism. The evolution of gene clusters takes place through vertical or horizontal gene transfer. In fungi, horizontal gene transfer is most effective. Functionally, the mechanism of evolution of mycotoxin gene clusters in fungi seems to be similar to the evolution of a super-gene. The possible implications of evolutionary parallelism of gene clusters and super-genes is briefly explored.  相似文献   

8.
我国苦参碱农药研究应用概况   总被引:8,自引:0,他引:8  
本文综述了近年来苦参碱农药作为杀虫剂及杀菌剂在我国的生产、研究与应用概况.并讨论了目前苦参碱农药应用中存在的问题及发展前景。  相似文献   

9.
A real-time PCR technique was applied for the quantification of trichothecene-producing Fusarium species (TMTRI assay) as well as the highly toxigenic Fusarium graminearum (TMFg12 assay) present in barley grain and malt. PCR results were compared to the amounts of trichothecenes detected in the samples to find out if the PCR assays can be used for trichothecene screening instead of expensive and laborious chemical analyses. DNA was extracted from ground kernels using a commercial DNA extraction kit and analysed in a LightCycler® system using specific primers and fluorogenic TaqMan probes. Both naturally and artificially contaminated grains were analysed. The TMTRI assay and the TMFg12 assay enabled the quantification of trichothecene-producing Fusarium DNA and F. graminearum DNA present in barley grain and malt samples, respectively. Both TaqMan assays were considered to be sensitive and reproducible. Linearity of the assays was 4–5 log units when pure Fusarium DNAs were tested. The amount of Fusarium DNA analysed with the TMTRI-trichothecene assay could be used for estimation of the deoxynivalenol (DON) content in barley grain. Furthermore, the TMFg12 assay for F. graminearum gave a good estimation of the DON content in north American barley and malt samples, whilst the correlation was poor among Finnish samples. DON content and the level of F. graminearum DNA were found to be naturally low in Finnish barleys.  相似文献   

10.
Fusarium culmorum is a phytopathogenic, toxigenic fungus causing seedling diseases, foot rot and head blight of cereals. For estimating competition effects in mixtures of two single-spore isolates, two winter rye single crosses were tested with either four isolates individually or four 1 : 1 mixtures of the same isolates in six field environments. Two isolates (FC46, FC64) were highly aggressive deoxynivalenol (DON) and 3-acetyl DON-producers, the other two (FC30, FC71) were medium aggressive nivalenol-producers. Rye heads were inoculated during flowering with conidia of pairs of isolates expressing similar (FC46 + FC64, FC30 + FC71) or contrary (FC46 + FC71, FC30 + FC64) levels of aggressiveness and similar or different concentrations and chemotypes of mycotoxins, respectively. Head blight rating and yield components relative to the non-inoculated plots were recorded as aggressiveness traits. Additionally, mycotoxin concentrations were measured in the rye grain. Random pathogen samples were re-isolated from heads at the onset of symptom development and analysed by molecular markers (RAPD–PCR) in one environment. Aggressiveness of the isolate mixtures was significantly lower than that of the isolates applied individually on both rye genotypes. Similarly, mycotoxin concentrations were significantly lower in the mixtures in seven out of eleven comparisons. Among the re-isolates, the component genotypes of a mixture significantly deviated from the inoculated 1 : 1 ratio when a particular isolate (FC46) was present in the mixture. This isolate displayed a superior competitive ability irrespective of the aggressiveness or mycotoxin profile of the mixing partner illustrating that pathogenic fitness is caused by additional factors that have not, as yet, been identified.  相似文献   

11.
常用杀虫剂和杀菌剂对褐飞虱类酵母共生菌生长的影响   总被引:3,自引:0,他引:3  
本文研究了常用杀虫剂和杀菌剂对褐飞虱类酵母共生菌生长的影响。结果表明,10%吡虫啉可湿性粉剂、48%毒死蜱乳油、10%溴氰菊酯乳油、25%噻嗪酮可湿性粉剂、1.2%印楝素乳油、75%百菌清可湿性粉剂、20%三环唑可湿性粉剂的500、1 000、2 000倍液处理后共生菌的生长(菌落数量)显著减少,共生菌的假菌丝生长不舒展,有所萎缩,酵母多形成空泡。浓度越高、共生菌生长受到抑制越显著。低浓度(常规推荐剂量及以下)井冈霉素对共生菌生长影响较小,而高浓度(2倍常规推荐剂量)处理影响很大。这说明常用杀虫剂和杀菌剂农药对褐飞虱类酵母共生菌的生长均有较大的抑制作用。  相似文献   

