共查询到18条相似文献,搜索用时 140 毫秒
1.
3.
微塑料污染已成为全世界广泛关注的环境问题之一。近年来,土壤微塑料污染问题格外受到关注。本研究从土壤微塑料污染防治体系构建的角度,综述了微塑料定义、土壤微塑料检测方法、土壤微塑料的赋存分布与主要来源、微塑料对土壤生物的毒性效应以及土壤微塑料污染防治等方面的研究进展,最后根据现有研究基础提出进一步加强土壤微塑料基础问题研究,以及开展土壤微塑料污染防控技术和宏观决策体系研究的具体研究路径展望,为今后土壤微塑料的研究提供思路。 相似文献
4.
土壤环境中微塑料积累量大且不易降解,因此微塑料长期残留对土壤生态系统的影响已引起广泛关注。通过收集近年来有关土壤微塑料污染及其效应相关的文献,全面系统介绍了土壤微塑料积累后,土壤物理环境的变化、土壤动物摄入及其肠道微生物的响应、土壤微生物和土壤酶活性响应、以及植物对微塑料的吸收及其效应等方面的最新研究进展。现有研究结果表明:微塑料污染对土壤容重、团聚体组成和持水性等土壤物理性质有明显改变,而这些改变是影响土壤酶活性、微生物群落组成、甚至植物生长的关键因素。也有一些研究关注土壤无脊椎动物(如蚯蚓Lumbricus terrestris、跳虫Folsomia candida等)对微塑料在土壤中迁移的影响。同时,微塑料也会被这些土壤动物所摄食,并导致土壤动物体内肠道微生物群落组成的变化以及对其生长产生影响。此外,微塑料在陆地生态系统食物链中的积累及其效应也受到关注,比如,被蚯蚓摄食的微塑料可通过鸡Gallus gallus domesticus摄食蚯蚓进入鸡体内积累。在系统介绍土壤微塑料污染生态效应的研究进展基础上,结合微塑料组成与性质的复杂性以及当前研究的不足,提出4个未来研究方向:①建立土壤微塑料污染毒理学诊断的标准化方法体系;②研究土壤微塑料与微生物、植物和土壤动物之间的作用机理;③揭示微塑料与物质转化之间的关键微生物学机制;④开展不同土壤生态系统中的“塑料圈”研究。这些研究成果可为评估土壤微塑料污染的生态效应提供科学支撑。参80 相似文献
5.
春季乌梁素海水体微塑料分布特征及影响因素 总被引:1,自引:0,他引:1
为探究春季乌梁素海水体中微塑料的空间分布特征及其影响因素,通过分层取样、显微镜观察、傅里叶红外光谱测定等方法,对春季乌梁素海水体中微塑料的丰度、颜色、形状和种类进行鉴定,并结合当地环境分析不同季节微塑料分布差异的影响因素。结果表明:春季乌梁素海表层水体微塑料丰度为4.8~19.0个·L~(-1),中层水体微塑料丰度为4.6~16.3个·L~(-1),表层微塑料的平均丰度约为中层的1.4倍。表层水中微塑料的形状以纤维(46.6%)为主,中层则以碎片(53.2%)为主,微塑料主要类型为聚乙烯(PE)、聚苯乙烯(PS)和聚对苯二甲酸丁二醇酯(PET),其中表层水中PE和PS普遍高于中层水,而PET在中层水中丰度较高。乌梁素海水体中微塑料在湖水结冰前和冰盖融化后丰度差异较大且呈现相反的分布模式。研究表明,微塑料在水中垂直分布所受到的影响因素复杂,微塑料的密度是影响其沉降的主要原因,但微塑料的形状、大小和生物作用等会使其密度发生改变,进而影响其沉降。 相似文献
6.
7.
