共查询到12条相似文献,搜索用时 873 毫秒
1.
基于L-M优化算法的BP神经网络的作物需水量预测模型 总被引:25,自引:6,他引:25
应用L-M优化算法BP神经网络,通过多维气象数据(太阳辐射、空气温度、湿度)与作物需水量的相关分析,来确定网络的拓扑结构,建立作物需水量的人工神经网络模型。用美国田纳西州大学高原实验室所测的100 d气象数据为输入、作物需水量为输出来训练建立好的BP神经网络,仿真表明该神经网络能很好地解决需水量多影响因素之间的不确定性和非线性,模型的预测精度较高,同时通过一组非样本天气环境参数和作物需水量来验证该神经网络,也得到了较好的预测结果,能够满足灌溉的精度要求。 相似文献
2.
根据地下水动态的时间序列数据资料,建立地下水动态模型,应用BP神经网络的L-M优化算法进行模拟和预测,并与灰色模型预测法的分析结果进行比较,得出该方法不仅简单可行,而且预测精度更高,可在地下水动态、河流水质、大气环境质量预测等方面广泛使用的结论。 相似文献
3.
针对颗粒饲料产品受配方原料、加工参数变化而带来的质量波动问题,提出了一种以误差反向传播算法神经网络(back-propagation neural network,BPNN)为核心,平均影响值法(mean impact value,MIV)为数据预处理方法,粒子群算法(particle swarm optimization,PSO)为关键参数优化算法的颗粒饲料质量预测模型。基于面向实际建立的输入输出指标体系,使用实地采集的颗粒饲料生产数据对模型进行训练和测试,测试结果显示实际值与模型预测值呈显著正相关,决定系数R2均在0.94以上;平均绝对误差、平均绝对百分比误差及均方根误差显示预测精度达到较高水平,各误差平均值依次达到0.442、2.185%和0.5481。以多元线性回归模型及基本BPNN模型预测结果对比可以发现,MIV-PSO-BPNN预测模型预测性能有显著提升,各输出误差优化幅度从39.55%~91.80%不等,平均优化幅度分别达到84.99%和56.95%;同时相对误差变化趋势图显示MIV-PSO-BPNN预测模型具有更优的预测稳定性,相对误差极值差降幅均值达91.46%。该研究为颗粒饲料质量控制提出了一种新思路,可为饲料行业高效低耗生产提供理论依据。 相似文献
4.
为了能更有效地预测稻瘟病的发生,将混沌理论(G-P算法)与BP人工神经网络融合建立了稻瘟病预测模型,并运用QPSO算法优化BP神经网络,避免了BP算法易陷入局部极小值的缺陷。运用G-P算法对云南省凤庆县历年稻瘟病发病情况的历史数据进行了研究。研究发现最小嵌入空间维及K熵都为正数,故稻瘟病的发生具有一定的混沌特性,从而确定了模型输入层的个数。应用该模型对2001-2009年稻瘟病发生程度进行预测,并与其他预测模型进行比较。结果表明:该模型预测的准确率和收敛速度明显高于其他预测模型,且预测结果有效可行,为解决预测、分类及模式识别等问题提供了新的解决途径。 相似文献
5.
基于R-BP神经网络的温室小气候多步滚动预测模型 总被引:1,自引:0,他引:1
温室高效生产依赖于适宜的温室小气候环境,建立高精度的温室小气候多步预测模型对实现温室环境优化调控具有重要意义。本研究提出一种基于滚动的反向传播神经网络(Rolling Back Propagation Neural Network, R-BP)的温室小气候多步滚动预测模型。模型主要包括两个阶段:(1)建立初始的BP神经网络。采用自动编码器无监督学习方法获取初始网络参数,并利用改进的粒子群算法优化网络参数。(2)建立滚动的BP神经网络群。将前一个网络输出作为后一个网络的部分输入进行滚动训练和预测,实现温室小气候多步滚动预测。为验证R-BP模型的有效性,在阿拉伯联合酋长国阿布扎比市的自控温室和中国苏州市的非自控温室分别进行试验。验证试验表明,与传统BP神经网络相比,在阿布扎比温室试验中,采用R-BP模型预测未来6h室内温度,其平均误差降低69.9%,预测相对湿度,其平均误差降低47%;在苏州温室试验中,采用R-BP模型预测未来6h室内温度,其平均误差降低43.3%,预测相对湿度,其平均误差降低55.6%。说明R-BP模型能够较准确预测未来6h内温室小气候环境变化,可为制定温室小气候优化调控方案提供依据。 相似文献
6.