12.
欧盟宣布从2013年7月1日起对新烟碱类农药实施限用政策,以降低或避免对蜜蜂的种群危害。根据欧盟的这一法规,新烟碱类杀虫剂除冬播麦类外几乎不能在其它大田、露地作物上使用,首批涉及农药品种有吡虫啉、噻虫嗪和噻虫胺3个品种。新烟碱类农药是我国目前使用在蔬菜水果和粮食作物上的最广泛的杀虫剂品种,也是我国农药出口创汇的主打品种,欧盟新烟碱类农药管理政策的变化,势必将对我国农药生产、使用以及农产品贸易带来较大影响。本文详细阐述了欧盟新烟碱类农药限用政策背景、我国新烟碱类农药登记使用情况以及新烟碱类农药管理政策调整对我国可能产生的影响和应对措施。通过对限用新烟碱类农药进行风险分析,以期减少或降低该政策对我国农药相关产业的负面影响。  相似文献   

13.
The objective of this study was to evaluate the potential role of gramineous weeds present near paddy fields as alternative hosts for the Fusarium graminearum species complex (FGSC) that causes fusarium head blight (FHB) in rice. A total of 142 weed samples were collected from 10 gramineous weed species near paddy fields from August to October 2018 in Jiangsu Province, China. Of the 145 isolates of seven Fusarium species isolated from the weed samples, F. asiaticum was the most abundant (86.9%), followed by F. fujikuroi (5.5%), F. proliferatum (2.8%), F. graminearum (2.1%), F. tricinctum (1.4%), F. acuminatum (0.7%), and F. sporotrichioides (0.7%). Genotype and mycotoxin analyses confirmed that 72.2% of F. asiaticum isolates were producers of deoxynivalenol (DON) with 3-acetyl deoxynivalenol (3ADON), and the remainder were nivalenol (NIV) producers. Pathogenicity assays showed that both 3ADON and NIV chemotypes of F. asiaticum could cause FHB in rice, but NIV chemotypes were significantly (p < .05) more aggressive than 3ADON chemotypes. Three Fusarium mycotoxins, DON, NIV, and zearalenone, occurred naturally at low concentrations in the weed samples. Taken together, this study provides insight into the mycotoxin production and aggressiveness of F. asiaticum isolates from gramineous weeds in China.  相似文献   

14.

BACKGROUND

Integrated pest management (IPM) has a long history in fruit production and has become even more important with the implementation of the EU directive 2009/128/EC making IPM mandatory. In this study, we surveyed 30 apple orchards in Norway for 3 years (2016–2018) monitoring pest- and beneficial arthropods as well as evaluating fruit damage. We obtained growers’ diaries of pest management and used these data to study positive and negative correlations of pesticides with the different arthropod groups and damage due to pests.

RESULTS

IPM level had no significant effects on damage of harvested apples by arthropod pests. Furthermore, damage by arthropods was mainly caused by lepidopteran larvae, tortricids being especially important. The number of insecticide applications varied between 0 and 3 per year (mean 0.8), while acaricide applications varied between 0 and 1 per year (mean 0.06). Applications were often based on forecasts of important pest species such as the apple fruit moth (Argyresthia conjugella). Narrow-spectrum insecticides were commonly used against aphids and lepidopteran larvae, although broad-spectrum neonicotinoid (thiacloprid) insecticides were also applied. Anthocorid bugs and phytoseiid mites were the most abundant natural enemies in the studied orchards. However, we found large differences in abundance of various “beneficials” (e.g., lacewings, anthocorids, parasitic wasps) between eastern and western Norway. A low level of IPM negatively affected the abundance of spiders.