为明确沈阳周边农田土壤微塑料的形态、物质组成及其空间分布特征,以沈阳周边农田土壤为研究区,共设置23个采样点,采集了84个土壤样品,采用密度分离浮选法提取出土壤中微塑料,利用光学显微镜以及热裂解气相色谱-质谱联用仪(Py-GC/MS),对土壤中的微塑料进行形态鉴定和定性定量分析。结果表明:研究区土壤中微塑料物理性状分为薄膜状、碎片状、纤维状和颗粒状;土壤中微塑料的浓度为217.30~2 512.18μg·g~(-1),平均值为1 327.69μg·g~(-1)。其中,聚乙烯(PE)微塑料的浓度最高,平均值为760.03μg·g~(-1);其次为聚丙烯(PP)和聚苯乙烯(PS),平均值分别为374.07μg·g~(-1)和193.59μg·g~(-1);土壤中微塑料浓度在空间上呈现出西部土壤(平均值1 569.59μg·g~(-1))东部土壤(平均值1 320.28μg·g~(-1))北部土壤(平均值1 217.56μg·g~(-1))南部土壤(平均值1 208.85μg·g~(-1))。土壤微塑料浓度从地表向下明显降低,从表层土壤(0~5 cm)的998.76μg·g~(-1)减少到深层土壤(20~30 cm)的193.00μg·g~(-1);不同的土壤种植模式对土壤微塑料浓度的影响明显,其中大棚土壤微塑料浓度较高,平均值为1 439.56μg·g~(-1),露天农田微塑料浓度平均值为1 187.76μg·g~(-1)。生菜、葡萄、黄瓜大棚种植以及露天农田覆膜玉米种植模式下土壤微塑料含量较高。研究表明,沈阳周边农田土壤中微塑料主要组成类型为PE、PP和PS,且随土层加深,土壤微塑料浓度明显降低。 相似文献
8.
红树林生态系统是沿海生态系统中独特且重要的环境组成部分。然而,微塑料作为新型环境污染物通过不同方式进入红树林系统中,已经成为红树林面临的一项严重挑战。分析了微塑料对红树林生态系统的影响,总结了红树林生态系统中微塑料分布特征、微塑料对红树林生态系统的影响、红树林生态系统中微塑料分布影响因素、微塑料在红树林生态系统中的归宿,最后对红树林生态系统中微塑料的研究方向进行了展望。提出确立微塑料监测方法和检测标准、评估红树林中微塑料生态风险、建立微塑料污染治理和管理措施、微塑料模型预测、探索修复与去除策略和研究微塑料与海洋生态系统碳循环的相互作用6个研究,可为未来红树林微塑料领域研究重点和污染控制提供借鉴。 相似文献
9.
10.
土壤微塑料污染及生态效应研究进展 总被引:6,自引:8,他引:6
微塑料作为一种新型环境污染物,对土壤生态系统构成严重威胁。当前对微塑料的研究多集中于水域生态系统,而对土壤生态系统的影响研究较少。本文综述了土壤微塑料的分类及来源,分离、检测方法及存在问题,总结了土壤微塑料的污染和微塑料对污染物的吸附效应及机理,分析了其对土壤动物、微生物生态及碳、氮等物质循环的影响,最后针对微塑料的生态效应提出展望,为今后土壤微塑料的研究提供了新的思路。 相似文献
11.
不同土壤环境因素对微塑料吸附四环素的影响 总被引:1,自引:4,他引:1
为探究不同土壤环境因素对于微塑料吸附抗生素的影响,选用三种常见的微塑料:聚乙烯(PE)、聚苯乙烯(PS)和聚酰胺(PA),以四环素(TC)代表抗生素,通过批平衡试验来研究微塑料对TC的吸附行为和机理。研究发现,3种微塑料对TC的等温吸附方程均可用Langmuir方程进行拟合,其吸附能力为PEPSPA,最大吸附量分别为0.154、0.086、0.075 mg·g~(-1)。在中性条件下PE对TC的吸附量达到最大,pH对PA吸附TC影响较小,而PS在酸性条件下对TC的吸附量最大,且随着pH增加吸附量逐渐降低。不同浓度的Ca~(2+)和Mg~(2+)会影响微塑料对TC的吸附,且随着浓度的增加,吸附量逐渐降低。富里酸的存在抑制了TC在PE上的吸附,但低浓度的富里酸(1 mg·L~(-1))会促进PA和PS吸附TC。结果表明,不同微塑料对TC的吸附存在显著差异,且不同土壤环境因素明显影响了微塑料对TC的吸附行为,该结果为进一步研究和评估微塑料在土壤环境中的吸附行为奠定了基础。 相似文献
12.
