首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 203 毫秒
1.
木聚糖酶高产菌株的筛选及其产酶规律研究   总被引:6,自引:0,他引:6  
本研究采用透明圈比较法,从质粒转化变异菌种资源中纯化出1个木聚糖酶高产菌株。同时,采用单因子和多因子相结合的方法及DNS法,对该菌株的适宜发酵条件和产酶规律及木聚糖酶活检测体系进行了初步研究。结果表明:该菌株在改良培养基中的对数生长期在1-7h之间,产酶高峰期在8h左右,发酵液酶活达到344U/ml;木聚糖酶活力检测采用0.1mol·L^-1柠檬酸-柠檬酸钠缓冲液,pH值5.2—5.8,木聚糖浓度0.8%,温度60℃,DNS用量为2.0—2.5ml。  相似文献   

2.
本研究采用透明圈比较法,从质粒转化变异菌种资源中纯化出1个木聚糖酶高产菌株。同时,采用单因子和多因子相结合的方法及DNS法,对该菌株的适宜发酵条件和产酶规律及木聚糖酶活检测体系进行了初步研究。结果表明:该菌株在改良培养基中的对数生长期在1~7h之间,产酶高峰期在8h左右,发酵液酶活达到344U/ml;木聚糖酶活力检测采用0.1mol.L-1柠檬酸-柠檬酸钠缓冲液,pH值5.2~5.8,木聚糖浓度0.8%,温度60℃,DNS用量为2.0~2.5m l。  相似文献   

3.
从本实验室保存的46株纤维素分解菌中筛选出1株可高效降解半纤维素的木聚糖酶高产菌株APS35,其酶活力高达31.801IU.g-1,比APS02(对照)高4.91倍。产酶条件优化结果表明,以水稻秸秆为底物,APS35产木聚糖酶的最适条件:培养温度28℃,培养时间3-4d,稻草粉与麸皮比4∶1,接种量10%,氮源为酵母膏(总氮量0.4%),pH为4.0,吐温80浓度0.4%。在此条件下的木聚糖酶活力为32.024IU.g-1,与优化前无显著差异。  相似文献   

4.
对现有菌种资源进行提纯复壮和筛选,采用透明圈法和发酵液酶活力比较法,获得高产中性β-甘露聚糖酶菌株CXJZ11-01。进而采用单因子和多因子相结合的统计方法以及DNS法,对该菌株β-甘露聚糖酶活力检测体系及其产酶规律进行系统研究。结果表明:该中性β-甘露聚糖酶最适pH值为6.0,最适温度为65℃;菌株CXJZ11-01在适宜条件下培养9小时,发酵液粗酶活力高达3050U/ml。  相似文献   

5.
对现有菌种资源进行提纯复壮和筛选,采用透明圈法和发酵液酶活力比较法,获得高产中性β-甘露聚糖酶菌株CXJZ11-01。进而采用单因子和多因子相结合的统计方法以及DNS法,对该菌株β-甘露聚糖酶活力检测体系及其产酶规律进行系统研究。结果表明:该中性β-甘露聚糖酶最适pH值为6.0,最适温度为65℃;菌株CXJZ11-01在适宜条件下培养9小时,发酵液粗酶活力高达3050U/ml。  相似文献   

6.
从工业化生产实际出发,探讨了豆渣的高效水解技术、酵母菌株的选育及其培养工艺。不同工艺条件下,采用纤维素酶和普鲁兰酶水解豆渣,以葡萄糖为标准测量水解后料液中糖含量,得出水解豆渣的最佳工艺条件:温度55℃,料液比为1∶24,先用普鲁兰酶水解,调至pH5.0,再用纤维素酶水解,调至pH5.5,普鲁兰酶3 h,纤维素酶1 h,时间比为3∶1,加酶总量为3%,普鲁兰酶∶纤维素酶为3∶1。用此条件对豆渣进行水解得到水解液,料液中含糖量最高位为160.7 mg·kg~(-1)。用含量为35%的水解液去培养抗性菌株,筛选的抗性菌株C发酵效果较好,酵母含量达18.49 g·L~(-1)。  相似文献   