CONCLUSION

Lepidoptera was found to be the most important pest group in apple orchards. Insecticide use was overall low, but number of spray applications and use of broad-spectrum insecticides varied between growers and regions. IPM level did not predict the level of fruit damage by insects nor the abundance of important pests or most beneficial groups in an apple orchard. © 2023 The Authors. Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.  相似文献   

15.
保护地常用农药对蜡蚧轮枝菌菌丝生长影响研究   总被引:4,自引:1,他引:4       下载免费PDF全文
6种杀虫剂和 6种杀菌剂对昆虫病原真菌蜡蚧轮枝菌菌丝生长影响的研究结果表明 ,杀虫剂对蜡蚧轮枝菌菌丝生长有程度不同的抑制作用。在田间常规使用浓度下 ,5种杀虫剂对菌丝生长的抑制率在 10 %以上 ,最高者为甲氰菊酯达 17.6%。田间常规使用浓度稀释 10倍下 ,杀虫剂万灵、快灭净和锐劲特对菌丝生长抑制率低于 5% ,锐劲特在3.3~33.3mg/L时 ,菌丝生长与对照无显著差异 ,表现出与蜡蚧轮枝菌有极好的相容性 ,是菌药混用较好的候选杀虫剂。杀菌剂对蜡蚧轮枝菌菌丝生长有强烈的抑制作用 ,浓度愈高 ,抑制程度愈强。因此 ,在利用蜡蚧轮枝菌防治保护地蔬菜害虫时 ,须与杀菌剂使用保持一定的间隔期  相似文献   

16.
Agriculture is facing an enormous challenge: it must ensure that enough high‐quality food is available to meet the needs of a continually growing population. Current and future agronomic production of food, feed, fuel and fibre requires innovative solutions for existing and future challenges, such as climate change, resistance to pests, increased regulatory demands, renewable raw materials or requirements resulting from food chain partnerships. Modern agricultural chemistry has to support farmers to manage these tasks. Today, the so‐called ‘side effects’ of agrochemicals regarding yield and quality are gaining more importance. Agrochemical companies with a strong research and development focus will have the opportunity to shape the future of agriculture by delivering innovative integrated solutions. This review gives a comprehensive overview of the innovative products launched over the past 10 years and describes the progress of modern agricultural chemistry and its future prospects. © 2015 Society of Chemical Industry  相似文献   

17.
ABSTRACT Fusarium graminearum causes Fusarium head blight (FHB) in small grains worldwide. Although primarily a pathogen of cereals, it also can infect noncereal crops such as potato and sugar beet in the United States. We used a real-time polymerase chain reaction (PCR) method based on intergenic sequences specific to the trichodiene synthase gene (Tri5) from F. graminearum. TaqMan probe and primers were designed and used to estimate DNA content of the pathogen (FgDNA) in the susceptible wheat cv. Grandin after inoculation with the 21 isolates of F. graminearum collected from potato, sugar beet, and wheat. The presence of nine mycotoxins was analyzed in the inoculated wheat heads by gas chromatography and mass spectrometry. All isolates contained the Tri5 gene and were virulent to cv. Grandin. Isolates of F. graminearum differed significantly in virulence (expressed as disease severity), FgDNA content, and mycotoxin accumulation. Potato isolates showed greater variability in producing different mycotoxins than sugar beet and wheat isolates. Correlation analysis showed a significant (P < 0.001) positive relationship between FgDNA content and FHB severity or deoxynivalenol (DON) production. Moreover, a significant (P < 0.001) positive correlation between FHB severity and DON content was observed. Our findings revealed that F. graminearum causing potato dry rot and sugar beet decay could be potential sources of inoculum for FHB epidemics in wheat. Real-time PCR assay provides sensitive and accurate quantification of F. graminearum in wheat and can be useful for monitoring the colonization of wheat grains by F. graminearum in controlled environments, and evaluating wheat germplasms for resistance to FHB.  相似文献   