湖泊被认为是重要的且被低估了的温室气体释放源,而甲烷(CH4)是湖泊释放温室气体的重要组成。研究表明,湖泊生态系统中CH4的产生和氧化过程主要受水体和沉积物中产甲烷菌和甲烷氧化菌的活动所控制。水温、pH、溶解氧浓度、营养盐等因素都可能影响湖泊 CH4释放通量。本文利用 Web of Science与 CNKI作为检索平台,调研了全球不同地区 80个湖泊水-气界面CH4释放通量。结果表明,CH4平均释放通量为2.56 mmol·m-2·d-1 (范围为0.001~40.3 mmol·m-2·d-1)。其中南美洲地区和欧洲地区湖泊CH4释放通量显著高于非洲地区湖泊,富营养湖泊向大气释放的CH4显著高于中营养湖泊和贫营养湖泊,面积<1 km2的湖泊向大气释放的CH4显著高于面积10~<100 km2和面积≥100 km2的湖泊,低海拔地区湖泊向大气释放的CH4显著高于高海拔地区湖泊和超高海拔地区湖泊,夏季湖泊向大气释放的CH4显著高于春季湖泊、秋季湖泊和冬季湖泊。在温暖季节低海拔地区的富营养化和小型浅水湖泊是CH4释放的热点区域,未来需进一步结合微生物产生和氧化CH4机制分析加强CH4释放通量的日变化研究,为估算全球气候变暖背景下湖泊CH4释放量提供科学依据。 相似文献
13.
【目的】通过对预测模型的评估,综合考虑各方面因素,使各模型在适用条件范围内扬长避短、发挥优势,简洁、快速、精确地获取土壤热导率的预测值,以实现复杂程度上的定量化研究。【方法】对前人提出的16种土壤热导率模型的优势和劣势及应用条件、影响因素进行分析总结,将其中14种模型的预测数据与从文献中收集的实测数据进行比较,通过线性回归分析与均方根误差分析,实现模型评估。【结果】含水率和石英含量对土壤热导率有很大影响,石英的热导率约为7.9 W·m~(-1)·K~(-1),是所有土壤矿物中最高的,在湿润状态下的土壤热导率远高于干燥状态下的;常温下,Wiener的模型回归系数为0.133和2.208,模型决定系数为0.393和0.820,与其他模型相比偏差明显;而Geo-Mean模型显示出最低回归系数0.668,最高均方根误差0.598,模型的预测值与实测值偏差显著;Zhang等的模型、Chen的模型和Haigh的模型回归系数分别为0.994、0.919和0.891,均方根误差为0.280、0.315和0.394,表现出相对较高的预测精度;Lu等模型的回归系数为0.850,决定系数为0.976,土壤热导率的预测精度一般,而基于Lu等模型改进的苏李君等模型显示最高回归系数(0.997)和决定系数(0.980),表现出最优的性能。【结论】在需要考虑土壤类型的情况下,推荐使用苏李君等的模型,该模型能够更加详细描述土壤物理基本参数对土壤热导率的影响。 相似文献
14.