7.
为获得耐热甘露聚糖酶,从天然高温泉水中筛选出了一株产甘露聚糖酶的细菌。结合形态学、生理生化和分子生物学等手段,确定所筛选的菌株为地衣芽孢杆菌(Bacillus licheniformis)。并研究了温度、pH值和金属离子等因素对甘露聚糖酶活力的影响。结果显示,该酶的最适反应温度和pH分别为60℃和5.0。Co~(2+)和Al~(3+)对该酶的活力有抑制作用,Mn~(2+)、K~+和Ca~(2+)对该酶活力有一定的促进作用,其它离子对酶活力没有显著影响。该菌株生产的甘露聚糖酶具有耐热偏酸性的特点。该研究为甘露聚糖酶制剂产业提供了可靠的菌种资源,可用于纺织、食品、饲料等方面,并为将来进一步研究其用途奠定了基础。  相似文献   

8.
根据全基因组测序注释结果设计特异引物,从DCE-01菌株克隆关键脱胶酶基因:果胶酶基因(pel E)、木聚糖酶基因(xyn)及甘露聚糖酶基因(man),重组到表达载体p ET-28a中,导入E.coli BL21中进行诱导表达。结果表明:pel E核酸序列长1185 bp,编码395个氨基酸,蛋白分子量为44 kDa;xyn核酸序列长1251 bp,编码416个氨基酸,蛋白分子量45.74 kDa;man核酸序列长1137 bp,编码379个氨基酸,蛋白分子量41.85 kDa。果胶酶、木聚糖酶、甘露聚糖酶的酶活力分别为471.97、64.32、16882.86 U/mL。该研究为进一步发掘DCE-01菌株基因资源及开发高效工业酶制剂提供了科学依据。  相似文献   

9.
从三亚红树林保护区中筛选出一株产淀粉酶枯草芽孢杆菌,通过改变培养温度、初始pH值和盐浓度等因素研究该菌株的最适产酶条件,同时也分析了该菌株所产粗酶的热稳定性及pH稳定性。结果表明:该菌株属于中温产酶菌,产淀粉酶的最适温度为40℃,最适pH值为8,盐耐受能力可达到4%。酶学性质分析发现,该菌株产生的淀粉酶在40℃保温150 min后仍有70%以上的相对酶活力,在pH为9的环境中孵育1 h,相对酶活力可达到90%以上。这些结果表明,该产淀粉酶菌株对热带地区海水环境具有较好的适应性,其作为消化酶类饲料添加剂具有广阔的应用前景。  相似文献   

10.
本研究在18℃条件下,利用赫奇逊滤纸培养基分离纯化菌株,根据透明圈和滤纸降解情况筛选菌株,最终通过酶活分析和秸秆降解率确定目的菌株,通过形态学观察与ITS基因序列分析对目的菌株进行初步鉴定,分离筛选高效低温秸秆纤维素降解菌并研究其产酶特性。结果表明,从小兴安岭山区土壤中分离到1株在低温下具有较强纤维素降解能力的真菌菌株C1,15 d内对秸秆的降解能力达55.6%,滤纸酶活和CMC酶活分别为18.4 U/mL和54.3 U/mL,初步鉴定菌株C1为青霉菌属(Penicillium sp.),具有进一步研究开发的潜力。  相似文献   

11.
用自然界筛选到的抗稻瘟病几丁质酶产生菌H3发酵液处理水稻幼苗后,检测水稻幼苗质量及其体内苯丙氨酸解氨酶(PAL)、过氧化氢酶(CAT)和过氧化物酶(POD)活性的变化,以期探讨发酵液的作用机理。结果表明,H3菌株产酶发酵液处理2种水稻幼苗后,培两优288苗高和百苗干物重分别比对照分别增加58.9%、35.4%,旱干127苗高和百苗干物重比对照分别增加66.8%、26.2%,苯丙氨酸解氨酶活性和过氧化物酶活性明显增加,过氧化氢酶活性下降。H3菌株发酵液能诱导水稻幼苗防御酶的活性变化,使其朝有利于水稻幼苗生长和抵抗病害的方向发展。  相似文献   

