首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到14条相似文献,搜索用时 62 毫秒
1.
刘诗怡  胡滨  赵春 《农业工程学报》2023,39(15):163-171
黄瓜叶片病虫害的检测与识别是科学防治病害的有效手段。为了提高对黄瓜叶片病斑细小特征的精准定位能力以及提高对早疫病叶片的检测性能,提出一种DCNSE-YOLOv7的深度学习算法。首先,将主干特征提取网络中对最后一个特征层的卷积2D convolution(Conv2D)改为可变形卷积2D Deformable convolution(DCNv2),提高模型对病斑细小特征的提取能力;其次,对主干特征提取网络输出的3个特征层结果添加Squeeze-and-Excitation networks(SENet)注意力机制模块构建网络模型,加强模型对发病早期相似病害特征的有效提取能力;同时,通过K-means++聚类算法对锚框重新聚类,避免算法在训练过程中盲目学习目标的尺寸和位置;最后,将原始YOLOv7的CIOU损失函数,更替为Focal-EIOU损失函数。试验结果表明,DCNSE-YOLOv7算法能够有效对黄瓜叶片病虫害进行检测,其平均精度均值为94.25%,比YOLOv5l、YOLOv7、Faster-RCNN、SSD和YOLOv7-tiny模型分别提高了2.72、2.87、0.28、12....  相似文献   

2.
棉田虫害的快速检测与准确识别是预防棉田虫害、提高棉花品质的重要前提。针对真实棉田环境下昆虫相似度高、背景干扰严重的问题,提出一种ECSF-YOLOv7棉田虫害检测模型。首先,采用EfficientFormerV2作为特征提取网络,以加强网络的特征提取能力并减少模型参数量;同时,将卷积注意力模块(convolution block attention module,CBAM)嵌入到模型的主干输出端,以增强模型对小目标的特征提取能力并削弱背景干扰;其次,使用GSConv卷积搭建Slim-Neck颈部网络结构,在减少模型参数量的同时保持模型的识别精度;最后,采用Focal-EIOU(focal and efficient IOU loss,Focal-EIOU)作为边界框回归损失函数,加速网络收敛并提高模型的检测准确率。结果表明,改进的ECSF-YOLOv7模型在棉田虫害测试集上的平均精度均值(mean average precision,mAP)为95.71%,检测速度为69.47帧/s。与主流的目标检测模型YOLOv7、SSD、YOLOv5l和YOLOX-m相比,ECSF-YOLOv7模型的mAP分别高出1.43、9.08、1.94、1.52个百分点,并且改进模型具有参数量更小、检测速度更快的优势,可为棉田虫害快速准确检测提供技术支持。  相似文献   

3.
为了快速检测和统计杨梅树的数量,该研究提出了一种基于改进YOLOv7的杨梅树单木检测模型:YOLOv7-ACGDmix。首先,对YOLOv7的可扩展高效长程注意力网络(extended-efficient long-range attention networks, E-ELAN)进行改进,通过融合兼具卷积和注意力机制优势的ACmix(a mixed model that enjoys the benefit of both self-attention and convolution)结构得到AC-E-ELAN模块,提升模型的学习和推理能力,引入可变形卷积(deformable convolutional networks version 2, DCNv2)结构得到DCNv2-E-ELAN模块,增强模型对不同尺寸目标的提取能力;其次,采用内容感知特征重组(content-aware reassembly of features, CARAFE)上采样模块,提高模型对重要特征的提取能力;然后,在主干和头部网络部分添加全局注意力机制(global-attention mechanism, GAM),强化特征中的语义信息和位置信息,提高模型特征融合能力;最后,采用WIoU(wise intersection over union)损失函数减少因正负样本数据不平衡造成的干扰,增强模型的泛化性。在公开数据集上的试验结果表明,YOLOv7-ACGDmix模型的精确率达到89.1%,召回率达到89.0%,平均精度均值(mean average precision, mAP)达到95.1%,F1-score达到89.0%,相比于原YOLOv7模型分别提高1.8、4.0、2.3和3.0个百分点。与Faster R-CNN、SSD、YOLOv8模型相比,改进模型的平均精度均值(mAP0.5)分别提高了9.8、2.2、0.7个百分点。实地采集杨梅树样本数据的检测精确率87.3%、召回率85.7%。试验表明,改进模型为基于无人机影像的杨梅树单木检测提供了一种有效的解决方案,对果园精准管理的发展具有重要意义。  相似文献   