农村稻区水稻螟虫发生量与多种气候因素相关,各因素之间存在相互作用,是非线性系统。神经网络能有效地描述非线性模型多输入和不确定的特性。传统的BP网络在训练时易陷入局部极小点从而导致训练时间长、收敛速度慢,采用Levenberg-Marquardt优化算法(简称L-M算法)能克服其缺点。在MATLAB中应用L-M算法对辽宁盘锦田间稻区进行水稻螟虫发生量的仿真预测,试验结果表明L-M优化算法的预测精度和收敛速度明显提高,为稻区防控虫害和精确喷药提供参考,具有实用价值。 相似文献
7.
基于RBF神经网络的土壤侵蚀预测模型研究 总被引:1,自引:0,他引:1
土壤侵蚀的物理机理十分复杂,用数学方式难以描述.针对土壤侵蚀过程的模糊性、随机性、非线性等特点,将RBF神经网络的理论与方法应用到土壤侵蚀预测中.以杏木小流域为研究对象,应用RBF神经网络方法构建土壤侵蚀预测模型,以汛期降雨量、径流系数、土壤容量、有机质含量及孔隙度土壤侵蚀因子作为模型的输入层变量,输出层变量为年土壤侵蚀模数.通过模拟训练和预测,RBF神经网络取得的结果较好,能够有效地预测土壤侵蚀,且与常见的BP神经网络土壤侵蚀预测模型相比,RBF神经网络得到的预测结果精度更高.RBF神经网络模型将土壤侵蚀预测问题转化为影响因子和年侵蚀模数的非线性问题,该模型的模拟与预测为复杂的土壤侵蚀规律研究提供了新途径. 相似文献
8.
基于BP网络的高新技术产业用地适宜性评价 总被引:5,自引:1,他引:5
在分析目前用于土地适宜性评价主要方法及其存在主要问题的基础上,引入了人工神经网络理论来解决自动定权问题.根据构建的高新技术产业土地适宜性评价指标体系,应用GIS和BP神经网络的L-M优化算法对济南市高新技术产业用地适宜性进行了评价.结果表明:济南高新技术产业用地的土地适宜性可划分为5类,模拟结果比较理想. 相似文献
9.
温室环境控制领域所研究的大多数智能控制算法复杂程度较高,不适宜实际生产应用,生产型温室大多采用设置静态工作点模式进行简单的环境控制,这种模式无法根据环境变化进行自动调整,浪费了大量的能量。针对这一问题,提出了基于温度积分算法的温室环境控制方法,根作物种类和生长阶段确定期望平均温度值,将全天24 h均分为长度更短的若干时间片,然后利用温度积分原理对每一时间片的温度调节点进行计算,根据得到的温度调节点结合当前实际温度进行环境控制。仿真试验表明,在保持温室内实际平均温度相同的情况下,利用温度积分算法对温室进行环境调节所消耗的能量为静态工作点的模式的64.43%。该方法计算量相对较小,适用于普通的温室环境控制器,能够简单有效地实现节能控制。 相似文献
10.
11.
BP神经网络结合有效积温预测速冻水饺变温冷藏货架期 总被引:1,自引:2,他引:1
为了解决速冻食品在温度波动贮藏过程中的货架期预测问题,准确监测其品质变化趋势,该文以速冻水饺为研究对象,将其在-28℃~-12℃进行冷藏,测定酸价、过氧化值、饺皮水分含量、亨特白度等理化指标,并结合感官评价与有效积温理论,应用BP神经网络技术预测速冻水饺的货架期。并与动力学模型预测结果进行比较。结果表明,测试集样本的距货架期终点积温的预测值与实际测定值拟合度较好,最大误差为3.29%,模型验证最大误差为2.74%。BP模型的距货架期终点时间的最大误差为3.45%低于传统动力学模型预测的误差(5.62%)。BP神经网络预测模型为速冻食品货架期预测提供了一种新途径。 相似文献
12.
基于经验模态分解与BP神经网络的农机总动力增长预测 总被引:2,自引:0,他引:2
为提高农机总动力增长变化预测结果的准确性和可靠性,根据农机总动力增长变化与其影响因素之间具有在各时间尺度明显的非线性波动特征,提出以1986—2013年农机总动力增长为研究对象,分别对农机总动力增长及其影响因素时间序列数据进行经验模态分解(empirical mode decomposition,EMD),对得到的各时间尺度下的波动分量分别建立BP神经网络预测模型。将EMD-BP网络预测结果与多元线性回归、支持向量机、BP神经网络进行对比分析,结果表明:基于EMD-BP网络建立的农机总动力增长预测模型,拟合和预测平均相对误差分别为0.99%和1.29%,相关决定系数约为0.999,均方根误差为316.35 MW,模型评价等级为"好",各项精度评价指标都优于其他方法,因此该预测模型精度高、可靠性强。研究成果为农业机械化发展规划的制定和出台相关政策提供有效参考。 相似文献