12.
高粱体细胞抗盐系的筛选   总被引:2,自引:0,他引:2  
用高粱体细胞梯度筛选法筛选了在3%NaCl培养其中能存活的体细胞系,并获得了再生植株,利用芽期和苗期抗盐鉴定和产比结果表明,高粱体细胞抗盐新品系T011有较强的抗盐能力和高配合力。  相似文献   

13.
Thermomyces lanuginosus is thermophilic fungus in which was isolated from widespread material. A high number of this fungus was found in composts especially mushroom composts. This fungus has been reported to produce a high level xylanase when cultivated in the medium containing xylan and corn cob as a carbon source. Various strains of T. lanuginosus produced a single xylanase with molecular masses in range of 22.0 to 29.0 kDa. Pure beta-xylanase obtained from various strains of this fungus exhibited highly stability at high temperature and wide pH range. The optimal temperature and optimal pH of pure beta-xylanase from various strains of T. lanuginosus have been reported in range of 60-75 degrees C and pH 6.0-7.0, respectively. The great thermal stability was resulting from the present of hydrophilic amino acid on beta sheet of the surface of xylanase structure. Moreover, the relatedness between high and low xylanase producing strains can be distinguish by random amplification of polymorphic DNA (RAPD). Based on nucleotide sequences and T. lanuginosus xylanase gene has been classified to be a member of family 11 (formerly known as cellulase family G) glycosyl hydrolases. This enzyme was endo-type xylanase having main product are xylose and xylobiose. The expression of xylanase gene from T. lanuginosus was achieved in Escherichia coli and methylotrophic yeast Pichia pastoris. The ability of T. lanuginosus in which produced large amount of high thermos stable xylanase has made this fungus to be a source of xylanase production for biobleaching in pulp and paper process.  相似文献   

14.
研究了分离自海洋虾壳的一株放线菌F-1013对几丁质的利用及其发酵液的优化。结果表明:该菌具有较高的几丁酶活力。通过对该菌发酵液的筛选和优化,认为该菌在pH8-9、5%的虾壳粉培养液中发酵5-7d,甲壳低聚糖含量达到0.3mg.mL-1,产菌量优于其他基质的培养基。  相似文献   

15.
Addition of xylanases (EC 3.2.1.8) that varied in their substrate selectivities and/or wheat xylanase inhibitor sensitivities in dough batter gluten–starch separation of wheat flour showed the importance of these enzyme characteristics for their functionality in this process. A xylanase from Aspergillus aculeatus (XAA) with selectivity for hydrolysis of water extractable arabinoxylan (WE-AX), which is not inhibited by wheat flour xylanase inhibitors decreased batter viscosity and improved gluten agglomeration behaviour. In contrast, a xylanase from Bacillus subtilis (XBSi) with selectivity for hydrolysis of water unextractable arabinoxylan (WU-AX), which is in vitro inhibited by wheat flour xylanase inhibitors had a negative effect on gluten agglomeration at low enzyme dosages. As expected, solubilisation of WU-AX increased batter viscosities. At higher dosages however, this enzyme also improved gluten agglomeration because of degradation of both WE-AX and enzymically solubilised AX. A mutated B. subtilis xylanase (XBSni) with selectivity for hydrolysis of WU-AX comparable to XBSi but which is not inhibited by wheat flour xylanase inhibitors, increased the level of large gluten aggregates as well as the total gluten protein recovery, even at lower dosages. Because of its inhibitor insensitivity, the solubilisation and degradation of AX proceeded further. An XBSni dosage approximately 4 times lower than XBSi performed as well as its inhibited counterpart. The degradation of both WE-AX and WU-AX by XBSni improved the gluten agglomeration behaviour to a larger extent than the XAA treatment which primarily resulted in hydrolysis of WE-AX. The results confirm the detrimental impact not only of WE-AX, but also of WU-AX, on gluten agglomeration in a dough batter gluten–starch separation process. At the same time, they provide firm evidence that xylanases are not only inhibited by xylanase inhibitors in vitro, but are also partly inhibited in the industrial process in which they are used.  相似文献   