微塑料是难以降解的污染物,可作为众多污染物的载体,在土壤中极易与其他污染物发生复合效应,对土壤产生不利影响。本文系统分析了聚乙烯(PE)、聚氯乙烯(PVC)、聚对苯二甲酸乙二醇酯(PET)、聚丙烯(PP)、聚苯乙烯(PS)和聚酰胺(PA)六种微塑料与重金属、持久性有机污染物和抗生素在土壤中的相互作用及其影响因素。在土壤介质中,微塑料与重金属的作用受微塑料比表面积、老化程度、极性以及土壤中H+、低分子酸的影响;微塑料与持久性污染物的作用受微塑料疏水性、橡胶域丰度、污染物极性以及土壤有机质的影响;微塑料与抗生素的作用受微塑料比表面积、极性以及土壤中的腐殖质等物质的影响。研究结果将为阐明微塑料在土壤环境中与其他污染物的相互作用影响因素提供理论支撑。 相似文献
15.
微塑料的环境行为及其生态毒性研究进展 总被引:2,自引:3,他引:2
微塑料污染已经成为全球关注的环境问题。本文对不同环境介质中微塑料的来源、迁移、分布特征及其对生物体的毒性效应等方面的研究现状进行了系统的总结和评述。微塑料的来源主要包括直接进入到环境中的初生微塑料和大块塑料破裂、分解形成的次生微塑料,其可在大气、水体(淡水和海洋)和陆地环境之间进行迁移。需建立统一的微塑料样品采集、分离和鉴定方法,并结合准确高效的溯源分析技术,进一步探索其环境行为与归趋。微塑料(含自身的添加剂)被生物摄取后会造成物理损伤、引发生物体的行为、生理学和分子学反应,并可能与其他污染物形成复合污染,产生联合毒性效应。通过同位素示踪与分子生物学新技术的联用,重点研究微塑料的生物累积和在食物链中的传递效应,尤其是对人体健康的潜在威胁,以期为微塑料污染的生态风险评估提供理论依据。 相似文献
16.
化感作用在自然界普遍存在,生态系统中合理利用化感作用,潜力巨大。本文着眼于影响植物化感作用的因素,从植物的遗传因子及生长发育状况、化感物质的种类和数量、植物所处环境条件(土壤养分及质地、光照、温度、水分、生物)等方面进行探讨,以期为合理有效开发和利用化感作用提供参考价值。 相似文献
17.
为了探究微塑料在水体和土壤环境中对磷的吸附特性及不同因素对磷等生源物质在微塑料及土壤中赋存的影响,采用聚丙烯(PP)、聚苯乙烯(PS)这两种常见的微塑料进行吸附试验。结果表明:疏松多孔的PP拥有比PS更强的吸附性能和更大的吸附容量;两种微塑料的Zeta电位随pH的增加而降低,并且PS和PP的零电荷点(pH_(PZC))分别在pH为5.92和6.45时达到;PP、PS对磷的吸附以单层饱和吸附为主,吸附方式主要为物理吸附,并且吸附过程为放热和熵减的自发反应;微塑料对磷的单位吸附量随pH的增大呈现出先降低后升高的"U型"趋势,且温度的升高不利于PP、PS这两种微塑料对磷的吸附;随土壤中微塑料质量添加比的增加,土壤-微塑料体系对磷的吸附量增大幅度有限。研究表明,不同类型的微塑料其吸附能力存在差异,且环境因素能够对其吸附磷造成明显影响,微塑料的持续性积累对土壤-微塑料体系吸附磷的促进作用十分有限,并且这个促进作用也不会因微塑料的种类不同而产生较大差异。 相似文献
18.
海洋微塑料污染问题是全球研究热点,现有研究表明微塑料在海洋环境中无处不在,对海洋生态的威胁逐渐加重,伴随着海洋食品的兴起,人们也越来越重视微塑料污染对人体健康的危害。本文通过对海洋生物体内微塑料污染情况的概述,系统分析了微塑料对海洋生物造成的影响。主要针对微塑料检测的前处理方法以及组分的鉴定方法展开综述,对不同方法的优缺点进行比较,指出在微塑料检测研究中多种方法综合应用效果最佳。基于现阶段海洋微塑料的研究状况,从科学研究和管控方面讨论了目前研究中存在的问题,展望了未来的研究方向。 相似文献