4.
在复杂果园环境中,传统机器视觉算法难以处理光影变化、遮挡、杂草等因素的干扰,导致导航道路分割不准确。针对此问题,该研究提出了一种改进YOLOv7的果园内导航线检测方法。将注意力机制模块(convolutional block attention module,CBAM)引入到原始YOLOv7模型的检测头网络中,增强果树目标特征,削弱背景干扰;在ELAN-H(efficient layer aggregation networks-head,ELAN-H)模块和Repconv(re-parameterization convolution,Repconv)模块之间引入SPD-Conv(space-to-depth,non-strided convolution,SPD-Conv)模块,提高模型对低分辨率图像或小尺寸目标的检测能力。以树干根部中点作为导航定位基点,利用改进YOLOv7模型得到两侧果树行线的定位参照点,然后利用最小二乘法拟合两侧果树行线和导航线。试验结果表明,改进YOLOv7模型检测精度为95.21%,检测速度为42.07帧/s,相比于原始YOLOv7模型分别提升了2.31个百分点和4.85帧/s,能够较为准确地识别出树干,且对树干较密的枣园图像也能达到较好的检测效果;提取到的定位参照点与人工标记树干中点的平均误差为8.85 cm,拟合导航线与人工观测导航线的平均偏差为4.90 cm,处理1帧图像平均耗时为0.044 s,能够满足果园内导航需求。  相似文献   

5.
柑橘表面缺陷是水果检测分级的重要依据,针对传统柑橘表面缺陷检测方法效率低、精度低等问题,该研究提出一种柑橘表面缺陷的实时检测方法。该方法首先对柑橘图像进行图像增强,然后利用提出的YOLOv7-CACT模型对柑橘表面缺陷进行检测,该模型在YOLOv7模型骨干网络中引入坐标注意力模块(coordinate attention, CA),从而提高模型对缺陷部分的关注度。在网络头部引入CT(contextual transformer,CT)模块,融合静态和动态上下文表征特征,从而增强缺陷部分特征表达能力。通过试验确定CA模块和CT模块的最佳位置。改进后的YOLOv7-CACT模型检测结果平均精度均值(mean average precision,mAP)相较于原始模型增加了4.1个百分点,达到91.1%,满足了实际生产中对柑橘缺陷检测精度的要求。最后将基于YOLOv7-CACT的柑橘检测模型通过TensorRT进行部署,试验结果表明模型的推理时间满足柑橘生产线10个/s的实时分选要求,总体的检测精度达到94.4%,为柑橘表面缺陷在线检测提供了一种精准的实时检测方法。  相似文献   

6.
基于改进EfficientDet的油橄榄果实成熟度检测   总被引:2,自引:2,他引:0  
自然环境下自动准确地检测油橄榄果实的成熟度是实现油橄榄果实自动化采摘的基础。该研究根据成熟期油橄榄果实表型特征的变化以及参考国际油橄榄理事会和中国林业行业标准的建议制定了油橄榄果实成熟度标准,并针对油橄榄果实相邻成熟度特征差异不明显以及果实之间相互遮挡问题,提出一种改进EfficientDet的油橄榄果实成熟度检测方法。首先改进特征提取网络,在特征提取网络中引入卷积注意力模块(Convolution Block Attention Module,CBAM)细化不同成熟度之间的特征映射;其次改进特征融合网络,在加权双向特征金字塔网络(Bidirectional Feature Pyramid Network,Bi-FPN)中增加跨级的数据流加强果实的相对位置信息,最后通过623幅油橄榄测试图像对改进的EfficientDet模型进行测试。改进EfficientDet模型在测试集下的精确率P、召回率R和平均精度均值mAP分别为92.89%、93.59%和94.60%,平均检测时间为0.337 s,模型大小为32.4 M。对比SSD、EfficientDet、YOLOv3、YOLOv5s和Faster R-CNN模型,平均精度均值mAP分别提升7.85、4.77、3.73、1.15和1.04个百分点。改进EfficientDet模型能够为油橄榄果实的自动化采摘提供有效探索。  相似文献   

7.
为解决自然环境中番茄叶片病虫害检测场景复杂、检测精度较低,计算复杂度高等问题,提出一种SLP-YOLOv7-tiny的深度学习算法。首先,将主干特征提取网络中部分3×3的卷积Conv2D(2D convolution)改为分布偏移卷积DSConv2D(2D Depthwise Separable Convolution),以减少网络的计算量,并且使计算速度更快,占用内存更少;其次,将无参数注意力机制(parameter-free attention module, SimAM)融合到骨干特征提取网络中,加强模型对病虫害特征的有效提取能力和特征整合能力;最后,将原始YOLOv7-tiny的CIOU损失函数,更替为Focal-EIOU损失函数,加快模型收敛并降低损失值。试验结果表明,SLP-YOLOv7-tiny模型整体识别精准度、召回率、平均精度均值mAP0.5(IOU阈值为0.5时的平均精度)、mAP0.5~0.95(IOU阈值从0.5到0.95之间的所有值进行平均计算的平均精度)分别为95.9%、94.6%、98.0%、91.4%,与改进前YOLOv7-tiny相比,分别提升14.7、29.2、20.2、30个百分点,同时,计算量降低了62.6%,检测速度提升了13.2%。与YOLOv5n、YOLOv5s、YOLOv5m、YOLOv7、YOLOv7-tiny、Faster-RCNN、SSD目标检测模型相比,mAP0.5分别提升了2.0、1.6、2.0、2.2、20.2、6.1和5.3个百分点,而计算量大小仅为YOLOv5s、YOLOv5m、YOLOv7、Faster-RCNN、SSD的31.5%、10.6%、4.9%、4.3%、3.8%。结果表明SLP-YOLOv7-tiny可以准确快速地实现番茄叶片病虫害的检测,且模型较小,可为番茄叶片病虫害的快速精准检测的发展提供一定的技术支持。  相似文献   