18.
Several Fusarium species occurring worldwide on maize as causal agents of ear rot, are capable of producing mycotoxins in infected kernels, some of which have a notable impact on human and animal health. The main groups of Fusarium toxins commonly found are: trichothecenes, zearalenones, fumonisins, and moniliformin. In addition, beauvericin and fusaproliferin have been found in Fusarium-infected maize ears. Zearalenone and deoxynivalenol are commonly found in maize red ear rot, which is essentially caused by species of the Discolour section, particularly F. graminearum. Moreover, nivalenol and fusarenone-X were often found associated with the occasional occurrence of F. cerealis, and diacetoxyscirpenol and T-2 toxin with the occurrence of F. poae and F. sporotrichioides, respectively. In addition, the occurrence of F. avenaceum and F. subglutinans usually led to the accumulation of moniliformin. In maize pink ear rot, which is mainly caused by F. verticillioides, there is increasing evidence of the wide occurrence of fumonisin B1. This carcinogenic toxin is usually found in association with moniliformin, beauvericin, and fusaproliferin, both in central Europe due to the co-occurrence of F. subglutinans, and in southern Europe where the spread of F. verticillioides is reinforced by the widespread presence of F. proliferatum capable of producing fumonisin B1, moniliformin, beauvericin, and fusaproliferin.  相似文献   

19.
Arbuscular mycorrhizal fungi (AMF) form symbioses with the majority of plant species and can provide multiple benefits to the host plant. In agro‐ecosystems, the abundance and community structure of AMF are affected by agricultural management practices. This review describes and discusses current knowledge on the effects of inorganic and organic chemical pesticides on AMF in the conflicting area between agricultural use and environmental concerns. Variable effects have been reported following chemical pesticide use, ranging from neutral to positive and negative. Moreover, a species‐specific reaction has been documented. The reported effects of pesticides on arbuscular mycorrhizal symbiosis are very diverse, and even when the same substance is investigated, the results are often contradictory. These effects depend on many parameters, such as the active substance, the mode of action, the mode of application and the dosage. In the field, determinants such as the physico‐chemical behavior of the active substances, the soil type and other soil microorganisms contribute to the fate of pesticides and thus the amount of active substances to which AMF are exposed. This review highlights that the fate of AMF following pesticide use needs to be addressed in a broader agro‐ecosystem context. © 2018 The Authors. Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.  相似文献   

20.
Recent data on the epidemiology of the common mycotoxigenic species of Fusarium, Alternaria, Aspergillus and Penicillium in infected or colonized plants, and in stored or processed plant products from the Mediterranean area are reviewed. Emphasis is placed on the toxigenicity of the causal fungal species and the natural occurrence of well known mycotoxins (aflatoxins, ochratoxins, fumonisins, trichothecenes, zearalenone, patulin, Alternaria-toxins and moniliformin), as well as some more recently described compounds (fusaproliferin, beauvericin) whose toxigenic potential is not yet well understood. Several Fusarium species reported from throughout the Mediterranean area are responsible of the formation of mycotoxins in infected plants and in plant products, including: Fusarium graminearum, F. culmorum, F. cerealis, F. avenaceum, F. sporotrichioides and F. poae, which produce deoxynivalenol, nivalenol, fusarenone, zearalenone, moniliformin, and T-2 toxin derivatives in wheat and other small grains affected by head blight or scab, and in maize affected by red ear rot. Moreover, strains of F. verticillioides, F. proliferatum, and F. subglutinans, that form fumonisins, beauvericin, fusaproliferin, and moniliformin, are commonly associated with maize affected by ear rot. Fumonisins, were also associated with Fusarium crown and root rot of asparagus and Fusarium endosepsis of figs, caused primarily by F. proliferatum. Toxigenic A. alternata strains and associated tenuazonic acid and alternariols were commonly found in black mould of tomato, black rot of olive and citrus, black point of small cereals, and black mould of several vegetables. Toxigenic strains of A. carbonarius and ochratoxin A were often found associated with black rot of grapes, whereas toxigenic strains of A. flavus and/or P. verrucosum, forming aflatoxins and ochratoxin A, respectively, were found in moulded plant products from small cereals, peanuts, figs, pea, oilseed rape, sunflower seeds, sesame seeds, pistachios, and almonds. Finally, toxigenic strains of P. expansum and patulin were frequently found in apple, pear and other fresh fruits affected by blue mould rot, as well as in derived juices and jams.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号