16.
为给小麦抑制蛋白的分离纯化以及表达研究提供信息,以小麦品种兰考矮早八和豫麦49为材料,检测和分析了小麦在不同生育时期叶片和籽粒木聚糖酶活性及木聚糖酶抑制蛋白活性的动态变化.结果表明,木聚糖酶活性及木聚糖酶抑制蛋白活性在两个品种间没有差异,不同生育时期小麦叶片及籽粒木聚糖酶活性没有显著变化,可能以基础水平存在.叶片中的木聚糖酶抑制蛋白活性自苗期开始,经拔节期到抽穗期,总体呈现增加趋势,但进入灌浆~成熟期则显著下降,而籽粒中的木聚糖酶抑制蛋白活性则随籽粒的成熟持续升高.  相似文献   

17.
An investigation of the physical, chemical and microbial population changes that occurred during the composting of water hyacinth was carried out. After 11 weeks of composting, the compost turned black, had decomposed and had no smell. The pH was 7 and the highest temperature reached, of 40 degrees C occurred in the first week. The initial carbon/nitrogen ratio was 17.61 and this increased to 18.12 by the end of the composting. The coliform population declined greatly from 8.11 to 5.85 MPN (log)/g and fecal coliforms and Escherichia coli were not detected in the final product. Bacteria were the dominant microbes in the compost followed by actinomycetes and fungi. Mesophillic microorganisms were present in higher numbers than thermophillic microorganisms throughout the composting. The highest cellulase and xylanase activities in the compost of 6.67 and 10.24 U/kg DW, respectively were detected in the second week which was related to the temperature. Bacillus sp. strain B4 was isolated and investigated for cellulase and xylanase using agro-industrial residues as substrates during Solid-State Fermentation (SSF) processes. Corncob and rice straw were good substrates for the production of the enzymes with a maximum cellulase of 1.19 U/gDW and xylanase activity of 2.54 U/g DW, respectively. The activities of both enzymes were stable and maximum at 50 degrees C. This study indicated that agro-industrial residues should be mixed with water hyacinth for composting to facilitate the development of a thermophilic phase during the composting process and to improve the product. Bacillus sp. strain B4 can be used as a starter strain.  相似文献   

18.
There is growing interest in recovering ferulic acid from plant sources for use as feedstock for several high-value applications. Jojoba meal was examined as a potential source of ferulic acid. The feruloyl esterase domain of the Clostridium thermocellum cellulosomal xylanase was employed to hydrolyze ferulic acid from defatted jojoba meal. Esterase treatment produced 6.7 g of ferulic acid/kg of jojoba meal. The predominant source (86%) of the ferulate was found to originate from the meal's water-soluble simmondsin fraction. Seven feruloyl simmondsin species from jojoba meal were identified by liquid chromatography–mass spectroscopy. Only one species, a didemethylsimmondsin ferulate, displayed an enzymatic hydrolysis rate distinctly faster than the other feruloyl simmondsins. Complete hydrolysis of all feruloyl simmondsin species was achieved in 24–48 h at 60 °C with a 100:1 meal:enzyme weight ratio. Ferulic acid was efficiently recovered from the medium by ethyl acetate extraction. The recovered ferulic acid was readily converted to ethyl ferulate, demonstrating a facile procedure for producing a valuable product from defatted jojoba meal.  相似文献   

19.
芒果炭疽病抗病品种筛选研究   总被引:3,自引:0,他引:3  
大田筛选法,室内筛选法和综合筛选法3种抗病品种利息选方法比较研究,结果表明,采用综合筛选法筛选芒果抗病品种准确率最高。用综合筛选法对48个芒果品种进行筛选,结果LN1为高抗品种;马切苏,海顿,枋红,小菲,LN4,陵水大芒等6个品种为中抗品种,黄象牙为避病种。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号