8.
为实现黄花成熟度的快速、高精度识别,针对其相似特征识别精确度低以及相互遮挡检测困难的问题,提出一种基于YOLOv8-ABW的黄花成熟度检测方法。该研究在特征提取网络中加入结合注意力机制的尺度特征交互机制(attention based intra-scale feature interaction, AIFI),更好地提取黄花特征信息,提高检测的精确度。在特征融合网络中,进一步采用加权的双向特征金字塔特征融合网络(bidirectional feature pyramid network, Bi FPN),实现更高层次的跨通道特征融合,有效减少通道中的特征冗余。此外使用WIoUv3作为损失函数,聚焦普通质量的锚框,提高模型的定位性能。试验结果表明:YOLOv8-ABW模型检测精确度为82.32%,召回率为83.71%,平均精度均值mAP@0.5和mAP@0.5:0.95分别为88.44%和74.84%,调和均值提升至0.86,实时检测速度为214.5帧/s。与YOLOv8相比,YOLOv8-ABW的精确度提高1.41个百分点,召回率提高0.75个百分点,mAP@0.5和mAP@0.5:0.95分别提升1.54个百分点和1.42个百分点。对比RT-DETR、YOLOv3、YOLOv5、YOLOv7模型,YOLOv8-ABW参数量最少,仅为3.65×106,且模型浮点运算量比YOLOv7少96.3 G。体现出YOLOv8-ABW 模型能够在黄花成熟度检测中平衡检测精确度和检测速度,综合性能最佳,为黄花智能化实时采摘研究提供技术支持。  相似文献   

9.
为实现自然环境下的板栗果实目标快速识别,该研究以湖北省种植板栗为研究对象,提出了一种基于改进YOLOv8模型的栗果识别方法YOLOv8-PBi。首先,将部分卷积(partial convolution,PConv)引入C2f模块中,缩减卷积过程中的浮点数和计算量;其次,引入加权双向特征金字塔网络(bidirectional feature pyramid network,BiFPN),增强多尺度特征融合性能,最后,更改边界框损失函数为动态非单调聚焦机制WIoU(wise intersection over union,WIoU),提高模型收敛速度,进一步提升模型检测性能。试验结果表明,改进YOLOv8-PBi模型准确率、召回率和平均精度分别为89.4%、74.9%、84.2%;相比原始基础网络YOLOv8s,模型权重减小46.22%,准确率、召回率和平均精度分别提升1.3、1.5、1.8个百分点。部署模型至边缘嵌入式设备上,经过TensorRT加速后,检测帧率达到43 帧/s。该方法可为板栗智能化收获过程中的栗果识别提供技术基础。  相似文献   

10.
基于改进YOLOv7的复杂环境下红花采摘识别   总被引:1,自引:2,他引:1  
针对光照、遮挡、密集以及样本数量不均衡等复杂环境造成红花机械化采摘识别不准问题,提出一种基于YOLOv7的改进模型,制作红花样本数据集建立真实采摘的复杂环境数据,增加Swin Transformer注意力机制提高模型对各分类样本的检测精准率,改进Focal Loss损失函数提升多分类任务下不均衡样本的识别率。经试验,改进后的模型各类别样本的检测平均准确率(mAP)达到88.5%,与改进前相比提高了7个百分点,不均衡类别样本平均精度(AP)提高了15.9个百分点,与其他模型相比,检测平均准确率与检测速度均大幅提升。结果表明改进后的模型可以准确地实现对红花的检测,模型参数量小识别速度快,适合在红花采摘机械上进行迁移部署,可为机械化实时采摘研究提供技术支持。  相似文献   

11.
为降低视觉引导式油茶果采摘机器人采摘被遮挡油茶果时造成的果树和抓取装置损伤,该研究提出了一种基于迁移学习和YOLOv8n算法的油茶果分类识别方法,将油茶果分成无遮挡和遮挡两类。首先,采用COCO128目标检测数据集作为源域,苹果数据集为辅助域的迁移学习方法训练模型。其次,将学习方法、训练数据量、学习率和训练轮数这4种因素组合,共进行了52组YOLOv8n检测性能的消融试验。最后,将YOLOv8n模型与YOLOv3-tiny、YOLOv5n和YOLOv7-tiny等模型进行比较。试验结果表明,随机权重初始化方式受训练数据量和学习率影响较大,学习率为0.01时模型检测效果最好;而迁移学习方法仅用随机权重初始化1/2的数据量即可达到与其相当的平均精度均值;迁移学习方式下,YOLOv8n模型的平均精度均值最高达到92.7%,比随机权重初始化方式提升1.4个百分点。与YOLOv3-tiny、YOLOv5n和YOLOv7-tiny等模型相比,YOLOv8n模型的平均精度均值分别提高24.0、1.7和0.4个百分点,研究结果可为YOLOv8n模型训练参数优化和油茶果分类识别提供参考。  相似文献   

12.
芽眼精准检测是实现马铃薯种薯智能化切块的前提,但由于种薯芽眼区域所占面积小、可提取特征少以及种薯表面背景复杂等问题极易导致芽眼检测精度不高。为实现种薯芽眼精准检测,该研究提出一种基于改进YOLOv7的马铃薯种薯芽眼检测模型。首先在Backbone部分增加Contextual Transformer自注意力机制,通过赋予芽眼区域与背景区域不同权值大小,提升网络对芽眼的关注度并剔除冗余的背景信息;其次在Head部分利用InceptionNeXt模块替换原ELAN-H模块,减少因网络深度增加而造成芽眼高维特征信息的丢失,更好地进行多尺度融合提升芽眼的检测效果;最后更改边界框损失函数为NWD,降低损失值,加快网络模型的收敛速度。经试验,改进后的YOLOv7网络模型平均准确率均值达到95.40%,较原始模型提高4.2个百分点。与同类目标检测模型Faster-RCNN(ResNet50)、Faster-RCNN(VGG)、SSD、YOLOv3、YOLOv4、YOLOv5n、YOLOX相比,其检测精度分别高出34.09、26.32、27.25、22.88、35.92、17.23和15.70个百分点。...  相似文献   

13.
针对实际检测过程中茶叶数量多、体积小、茶叶之间颜色和纹理相似等特点,该研究提出了一种基于YOLOv5s的名优绿茶品质检测算法。首先,该算法在骨干网络层引入膨胀卷积网络,通过增大感受野的方式增强茶叶微小特征的提取。其次,改进特征融合进程,基于通道注意力和空间注意力抑制无关信息的干扰,构建CBAM注意力机制优化检测器。接着根据swin transformer网络结构在多个维度对小尺度茶叶的特征进行交互和融合。最后,配合SimOTA匹配算法动态分配茶叶正样本,提高不同品质茶叶的识别能力。结果表明,改进后的算法精准度、召回率、平均精度均值、模型体积、检测速度分别为97.4%、89.7%、91.9%、7.11MB和51帧/s,相较于基础的YOLOv5s平均精度均值提高了3.8个百分点,检测速度提高了7帧/s。利用相同数据集在不同目标检测模型上进行对比试验,与Faster-RCNN、SSD、YOLOv3、YOLOv4等模型相比,平均精度均值分别提升10.8、22.9、18.6、8.4个百分点,进一步验证了该研究方法的有效性和可靠性。  相似文献   

14.
基于改进YOLOv3的果园复杂环境下苹果果实识别   总被引:1,自引:4,他引:1  
为使采摘机器人能够全天候在不同光照、重叠遮挡、大视场等果园复杂环境下对不同成熟度的果实进行快速、准确识别,该研究提出了一种基于改进YOLOv3的果实识别方法。首先,将DarkNet53网络中的残差模块与CSPNet(Cross Stage Paritial Network)结合,在保持检测精度的同时降低网络的计算量;其次,在原始YOLOv3模型的检测网络中加入SPP(Spatial Pyramid Pooling)模块,将果实的全局和局部特征进行融合,提高对极小果实目标的召回率;同时,采用Soft NMS(Soft Non-Maximum Suppression)算法代替传统NMS(Non-Maximum Suppression)算法,增强对重叠遮挡果实的识别能力;最后,采用基于Focal Loss和CIoU Loss的联合损失函数对模型进行优化,提高识别精度。以苹果为例进行的试验结果表明:经过数据集训练之后的改进模型,在测试集下的MAP(Mean Average Precision)值达到96.3%,较原模型提高了3.8个百分点;F1值达到91.8%,较原模型提高了3.8个百分点;在GPU下的平均检测速度达到27.8帧/s,较原模型提高了5.6帧/s。与Faster RCNN、RetinaNet等几种目前先进的检测方法进行比较并在不同数目、不同光照情况下的对比试验结果表明,该方法具有优异的检测精度及良好的鲁棒性和实时性,对解决复杂环境下果实的精准识别问题具有重要参考价值。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号